JPH06265905A - Liquid crystal display element - Google Patents
Liquid crystal display elementInfo
- Publication number
- JPH06265905A JPH06265905A JP5055545A JP5554593A JPH06265905A JP H06265905 A JPH06265905 A JP H06265905A JP 5055545 A JP5055545 A JP 5055545A JP 5554593 A JP5554593 A JP 5554593A JP H06265905 A JPH06265905 A JP H06265905A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal display
- display device
- characteristic
- twist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
- G02F1/133757—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
(57)【要約】
【構成】 電極13〜16を有する2枚の基板11、1
2間にねじれた分子配列からなる誘電異方性が正のネマ
ティック液晶からなる液晶層23を挟持した液晶表示素
子に関する。この液晶表示素子は少なくとも2種の分子
配列状態が異なる領域A、Bを有し、液晶のねじれ角
(TW)が、90°<(TW)≦ 110°であることを特徴
とする。
【効果】 容易に安定して、反転現象等がほぼ生じない
極めて広視角の液晶表示素子を実現できる。
(57) [Summary] [Structure] Two substrates 11, 1 having electrodes 13 to 16
The present invention relates to a liquid crystal display device in which a liquid crystal layer 23 made of a nematic liquid crystal having a positive dielectric anisotropy and having a twisted molecular arrangement is sandwiched. This liquid crystal display device has at least two regions A and B having different molecular alignment states, and is characterized in that the twist angle (TW) of the liquid crystal is 90 ° <(TW) ≦ 110 °. [Effect] It is possible to realize a liquid crystal display device having an extremely wide viewing angle, which is easily stable and has almost no inversion phenomenon.
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示素子に係わ
り、特にコントラスト比や階調表示時の視角依存性を制
御した液晶表示素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which the contrast ratio and the viewing angle dependency during gradation display are controlled.
【0002】[0002]
【従来の技術】近年、薄型軽量、低消費電力という大き
な利点をもつ液晶表示素子は、日本語ワードプロセッサ
やデスクトップパーソナルコンピュータ等のパーソナル
OA機器の表示装置として積極的に用いられている。現
在製品化されている液晶表示素子(以下LCDと略称)
は、TN形とSTN形の2つに大別できる。2. Description of the Related Art In recent years, liquid crystal display elements, which have the great advantages of thinness, light weight, and low power consumption, have been actively used as display devices for personal OA equipment such as Japanese word processors and desktop personal computers. Liquid crystal display devices currently commercialized (hereinafter abbreviated as LCD)
Can be roughly classified into two types, TN type and STN type.
【0003】STN形のLCDは、例えば 240°の大き
くねじれた分子配列をもち、急峻な電気光学特性をもつ
為、各画素ごとにスイッチング素子が無くても単純なマ
トリクス状の電極構造で大容量の表示が得られる。The STN type LCD has a sharply twisted molecular arrangement of, for example, 240 ° and has steep electro-optical characteristics. Therefore, even if there is no switching element for each pixel, a simple matrix-like electrode structure has a large capacity. Is displayed.
【0004】一方、TN形のLCDは、90°ねじれた分
子配列をもち、低電圧で高いコントラスト比を示すこと
から時計や電卓のディスプレイのみならず、液晶テレビ
やOA機器のディスプレイなどに幅広く用いられてい
る。特に、液晶テレビやOA機器のディスプレイには、
大容量表示と高速動作が求められるため、各表示画素に
対応する部分に薄膜トランジスタ(TFT)やダイオー
ドなどのスイッチング素子を形成したアクティブマトリ
クス方式が適用される(TFT−LCD)。On the other hand, the TN type LCD has a molecular arrangement twisted by 90 ° and exhibits a high contrast ratio at a low voltage, so that it is widely used not only for displays of watches and calculators but also for displays of liquid crystal televisions and OA equipment. Has been. Especially for LCD TVs and OA equipment displays,
Since large-capacity display and high-speed operation are required, an active matrix system in which a switching element such as a thin film transistor (TFT) or a diode is formed in a portion corresponding to each display pixel is applied (TFT-LCD).
【0005】近年、このTFT−LCDは、階調表示を
行い、また、3色のカラーフィルターと組み合わせて、
多色表示(例えば8階調なら 512色)を実現している。
これらの階調表示は、印加電圧を変化させることによっ
て行っている。ここで、TN方式の印加電圧−透過率特
性の一例を図3に示す。図から明らかなように、正面で
は曲線(f1 )は単調な減少曲線となっているが、斜め
から観察した場合の曲線(f2 )は極値を持っている。
このため、TN方式においては、正面における印加電圧
−透過率特性に基づいて階調表示を行う駆動電圧を決め
ると、斜めから観察した場合には表示の反転や黒つぶ
れ、白抜けといった現象が生じる。In recent years, this TFT-LCD performs gradation display and, in combination with three color filters,
It realizes multicolor display (for example, 512 colors for 8 gradations).
These gradations are displayed by changing the applied voltage. Here, an example of the applied voltage-transmittance characteristic of the TN method is shown in FIG. As is apparent from the figure, the curve (f 1 ) has a monotonous decreasing curve in the front, but the curve (f 2 ) when observed obliquely has an extreme value.
Therefore, in the TN method, when the driving voltage for performing gradation display is determined based on the applied voltage-transmittance characteristic on the front surface, when observed obliquely, display inversion, blackout, and blank areas occur. .
【0006】このように液晶表示素子は、見る角度や方
位によって表示色やコントラスト比が変化するといった
視角依存性をもち、CRT(Cathode Ray Tube)の表示
性能を完全に越えるまでにはいたらない。このような液
晶表示素子の視角依存性を改善する手法として、1画素
を分子配列の異なる2領域に分割し、V−T曲線の極値
を打ち消すといった手法が近年提案されている。K.H.Ya
ng(1991,IDRC,p68 )にて報告された1画素内に液晶分
子の起きあがる方向を 180°異ならした2領域を設ける
手法(TWO DOMAIN TN :TDTNと称する)や、1画素
内にプレチルトの異なる2領域を設け、同一基板内、一
方向ラビングにて達成する手法Domain Divided TN (Y.
Koike,et.al 1992,SID,p798 )等がそれである。しかし
ながら、この配向2分割手法においてもいくつか問題点
があり、その1つとして表示時の左右の反転がある。こ
の左右の反転の問題は配向を4分割することによって改
善できると考えられるが、この手法は高精細、つまり画
素面積の小さいLCDにおいては、製造困難であり、ま
た、配向不良(ディスクリネーションライン)が、多く
出現することから、表示特性上好ましくない。As described above, the liquid crystal display element has a viewing angle dependency in which a display color and a contrast ratio change depending on a viewing angle and an azimuth, and the display performance of a CRT (Cathode Ray Tube) cannot be completely exceeded. As a method of improving the viewing angle dependency of such a liquid crystal display element, a method of dividing one pixel into two regions having different molecular arrangements and canceling the extreme value of the VT curve has been recently proposed. KHYa
ng (1991, IDRC, p68) A method of providing two regions in which the rising directions of liquid crystal molecules are different by 180 ° within one pixel (TWO DOMAIN TN: TDTN), or different pretilt within one pixel Domain Divided TN (Y.
Koike, et.al 1992, SID, p798) and so on. However, this method of dividing the orientation into two parts also has some problems, and one of them is left-right inversion at the time of display. It is thought that this left-right reversal problem can be solved by dividing the orientation into four, but this method is difficult to manufacture in an LCD with high definition, that is, with a small pixel area. ) Often appears, which is not preferable in display characteristics.
【0007】[0007]
【発明が解決しようとする課題】現在、液晶表示素子は
CRTのようにどこからみてもほぼ均一なコントラスト
比を示すといった特性ではなく、見る角度・方位によっ
てコントラスト比が大きく変化する。すなわち、液晶表
示素子には視角依存性が存在する。このような視角依存
性の改善手法として1画素を分子配列の異なる2領域に
分割する方法があるが、表示時の左右の反転という問題
点がある。At present, the liquid crystal display element does not have a characteristic such as a CRT that shows a substantially uniform contrast ratio from any position, but the contrast ratio greatly changes depending on the viewing angle and orientation. That is, the liquid crystal display element has a viewing angle dependency. As a method of improving the viewing angle dependency, there is a method of dividing one pixel into two regions having different molecular arrangements, but there is a problem of left and right inversion at the time of display.
【0008】本発明は上記不都合を解決するものであ
り、液晶分子配列を2分割にしか分割しなくても、表示
の反転等の視角特性の生じにくい液晶表示素子を実現す
ることを目的とする。The present invention solves the above-mentioned inconvenience, and an object of the present invention is to realize a liquid crystal display element in which viewing angle characteristics such as inversion of display hardly occur even if the liquid crystal molecule arrangement is divided into only two. .
【0009】[0009]
【課題を解決するための手段】本発明は、課題を解決す
る手段として、2枚の偏光板の間に、電極を有する2枚
の基板間にらせん軸を基板放線方向に有するねじれた分
子配列からなる誘電異方性が正のネマティック液晶を挟
持した液晶セルを配置した液晶表示素子において、前記
液晶セル中の分子配列状態が2種以上有し、前記液晶組
成物のねじれ角(TW)が、90°<(TW)≦ 110°で
あることを特徴とする。Means for Solving the Problems As a means for solving the problems, the present invention comprises a twisted molecular arrangement having a helical axis in the substrate radial direction between two substrates having electrodes between two polarizing plates. In a liquid crystal display device in which a liquid crystal cell sandwiching a nematic liquid crystal having a positive dielectric anisotropy is arranged, the liquid crystal cell has two or more kinds of molecular alignment states, and the twist angle (TW) of the liquid crystal composition is 90. It is characterized in that ° <(TW) ≦ 110 °.
【0010】また、前記液晶セルの1画素を構成する液
晶分子配列が電圧無印加時に異なる2種以上の配列から
なることを特徴とする。Further, it is characterized in that the liquid crystal molecule array constituting one pixel of the liquid crystal cell is composed of two or more kinds of arrays which are different when no voltage is applied.
【0011】また、2種以上の配列が同一基板上におい
て180 °逆の配向処理方向を有することを特徴とする。Further, it is characterized in that two or more kinds of arrays have orientation processing directions opposite to each other by 180 ° on the same substrate.
【0012】[0012]
【作用】本発明は、上記目的を達成するものであり、以
下その達成原理および手法について説明する。The present invention achieves the above object, and the principle and method for achieving the object will be described below.
【0013】図5は配向2分割手法における液晶表示素
子の透過率−印加電圧(V−T)特性で、従来のTN−
LCDの方位角の差が 180°である2つのV−T特性を
合成した特性を示す。すなわち、表示画面の上下方位で
はTN−LCDの上方位の特性(a)と下方位の特性
(b)を合成したV−T特性(c)となる。左右方位で
は、図6に示したTN−LCDの左方位の特性(a)と
右方位の特性(b)を合成した特性(c)を示す。この
測定は図4に示す測定座標系により行なった。すなわち
矩形表示画面の法線方向を正面とし、法線zから観測点
までの傾きを入射角θ、画面長軸k右方位を基準0°と
し、画面上、観測点直下などの角度を方位角φとする。
上下方位のV−T特性(c)(図5)では、同図の特性
(a)、(b)でみられた極値は解消されている。一
方、左右方向は、TN−LCDの左方位、右方位の特性
a、b(図6)がほぼ同じ特性を示しているため、合成
したV−T特性(c)(図6)では上下方位ほどの改善
はみられず、反転(高電圧側でV−T特性が右上りに跳
ね上がる現象)は残る。FIG. 5 shows the transmittance-applied voltage (VT) characteristics of a liquid crystal display element in the alignment two-division method.
A characteristic obtained by combining two VT characteristics in which the difference in the azimuth angle of the LCD is 180 ° is shown. That is, in the vertical direction of the display screen, the VT characteristic (c) is a combination of the upward characteristic (a) and the downward characteristic (b) of the TN-LCD. In the left and right azimuth, a characteristic (c) obtained by combining the left azimuth characteristic (a) and the right azimuth characteristic (b) of the TN-LCD shown in FIG. 6 is shown. This measurement was performed using the measurement coordinate system shown in FIG. That is, with the normal direction of the rectangular display screen as the front, the inclination from the normal line z to the observation point is the incident angle θ, and the right azimuth of the screen long axis k is 0 ° as the reference, and angles such as on the screen and directly below the observation point are azimuth angles. φ
In the vertical VT characteristic (c) (FIG. 5), the extreme values seen in the characteristics (a) and (b) of the figure are eliminated. On the other hand, in the left-right direction, the characteristics a and b (FIG. 6) of the left azimuth and the right azimuth of the TN-LCD show almost the same characteristics, so the combined VT characteristics (c) (FIG. 6) shows the vertical azimuth. No significant improvement is seen, and inversion (a phenomenon in which the VT characteristic jumps to the upper right on the high voltage side) remains.
【0014】従って、配向2分割手法における左右方位
の反転を改善するには従来のTN−LCDの左右の反転
を軽減するのが効果的である。Therefore, it is effective to reduce the left-right inversion of the conventional TN-LCD in order to improve the left-right azimuth inversion in the orientation division method.
【0015】図7、図8、図9にそれぞれ、80°、90
°、 100°ねじれのTN−LCDの正面(θ=0°)の
場合の特性aと、左方位(φ= 180°、θ=60°)の場
合の特性bの透過率−印加電圧特性を示す。図7の(T
W)=80°から図9の(TW)= 100°とねじれ角が増
すにつれ正面のV−T特性曲線は急峻になり飽和電圧が
低くなるが、閾値電圧は80°ねじれ、90°ねじれ、 100
°ねじれともほぼ同じで約2(v)である。また、ねじ
れ角が大きくなるほど観測点が斜め方位(θ=60°)で
の極小値の透過率は大きくなるが、その極小値が生じる
電圧は80°ねじれ、90°ねじれ、 100°ねじれともほぼ
同じ約 3.4(v)である。図7乃至図9にレベル1から
レベル8で示す8階調の階調表示を実現する際には正面
の特性(a)において0(v)から飽和電圧までの間で
ある一定の相対透過率によりレベル1からレベル8の8
つの階調電圧レベルを決定する。80°ねじれ、90°ねじ
れ、100°ねじれの場合の階調電圧レベルは、図7、図
8、図9に示す通りである。図に示したように、80°ね
じれ、90°ねじれ、 100°ねじれのレベル8の電圧はそ
れぞれ約5(v)、約 4.2(v)、約 3.5(v)と液晶
のねじれ角(TW)が大きいほど小さくなる。極値の生
じる電圧は3つの特性ともほぼ同じ 3.4(v)なので、
ねじれ角が大きいほど斜め方位の視角で生じる反転を軽
減できることがわかる。しかしながら、ねじれ角が 110
°より大きくなると色づきが生じるので、液晶のねじれ
角は 110°以下が妥当である。すなわち、ねじれ角(T
W)が90°を超え、 110°以下の範囲であることが必要
である。80, 90, respectively in FIGS. 7, 8 and 9.
The transmittance-applied voltage characteristics of the characteristic a in the front (θ = 0 °) of the TN-LCD with a twist of 100 ° and 100 ° and the characteristic b in the case of the left azimuth (φ = 180 °, θ = 60 °) Show. (T in FIG.
As the twist angle increases from (W) = 80 ° to (TW) = 100 ° in FIG. 9, the VT characteristic curve in the front becomes steeper and the saturation voltage decreases, but the threshold voltage twists 80 °, twists 90 °, 100
The twist is almost the same and is about 2 (v). Also, the greater the twist angle, the greater the transmittance of the minimum value in the oblique direction (θ = 60 °) at the observation point, but the voltage that causes the minimum value is almost 80 ° twist, 90 ° twist, and 100 ° twist. The same is about 3.4 (v). In order to realize the gradation display of 8 gradations shown by level 1 to level 8 in FIGS. 7 to 9, a constant relative transmittance between 0 (v) and the saturation voltage in the front characteristic (a). 8 from level 1 to level 8
Determines one grayscale voltage level. The gradation voltage levels in the case of 80 ° twist, 90 ° twist, and 100 ° twist are as shown in FIGS. 7, 8 and 9. As shown in the figure, the level 8 voltages of 80 ° twist, 90 ° twist, and 100 ° twist are about 5 (v), about 4.2 (v), and about 3.5 (v), respectively, and the twist angle (TW) of the liquid crystal. Becomes larger, becomes smaller. The voltage that causes the extreme value is 3.4 (v), which is almost the same for all three characteristics.
It can be seen that the larger the twist angle, the less the inversion that occurs at the oblique viewing angle. However, the twist angle is 110
If it becomes larger than 0 °, coloring occurs, so it is appropriate that the twist angle of the liquid crystal be 110 ° or less. That is, the twist angle (T
It is necessary that W) is in the range of more than 90 ° and 110 ° or less.
【0016】以上述べたように、本発明によって配向2
分割手法を用いた液晶表示素子の左右の反転を軽減出来
る。As described above, according to the present invention, the orientation 2
It is possible to reduce the lateral inversion of the liquid crystal display element using the division method.
【0017】[0017]
【実施例】以下本発明の実施例について詳細に説明す
る。EXAMPLES Examples of the present invention will be described in detail below.
【0018】(実施例1)図1および図2は本発明の一
実施例を示す。ガラスでできた透明な2枚の基板11、12
に、それぞれ表示すべき符号としてC、Dの2英文字パ
ターンで、ITOでできた透明電極13、14、15、16を形
成する。上基板11の電極13、14は下基板12の電極15、16
に対向させるが、対向させたときに、文字CとDのパタ
ーンが重なり合うようにパターン化しておく。図1
(b)の上基板11の電極は、基板の裏面から見た配置で
ある。(Embodiment 1) FIGS. 1 and 2 show an embodiment of the present invention. Two transparent substrates 11 and 12 made of glass
Then, the transparent electrodes 13, 14, 15, 16 made of ITO are formed in a two-letter pattern of C and D as codes to be displayed. The electrodes 13 and 14 of the upper substrate 11 are the electrodes 15 and 16 of the lower substrate 12.
The patterns of the characters C and D are made to overlap each other when they are opposed to each other. Figure 1
(B) The electrodes of the upper substrate 11 are arranged as seen from the back surface of the substrate.
【0019】次に両基板11、12の電極を形成した面全体
にポリイミドの配向膜(AL−1051、日本合成ゴム製)
17、18を塗布形成する(図2(b)参照)。Next, an alignment film of polyimide (AL-1051, made by Japan Synthetic Rubber) is formed on the entire surface of the electrodes 11 and 12 on which the electrodes are formed.
17 and 18 are formed by coating (see FIG. 2B).
【0020】次に図1(b)に示すように、文字電極の
幅の中心を通過する境界線19、20で分割された領域Aと
残りの領域Bの2領域をつくり、マスクラビング法を用
いて、上基板11については、領域Aで矢印21A方向に、
領域Bで 180°ずれた矢印21B方向にラビング処理す
る。同様に下基板12については、領域Aで矢印22A方
向、領域Bで 180°ずれた矢印22B方向にラビング処理
する。Next, as shown in FIG. 1B, two regions, that is, a region A divided by boundary lines 19 and 20 passing through the center of the width of the character electrode and a remaining region B are formed, and the mask rubbing method is applied. Using the upper substrate 11, in the region A in the direction of the arrow 21A,
In the area B, rubbing is performed in the direction of arrow 21B, which is shifted by 180 °. Similarly, the lower substrate 12 is rubbed in the area A in the direction of arrow 22A and in the area B in the direction of arrow 22B shifted by 180 °.
【0021】これらのラビング処理方向は、図2(a)
に示すように、上下基板11、12を一定の間隔で対向させ
たときに、 100°で交差するようにしてある。これによ
り、液晶はねじれ角(TW)がいずれも 100°となるよ
うに配向する。上下の基板間隙を4μmとして、基板間
にらせん軸を基板法線方向に有するねじれた分子配列を
もつ誘電異方性が正のネマティック液晶(ZL1−229
3、メルクジャパン製)の層23を挟持し、本発明の液晶
表示素子を作成した。この素子の電極13乃至16に印加す
る電圧を制御して階調表示を行ったところ、上下左右、
どの観察方向においても表示の反転は、ほとんど生じな
かった。The direction of these rubbing treatments is shown in FIG.
As shown in, when the upper and lower substrates 11 and 12 are opposed to each other at a constant interval, they intersect at 100 °. As a result, the liquid crystal is aligned so that the twist angle (TW) is 100 °. A nematic liquid crystal having a positive dielectric anisotropy (ZL1-229) having a twisted molecular arrangement having a helix axis between the substrates in the substrate normal direction with a gap between the upper and lower substrates of 4 μm.
3, a Merck Japan product) was sandwiched between layers 23 to prepare a liquid crystal display device of the present invention. When gradation display was performed by controlling the voltage applied to the electrodes 13 to 16 of this element,
Almost no inversion of the display occurred in any viewing direction.
【0022】(実施例2)本実施例は画素電極を多数、
マトリクス状に配置した表示素子において、1画素の電
極構造が図10に示すような構成にて基板を作成し、実施
例1同様の方法を用いて、 110μm× 330μmの各電極
24を領域Aと領域Bに2分した。すなわち、図2におけ
る配向領域A、Bと同様の液晶分子配列25A、26A、25
B、26B(100°交差)からなる2種の液晶の分子配列
(電圧無印加等)を各画素にそれぞれ設けた液晶表示素
子を作成した。左右方位の(φ=0°、 180°)のθの
変化を横軸にθの変化に対する波長550 nmの光の透過
率の変化を縦軸に示した透過率−視認角特性(T−θ特
性)を測定したところ図11の様になった。図中1〜8の
曲線はそれぞれ1〜8階調の電圧を印加したときのT−
θ特性を示している。透過率は規格値である。図中の1
〜8の曲線がθを変化させてもθ=0°の順番のままで
あれば、理想的な階調表示が出来る。(Embodiment 2) In this embodiment, a large number of pixel electrodes are used.
In a display element arranged in a matrix, a substrate having an electrode structure of one pixel as shown in FIG. 10 was prepared, and 110 μm × 330 μm electrodes were formed by the same method as in Example 1.
24 was divided into area A and area B. That is, liquid crystal molecular alignments 25A, 26A, 25 similar to the alignment regions A, B in FIG.
A liquid crystal display element was prepared in which each pixel was provided with two types of liquid crystal molecular arrangements (B, 26B (100 ° crossing)) (no voltage application, etc.). Transmissivity-viewing angle characteristics (T-θ), in which the change in θ of the horizontal direction (φ = 0 °, 180 °) is plotted on the horizontal axis and the change in the transmittance of light having a wavelength of 550 nm with respect to θ is plotted on the vertical axis. (Characteristics) was measured and the result was as shown in Fig. 11. Curves 1 to 8 in the figure are T- when voltages of 1 to 8 gradations are applied.
The θ characteristic is shown. The transmittance is a standard value. 1 in the figure
Even if the curve of ~ 8 changes θ, if the order of θ = 0 ° is maintained, ideal gradation display can be performed.
【0023】図10におけるねじれの角度が90°である従
来素子の左右方位のT−θ特性を図12に示す。図11の方
が図12に比べて明らかに左右の反転が軽減している。さ
らにねじれ角度が 115°になると、色づきが観測され
た。FIG. 12 shows T-.theta. Characteristics in the left-right direction of the conventional element having a twist angle of 90.degree. In FIG. The left-right inversion is clearly reduced in FIG. 11 compared to FIG. Further, when the twist angle became 115 °, coloring was observed.
【0024】[0024]
【発明の効果】本発明によれば、容易に安定して、反転
現象等がほぼ生じない極めて広視角のLCDを実現でき
る。According to the present invention, it is possible to easily and stably realize an LCD having an extremely wide viewing angle in which the inversion phenomenon hardly occurs.
【0025】また、実施例では、説明を省略したが、本
発明はMIM等、TFT以外のスイッチング素子を用い
ても同様の効果を得ることは言うまでもない。Although not described in the embodiments, it is needless to say that the present invention can obtain the same effect by using a switching element other than the TFT such as MIM.
【図1】本発明の実施例1の電極パターンを説明するも
ので、(a)は平面図、(b)は分解図。1A and 1B are explanatory views of an electrode pattern according to a first embodiment of the present invention, in which FIG. 1A is a plan view and FIG. 1B is an exploded view.
【図2】本発明の実施例1の分子配列を説明するもの
で、(a)は平面図、(b)は(a)をI−I線に沿っ
て切断して示す断面図。2A and 2B are views for explaining the molecular arrangement of Example 1 of the present invention, in which FIG. 2A is a plan view, and FIG. 2B is a cross-sectional view taken along the line I-I of FIG.
【図3】従来のTN−LCDの印加電圧−透過率特性を
説明する図。FIG. 3 is a diagram illustrating applied voltage-transmittance characteristics of a conventional TN-LCD.
【図4】測定座標系を説明する図。FIG. 4 is a diagram illustrating a measurement coordinate system.
【図5】本発明の作用を説明するもので、配向2分割手
法を用いた液晶表示素子の上(下)方位の印加電圧−透
過率特性図。FIG. 5 is a graph showing an applied voltage-transmittance characteristic in an upper (lower) direction of a liquid crystal display device using an alignment two-division method for explaining the operation of the present invention.
【図6】本発明の作用を説明するもので、配向2分割手
法を用いた液晶表示素子の左(右)方位の印加電圧−透
過率特性図。FIG. 6 is a graph showing applied voltage-transmittance characteristics in the left (right) direction of a liquid crystal display device using an alignment two-division method for explaining the operation of the present invention.
【図7】本発明の作用を説明するもので、80°ねじれT
N−LCDのφ= 180°におけるθ=0°、60°の印加
電圧−透過率特性図。FIG. 7 is a view for explaining the operation of the present invention, in which an 80 ° twist T
The applied voltage-transmissivity characteristic figure of (theta) = 0 degree and 60 degree in (phi) = 180 degree of N-LCD.
【図8】本発明の作用を説明するもので、90°ねじれT
N−LCDのφ= 180°におけるθ=0°、60°の印加
電圧−透過率特性図。FIG. 8 is a view for explaining the operation of the present invention, in which a 90 ° twist T
The applied voltage-transmissivity characteristic figure of (theta) = 0 degree and 60 degree in (phi) = 180 degree of N-LCD.
【図9】本発明の作用を説明するもので、 100°ねじれ
TN−LCDのφ= 180°におけるθ=0°、60°の印
加電圧−透過率特性図。FIG. 9 is a characteristic graph of applied voltage-transmittance at θ = 0 ° and 60 ° at φ = 180 ° of a 100 ° twisted TN-LCD for explaining the operation of the present invention.
【図10】本発明の実施例2の電極を説明する略図。FIG. 10 is a schematic diagram illustrating an electrode of Example 2 of the present invention.
【図11】本発明の実施例2の左右方位のT−θ特性を
説明する図。FIG. 11 is a diagram illustrating T-θ characteristics in the horizontal direction according to the second embodiment of the present invention.
【図12】従来素子の左右方位のT−θ特性を説明する
図。FIG. 12 is a diagram for explaining the T-θ characteristic of the conventional element in the lateral direction.
11…上基板 12…下基板 13、14、15、16…電極 17、18…配向膜 A、B…配向領域 21A、21B、22A、22B…配向処理方向 11 ... Upper substrate 12 ... Lower substrate 13, 14, 15, 16 ... Electrodes 17, 18 ... Alignment films A, B ... Alignment regions 21A, 21B, 22A, 22B ... Alignment treatment direction
Claims (3)
子配列からなる誘電異方性が正のネマティック液晶から
なる液晶層を挟持した液晶表示素子において、前記液晶
表示素子は少なくとも2種の分子配列状態が異なる領域
を有し、前記液晶のねじれ角(TW)が、 90°<(TW)≦ 110°であることを特徴とする液晶表
示素子。1. A liquid crystal display device comprising a liquid crystal layer made of nematic liquid crystal having a positive dielectric anisotropy, which is composed of twisted molecular arrangements, and sandwiched between two substrates having electrodes. A liquid crystal display device comprising regions having different molecular alignment states, wherein the twist angle (TW) of the liquid crystal is 90 ° <(TW) ≦ 110 °.
素を構成する液晶分子配列が電圧無印加時に異なる2種
以上の配列からなることを特徴とする液晶表示素子。2. The liquid crystal display element according to claim 1, wherein the liquid crystal molecule array forming one pixel is composed of two or more kinds of arrays which are different when no voltage is applied.
て、同一基板上の配向処理方向が180 °逆である少なく
とも2種の配列を有することを特徴とする液晶表示素
子。3. The liquid crystal display device according to claim 1, wherein the liquid crystal display device has at least two kinds of arrangements in which the alignment treatment directions on the same substrate are 180 ° opposite to each other.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5055545A JPH06265905A (en) | 1993-03-16 | 1993-03-16 | Liquid crystal display element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5055545A JPH06265905A (en) | 1993-03-16 | 1993-03-16 | Liquid crystal display element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06265905A true JPH06265905A (en) | 1994-09-22 |
Family
ID=13001686
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5055545A Pending JPH06265905A (en) | 1993-03-16 | 1993-03-16 | Liquid crystal display element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06265905A (en) |
-
1993
- 1993-03-16 JP JP5055545A patent/JPH06265905A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100307942B1 (en) | Liquid crystal display device | |
| CN1971364B (en) | Liquid crystal display device and method of manufacturing the same | |
| KR100778952B1 (en) | Liquid crystal display device and method of manufacturing the same | |
| KR20010004524A (en) | Liquid crystal display device | |
| JPH0843861A (en) | Liquid crystal display element | |
| JP3156467B2 (en) | Liquid crystal display | |
| JPH07181493A (en) | Liquid crystal display element | |
| JP3130682B2 (en) | Liquid crystal display device | |
| JPH0728065A (en) | Liquid crystal display device | |
| JP4995942B2 (en) | Liquid crystal display | |
| JPH10301082A5 (en) | ||
| JP2856942B2 (en) | Liquid crystal display element and optically anisotropic element | |
| CN101526698B (en) | Liquid crystal display apparatus | |
| JPH06265905A (en) | Liquid crystal display element | |
| JP2001147414A (en) | TN type liquid crystal display | |
| JP3130686B2 (en) | Liquid crystal display device | |
| KR101108387B1 (en) | Tien mode liquid crystal display device and manufacturing method thereof | |
| JPH06235919A (en) | Liquid crystal display element | |
| US6233032B1 (en) | Liquid crystal display apparatus having improved viewing characteristics | |
| CN117666189A (en) | Display panel and display device | |
| KR20000031215A (en) | Liquid crystal displaying device | |
| JP2005316331A (en) | Liquid crystal display device | |
| JPS60162225A (en) | Liquid-crystal display element | |
| JPH08271901A (en) | Liquid crystal display element | |
| JPH075468A (en) | Liquid crystal display element |