[go: up one dir, main page]

JPH06258336A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH06258336A
JPH06258336A JP4662393A JP4662393A JPH06258336A JP H06258336 A JPH06258336 A JP H06258336A JP 4662393 A JP4662393 A JP 4662393A JP 4662393 A JP4662393 A JP 4662393A JP H06258336 A JPH06258336 A JP H06258336A
Authority
JP
Japan
Prior art keywords
sphere
liquid metal
acceleration
acceleration sensor
hollow sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4662393A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koshimoto
泰弘 越本
Tadamichi Kawada
忠通 川田
Hiroshi Hosaka
寛 保坂
Kiyoshi Itao
清 板生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4662393A priority Critical patent/JPH06258336A/en
Publication of JPH06258336A publication Critical patent/JPH06258336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

(57)【要約】 【目的】 小形軽量で高精度に加速度を検出可能な加速
度センサを提供する。 【構成】 本発明の加速度センサは、微細な直径を有す
る透明な中空状の球体と、この球体の内部に浮動自在に
配置されるより微細な直径を有する液体金属球と、前記
球体の中心に対して対称となる前記球体の外部の位置に
配置される点光源と多素子光検出素子とを具備したこと
を特徴とする。
(57) [Summary] [Purpose] To provide an acceleration sensor that is small, lightweight, and capable of detecting acceleration with high accuracy. According to an acceleration sensor of the present invention, a transparent hollow sphere having a fine diameter, a liquid metal sphere having a finer diameter arranged freely inside the sphere, and a center of the sphere. It is characterized in that it is provided with a point light source and a multi-element photodetection element which are arranged outside the sphere which are symmetrical with respect to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速度センサに係り、特
に重力加速度の検出に好適する小形軽量な加速度センサ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to a small and lightweight acceleration sensor suitable for detecting gravitational acceleration.

【0002】[0002]

【従来の技術】近年、ロボティックスやヴァーチャルリ
アリティなど、人間の行動データを直接コンピューター
に入力して処理する必要性が高まっているが、これを実
現するためには人体の各部にその運動を制限することな
しに検出するセンサが必要である。
2. Description of the Related Art In recent years, it has become increasingly necessary to directly input human behavior data such as robotics and virtual reality into a computer for processing, but in order to realize this, the movement of each part of the human body is required. There is a need for sensors that detect without limitation.

【0003】一般に、運動は加速度の検出を行ってその
積分で速度を、2重積分で位置を計算するが、計算誤差
を少なくするために加速度検出が高精度であると共に、
誤差の補正要素として、地球上で常に存在する重力加速
度を正確に検出することが必要となってくる。
Generally, in motion, acceleration is detected and velocity is calculated by integration of the acceleration, and position is calculated by double integration. Acceleration detection is highly accurate in order to reduce calculation error.
It is necessary to accurately detect the gravitational acceleration that always exists on the earth as a correction factor for the error.

【0004】重力の方向を知るためには、液体を封入し
たガラス容器に目盛りを入れ、液面位置を目で調べる水
準器が広く知られている。
In order to know the direction of gravity, there is widely known a spirit level in which a glass container containing a liquid is calibrated and the position of the liquid surface is visually inspected.

【0005】この原理を基に電気的な信号を取り出すた
め、作動液体を水銀とし、多数の電気接点を容器に設け
て水銀位置を検出する検出方式が考えられる。
In order to take out an electrical signal based on this principle, a detection method is conceivable in which mercury is used as the working liquid and a large number of electrical contacts are provided in the container to detect the position of mercury.

【0006】しかるに、この方式は実際には高精度な方
位検出とするために接点数が多くなって信号処理が煩雑
なこと及び液面の振動により早い応答が得られないこと
などから電気機器の安全監視用転倒スイッチなどに用い
られているに過ぎない。
However, in this method, since the number of contacts is large in order to detect the direction with high accuracy, the signal processing is complicated, and a quick response cannot be obtained due to the vibration of the liquid surface. It is only used as a fall switch for safety monitoring.

【0007】また、従来より自動車の衝突検出等に用い
るものとして小形で軽量のセンサが必要とされ、ばねに
よって支持された物体の加速度による変位を静電容量の
変化として検出するものや、圧電素子にかかる応力ひず
みをピエゾ電圧として検出するものが用いられていた。
Further, conventionally, a small and lightweight sensor has been required for use in automobile collision detection and the like, for detecting displacement due to acceleration of an object supported by a spring as a change in electrostatic capacity, and a piezoelectric element. The one that detects the stress strain applied to the piezo-voltage is used.

【0008】これらはいずれも一軸方向の加速度を検出
するものであるので、センサの配置に拘らず重力加速度
を検出するには3次元方向の絶対加速度を検出する必要
があるため、上記検出素子を3軸に組み合わせて用いる
必要があった。
Since all of them detect uniaxial acceleration, it is necessary to detect the absolute acceleration in the three-dimensional direction in order to detect the gravitational acceleration regardless of the arrangement of the sensors. It was necessary to use it in combination with three axes.

【0009】静電容量を構成する2枚の電極の内、一方
に質量を付加してばね支持し、加速度による微小変位を
静電容量変化として検出する静電容量変化形加速度計で
はセンサ部分のインピーダンスが容量性で高いことから
外来雑音に弱く、検出回路との接続距離が制限されるな
ど制約が大きい欠点があった。
In the capacitance type accelerometer which detects the minute displacement due to acceleration as a capacitance change, the sensor part of the sensor part Since the impedance is capacitive and high, it is weak against external noise, and there are drawbacks that the connection distance to the detection circuit is limited and there are many restrictions.

【0010】[0010]

【発明が解決しようとする課題】以上のように従来は小
形軽量で高精度に加速度を検出することができる加速度
センサがなく、それを実現することが緊急の課題となっ
ている。
As described above, there has been no acceleration sensor capable of detecting acceleration with high precision and small size in the past, and it is an urgent task to realize it.

【0011】そこで、この発明は以上のような点に鑑み
てなされたもので、小形軽量で高精度に加速度を検出す
ることができる加速度センサを提供することを目的とし
ている。
Therefore, the present invention has been made in view of the above points, and an object thereof is to provide an acceleration sensor which is small in size and light in weight and capable of detecting acceleration with high accuracy.

【0012】[0012]

【課題を解決するための手段】本発明によると、微細な
直径を有する透明な中空状の球体と、この球体の内部に
浮動自在に配置されるより微細な直径を有する液体金属
球と、前記球体の中心に対して対称となる前記球体の外
部の位置に配置される点光源及び多素子光検出素子とを
具備したことを特徴とする加速度センサが提供される。
According to the present invention, a transparent hollow sphere having a fine diameter, a liquid metal sphere having a finer diameter disposed inside the sphere so as to be freely floated, There is provided an acceleration sensor comprising a point light source and a multi-element photodetection element arranged at a position outside the sphere that is symmetrical with respect to the center of the sphere.

【0013】また、本発明によると、上記透明な中空状
の球状の内面に付着される導電性透明膜をさらに具備し
たことを特徴とする加速度センサが提供される。
Further, according to the present invention, there is provided an acceleration sensor characterized by further comprising a conductive transparent film attached to the transparent hollow spherical inner surface.

【0014】[0014]

【作用】上記解決手段に示したように、本発明は小形軽
量で高精度の加速度センサを微細加工を利用して実現す
ることができる。
As described in the above means for solving the problems, the present invention can realize a small, lightweight and highly accurate acceleration sensor by utilizing fine processing.

【0015】[0015]

【実施例】以下、本発明の実施例につき図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1(a)及び図2は本発明の基本構成を
示す図であり、1は中空球体2の内部に配置される液体
金属球、2は微細な直径を有する透明な中空球体、3
a,3bはレンズ、4a,4bはLED等の点光源、5
a,5bは多素子光検出器で本実施例では円形の光検出
素子が4分円分割されたものを用いている。
1 (a) and 2 are views showing the basic structure of the present invention, in which 1 is a liquid metal sphere arranged inside a hollow sphere 2, 2 is a transparent hollow sphere having a fine diameter, Three
a and 3b are lenses, 4a and 4b are point light sources such as LEDs, and 5
Reference numerals a and 5b denote multi-element photodetectors, which are circular photodetection elements divided into quadrants in this embodiment.

【0017】6は上記それぞれの基本要素1〜5を結合
するケース構造体である。
Reference numeral 6 is a case structure for connecting the above-mentioned respective basic elements 1-5.

【0018】図2の断面図に示すように、透明な中空球
体2の中心に対称に対向する点光源4a,4b及び多素
子光検出器5a,5bとが2組直交して配置されてお
り、液体金属球1によって遮られた点光源4a,4bか
らの光は2つの多素子光検出素子5a,5bの面上で影
となって現れる。
As shown in the sectional view of FIG. 2, two sets of point light sources 4a and 4b and multi-element photodetectors 5a and 5b symmetrically opposed to the center of the transparent hollow sphere 2 are arranged orthogonally. The light from the point light sources 4a and 4b shielded by the liquid metal sphere 1 appears as shadows on the surfaces of the two multi-element photodetection elements 5a and 5b.

【0019】点光源4a,4bから光はレンズ3a,3
bでほぼ平行光になり、中空球体2を通過する。
Light from the point light sources 4a and 4b is reflected by the lenses 3a and 3b.
At b, the light becomes almost parallel and passes through the hollow sphere 2.

【0020】中空球体2の殻の厚さが均一であれば該球
体2の内部でも光は平行にままであることは周知のとこ
ろであり、内部に光遮閉物としての液体金属球1がある
のでその影は、対向する多素子光検出器5a,5bに投
影される。
It is well known that if the shell of the hollow sphere 2 has a uniform thickness, the light remains parallel inside the sphere 2, and there is a liquid metal sphere 1 as a light shield inside. Therefore, the shadow is projected on the opposing multi-element photodetectors 5a and 5b.

【0021】本実施例では中空球体2の直径を100μ
m程度以下とする。
In this embodiment, the diameter of the hollow sphere 2 is 100 μm.
m or less.

【0022】この中に導入される液体金属は筐体の材質
との漏れ性が小さい場合には自身の表面張力で体積に比
べて最も表面積の小さい形状、すなわち球になろうとす
る。
When the liquid metal introduced therein has a small leak property with the material of the housing, it tends to become a shape having the smallest surface area as compared with the volume, that is, a sphere due to its own surface tension.

【0023】この場合、液体金属は、実際には完全な球
ではなく、加速度によって図3に図示するように偏平状
に変形された形になり、中空球体2の中で最もポテンシ
ャルの低いところ、すなわち球体2の中心からみて加速
度方向に位置する。
In this case, the liquid metal is not actually a perfect sphere but is deformed into a flat shape as shown in FIG. 3 by acceleration, and the hollow sphere 2 has the lowest potential. That is, it is located in the acceleration direction when viewed from the center of the sphere 2.

【0024】このように、液体金属球1は加速度によっ
て変形するが、加速度は常に球の質量中心方向に印加さ
れるから、液体金属は球から球状筐体の半径方向にのみ
圧縮された偏平回転楕円体に変形し、偏平面ではより大
きな円になる。
As described above, the liquid metal sphere 1 is deformed by the acceleration, but the acceleration is always applied in the direction of the center of mass of the sphere. Therefore, the liquid metal is compressed from the sphere only in the radial direction of the spherical housing, and is flatly rotated. It transforms into an ellipsoid and becomes a larger circle on the plane.

【0025】この円の半径と厚さの二つのパラメーター
で記述できる形状に変形することから、直交する多素子
光検出器5a,5bに投影された2つの像からその加速
度の大きさと方向とを同時に計測することができる。
By transforming the shape into a shape that can be described by two parameters of the radius and thickness of this circle, the magnitude and direction of the acceleration can be determined from the two images projected on the multi-element photodetectors 5a and 5b which are orthogonal to each other. It can be measured at the same time.

【0026】中空球体2の中の液体金属球1は安定な位
置から強制的に移動させられた場合、一種のころがり振
子として作動するからその自由振動周期Tは、液体金属
球1の半径をR、中空球体2の半径をR′、重力加速度
をg、液体金属球1の質量をmとして T=2π(meL/mg)0.5 ここで、L=R′−R、me:等価質量=7m/5(均
質球体) とあらわされるからL<50μmで40Hz程度の自由
振動周波数が得られる。
When the liquid metal sphere 1 in the hollow sphere 2 is forcibly moved from a stable position, it acts as a kind of rolling pendulum, so that its free vibration period T has a radius of the liquid metal sphere 1 R , T = 2π (meL / mg) 0.5 where R ′ is the radius of the hollow sphere 2, gravitational acceleration is g, and the mass of the liquid metal sphere 1 is m, where L = R′−R, me: equivalent mass = 7 m / Since it is expressed as 5 (homogeneous sphere), a free vibration frequency of about 40 Hz can be obtained at L <50 μm.

【0027】実際には種々の抵抗があるため、例えばセ
ンサの角度を変えて液体金属球1の位置を変えた場合に
も図1(b)に示すようにもとの安定位置Iから液体金
属球1は動いて次の安定位置IIを中心として減衰振動を
し、最終的に所定の安定位置に落ち着く。
Since there are various resistances in practice, even when the position of the liquid metal sphere 1 is changed by changing the angle of the sensor, for example, as shown in FIG. The sphere 1 moves to perform damping vibration around the next stable position II, and finally settles at a predetermined stable position.

【0028】通常、人間の行動周波数は早くて数Hz以
下であり、本センサは十分な帯域を持っているといえ
る。
Usually, the human action frequency is as short as several Hz or less, and it can be said that this sensor has a sufficient band.

【0029】ダンピングを適当に与えてやることによ
り、上記自由振動周波数に近い帯域をもって検出できる
ことは周知であり、液体金属球1の質量を軽くして空気
抵抗を実効的に大きくしたり中空球体2の内面に油膜を
形成するなどして調整することができる。
It is well known that detection can be performed in a band close to the above free vibration frequency by giving appropriate damping, and the mass of the liquid metal sphere 1 can be reduced to effectively increase the air resistance or the hollow sphere 2. It can be adjusted by forming an oil film on the inner surface of the.

【0030】図4は多素子光検出器5a,5b上で検出
される影の形状と液体金属球1の位置もしくは液体金属
に作用している加速度の関係を例示したものであり、便
宜的に図の下方向を重力場の方向とすると通常は図4
(a)のような配置となっている。
FIG. 4 exemplifies the relationship between the shape of the shadow detected on the multi-element photodetectors 5a and 5b and the position of the liquid metal sphere 1 or the acceleration acting on the liquid metal. If the downward direction of the figure is the direction of the gravity field, it is normally
The arrangement is as shown in (a).

【0031】このとき、多素子光検出素子5a上の影は
中心対称の位置及び多素子光検出素子5bでの影は一方
向偏位した位置にある。
At this time, the shadow on the multi-element photo-detecting element 5a is in a centrally symmetric position, and the shadow on the multi-element photo-detecting element 5b is unidirectionally displaced.

【0032】センサが傾いた場合、もしくは液体金属球
1に加速度が加わって液体金属球に加わる加速度ベクト
ルの向きが変化した場合にはこの影は、液体金属球1の
動く方向に動く。
When the sensor is tilted, or when acceleration is applied to the liquid metal sphere 1 and the direction of the acceleration vector applied to the liquid metal sphere is changed, the shadow moves in the moving direction of the liquid metal sphere 1.

【0033】図4(b)は液体金属球1が中空球体2の
真横に位置する場合を示す。
FIG. 4 (b) shows a case where the liquid metal sphere 1 is located right next to the hollow sphere 2.

【0034】このように多素子光検出器5a,5bの各
々で検出される光量を比較することにより簡単に液体金
属球1の位置、翻って液体金属球に働く加速度方向が検
出される。
By thus comparing the amounts of light detected by the multi-element photodetectors 5a and 5b, the position of the liquid metal sphere 1 and the acceleration direction acting on the liquid metal sphere can be easily detected.

【0035】図4(c)は図4(a)の逆の位置関係と
なる中空球体2の真上に液体金属球1がある場合であ
る。
FIG. 4 (c) shows the case where the liquid metal sphere 1 is directly above the hollow sphere 2 having the opposite positional relationship to that of FIG. 4 (a).

【0036】このように系全体を小形にすることにより
検出帯域を広げることが可能であるが、反面、中空球体
2は中空球体を透明とするために絶縁の高いガラスやプ
ラスチックなどを用いるから、微細な液体金属球1が静
電気により球体壁に張り付いてしまうようなことがあ
り、上記の動作が確実になされない場合も生じる。
Although it is possible to widen the detection band by making the whole system small in size, on the other hand, since the hollow sphere 2 uses glass or plastic having high insulation in order to make the hollow sphere transparent, The fine liquid metal spheres 1 may stick to the sphere wall due to static electricity, and the above operation may not be performed reliably.

【0037】そこで、本発明ではこれを解決するため、
中空球体2の内部にITO(透明酸化導電)膜を形成し
て帯電を防止する。
Therefore, in the present invention, in order to solve this,
An ITO (transparent oxide conductive) film is formed inside the hollow sphere 2 to prevent charging.

【0038】図2に示した断面構造を形成するには中空
球体2を二分する半球体を図示しない円柱状の組立ガイ
ドに組み込んだ後、接着すればよい。
In order to form the cross-sectional structure shown in FIG. 2, a hemisphere that divides the hollow sphere 2 into two halves may be assembled into a cylindrical assembly guide (not shown) and then bonded.

【0039】このとき、半球体の内面及び二分面にIT
O膜を付着せしめるのはECRスパッタリング、真空蒸
着などきわめて広く用いられている手法をそのまま利用
できる。
At this time, IT is applied to the inner surface and the bisector of the hemisphere.
For depositing the O film, a widely used technique such as ECR sputtering and vacuum deposition can be used as it is.

【0040】ITO膜をつけてから液体金属球を入れて
張り合わせることにより、電気的に中空球体の内部を外
部に導通するたことができるため、内部の静電気防止が
きわめて簡単にでき、微少な液体金属球を用いる本発明
の場合でも静電気による動作不良の恐れはまったく無
い。
Since the inside of the hollow sphere can be electrically conducted to the outside by attaching the ITO film and then inserting the liquid metal sphere and adhering the liquid sphere, it is possible to easily prevent the static electricity inside, and Even in the case of the present invention using liquid metal balls, there is no possibility of malfunction due to static electricity.

【0041】半球体の形成法は種々あるが、最も単純に
はガラス、プラスチックなどの薄板を曲率数十μmのア
ンビルでプレス成形すれば簡単に得られる。
There are various methods for forming a hemisphere, but the simplest method is to obtain a thin plate of glass, plastic, etc. by press molding with an anvil having a curvature of several tens of μm.

【0042】[0042]

【発明の効果】従って、以上述べたように本発明によれ
ば高精度な加速度センサが小型軽量にかつ安価に構成す
ることができる利点がある。
As described above, according to the present invention, therefore, there is an advantage that a highly accurate acceleration sensor can be constructed in a small size, a light weight and a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す要部の斜視図と出力波
形図である。
FIG. 1 is a perspective view and an output waveform diagram of a main part showing an embodiment of the present invention.

【図2】本発明の一実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the present invention.

【図3】本発明の一実施例に用いる液体金属球の変形状
態を示す図である。
FIG. 3 is a diagram showing a deformed state of a liquid metal sphere used in one embodiment of the present invention.

【図4】本発明の一実施例の動作を説明するための図で
ある。
FIG. 4 is a diagram for explaining the operation of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…液体金属球、 2…中空球体、 3a,3b…レンズ、 4a,4b…点光源、 5a,5b…多素子光検出器、 6…ケース構造体。 1 ... Liquid metal sphere, 2 ... Hollow sphere, 3a, 3b ... Lens, 4a, 4b ... Point light source, 5a, 5b ... Multi-element photodetector, 6 ... Case structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板生 清 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyo Itao Nihonhon Telegraph and Telephone Corporation, 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微細な直径を有する透明な中空状の球体
と、 この球体の内部に浮動自在に配置されるより微細な直径
を有する液体金属球と、 前記球体の中心に対して対称となる前記球体の外部の位
置に配置される点光源及び多素子光検出素子とを具備し
たことを特徴とする加速度センサ。
1. A transparent hollow sphere having a fine diameter, a liquid metal sphere having a finer diameter, which is rotatably disposed inside the sphere, and symmetrical with respect to the center of the sphere. An acceleration sensor comprising a point light source and a multi-element light detection element arranged at a position outside the sphere.
【請求項2】 上記透明な中空状の球体の内面に付着さ
れる導電性透明膜を具備したことを特徴とする請求項1
に記載の加速度センサ。
2. A conductive transparent film attached to the inner surface of the transparent hollow sphere.
The acceleration sensor according to.
JP4662393A 1993-03-08 1993-03-08 Acceleration sensor Pending JPH06258336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4662393A JPH06258336A (en) 1993-03-08 1993-03-08 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4662393A JPH06258336A (en) 1993-03-08 1993-03-08 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH06258336A true JPH06258336A (en) 1994-09-16

Family

ID=12752424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4662393A Pending JPH06258336A (en) 1993-03-08 1993-03-08 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH06258336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU733879B2 (en) * 1997-07-17 2001-05-31 Joseph Cauchi Omni-directional movement sensor
KR101378833B1 (en) * 2011-12-30 2014-03-31 (주)아이티헬스 Apparatus for Shock sensing by detecting of fluid movement
WO2023135525A1 (en) * 2022-01-11 2023-07-20 Srinivasan Tilak A device for determining orientation of an object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU733879B2 (en) * 1997-07-17 2001-05-31 Joseph Cauchi Omni-directional movement sensor
KR101378833B1 (en) * 2011-12-30 2014-03-31 (주)아이티헬스 Apparatus for Shock sensing by detecting of fluid movement
WO2023135525A1 (en) * 2022-01-11 2023-07-20 Srinivasan Tilak A device for determining orientation of an object

Similar Documents

Publication Publication Date Title
US9244092B2 (en) Physical quantity sensor and electronic apparatus
US9383383B2 (en) Physical quantity sensor, manufacturing method thereof, and electronic apparatus
US6504385B2 (en) Three-axis motion sensor
CN103364589B (en) Physical quantity transducer and electronic equipment
JP4223554B2 (en) Sensor device for three-dimensional measurement of posture or acceleration
US20070113653A1 (en) Multiple axis accelerometer
JP6206650B2 (en) Functional element, electronic device, and moving object
CN104297523B (en) Function element, electronic equipment and moving body
CN105004883B (en) Electronic devices, electronic equipment, and mobile objects
JPWO2017150201A1 (en) Sensor devices, electronic devices, and moving objects
US20160209442A9 (en) Physical quantity sensor, electronic device, and moving object
JP2016044978A (en) Physical quantity sensor, electronic apparatus, and movable body
US20230266360A1 (en) Accelerometer, inertial measurement unit imu, and electronic device
CN1908674A (en) Arrangement structure of sensing elements of six-axle acceleration transducer
JPH06258336A (en) Acceleration sensor
JP2015001459A (en) Function element, electronic apparatus, and movable body
CN108469251A (en) A kind of spherical obliquity sensor based on image recognition
WO1999004272A1 (en) Omni-directional movement sensor
JPH06258337A (en) Acceleration sensor
US6895819B1 (en) Acceleration sensor
CN103323622B (en) Method for measuring three-dimensional acceleration through static supporting type optical detecting method
JP2021032801A (en) Inertia sensor unit, electronics, and mobiles
JP2016044979A (en) Physical quantity sensor, electronic apparatus, and movable body
Lehtonen et al. Monolithic accelerometer for 3D measurements
JPH0627133A (en) Three dimensional acceleration sensor