JPH06268339A - Flex-rigid multilayer printed wiring board and production thereof - Google Patents
Flex-rigid multilayer printed wiring board and production thereofInfo
- Publication number
- JPH06268339A JPH06268339A JP33467893A JP33467893A JPH06268339A JP H06268339 A JPH06268339 A JP H06268339A JP 33467893 A JP33467893 A JP 33467893A JP 33467893 A JP33467893 A JP 33467893A JP H06268339 A JPH06268339 A JP H06268339A
- Authority
- JP
- Japan
- Prior art keywords
- flex
- rigid
- wiring board
- printed wiring
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 70
- 239000011347 resin Substances 0.000 claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 239000004020 conductor Substances 0.000 claims abstract description 44
- 239000000853 adhesive Substances 0.000 claims abstract description 31
- 230000001070 adhesive effect Effects 0.000 claims abstract description 31
- 239000011810 insulating material Substances 0.000 claims abstract description 11
- 229920006015 heat resistant resin Polymers 0.000 claims description 57
- 239000000843 powder Substances 0.000 claims description 55
- 239000007800 oxidant agent Substances 0.000 claims description 32
- 239000002253 acid Substances 0.000 claims description 22
- 230000001590 oxidative effect Effects 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000007772 electroless plating Methods 0.000 claims description 14
- 238000007788 roughening Methods 0.000 claims description 5
- 206010034972 Photosensitivity reaction Diseases 0.000 claims 1
- 230000036211 photosensitivity Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 51
- 238000007747 plating Methods 0.000 abstract description 22
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 15
- 239000007788 liquid Substances 0.000 abstract description 13
- 239000010408 film Substances 0.000 abstract description 12
- 238000009413 insulation Methods 0.000 abstract description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052753 mercury Inorganic materials 0.000 abstract description 7
- 239000012787 coverlay film Substances 0.000 abstract description 4
- 230000004913 activation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 77
- 239000003822 epoxy resin Substances 0.000 description 29
- 229920000647 polyepoxide Polymers 0.000 description 29
- 239000000243 solution Substances 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Substances OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4688—Composite multilayer circuits, i.e. comprising insulating layers having different properties
- H05K3/4691—Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Structure Of Printed Boards (AREA)
- Combinations Of Printed Boards (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、フレックス部と多層リ
ジッド部とで構成される配線板,いわゆるフレックスリ
ジッド多層プリント配線板およびその製造方法に関し、
特に、フレキシブル基板上にビルドアップ法によって複
数の導体回路を形成してなるフレックスリジッド多層プ
リント配線板およびその製造方法について提案する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board composed of a flex portion and a multilayer rigid portion, a so-called flex-rigid multilayer printed wiring board and a method for manufacturing the same.
In particular, we propose a flex-rigid multilayer printed wiring board in which a plurality of conductor circuits are formed on a flexible substrate by a build-up method, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】近年、電子工業の進歩による電子機器の
小型化あるいは高機能化に伴い、部品実装と同時に自由
な三次元配線が可能なフレキシブルプリント配線板に対
する要望が高まっている。2. Description of the Related Art In recent years, as electronic equipment has become smaller and more sophisticated due to the progress of the electronic industry, there has been an increasing demand for a flexible printed wiring board which allows free three-dimensional wiring while mounting components.
【0003】このフレキシブルプリント配線板の特徴
は、部品実装基板としての機能と同時に、機器内配線材
としてのハーネス機能をあわせ持つことにある。従っ
て、このようなフレキシブルプリント配線板によれば、
コネクタなどの接続部品が省略できるとともに、はんだ
付けなどによる配線ミスも少なく、しかも実装基板全体
をコンパクトにでき、かつ配線の信頼性も大幅に改善で
きる。A feature of this flexible printed wiring board is that it has not only a function as a component mounting board but also a harness function as an in-device wiring material. Therefore, according to such a flexible printed wiring board,
Connection components such as connectors can be omitted, wiring mistakes due to soldering, etc. can be reduced, the entire mounting board can be made compact, and wiring reliability can be greatly improved.
【0004】ところが、このようなフレキシブルプリン
ト配線板は、導体層の数を増やすと、たとえば3層程度
であっても基板全体としての柔軟性が実質的になくなっ
てしまう問題がある。そのため、屈曲性に特徴をもつフ
レキシブルプリント配線板は、多層にすることができな
いという設計上の欠点があった。However, such a flexible printed wiring board has a problem that if the number of conductor layers is increased, the flexibility of the entire substrate is substantially lost even if the number of conductor layers is, for example, three. Therefore, the flexible printed wiring board having the characteristic of flexibility has a design defect that it cannot be multilayered.
【0005】これに対し、従来、フレキシブルプリント
配線板が有する上記欠点を解消した高密度実装用途のプ
リント配線板として、部分多層フレキシブルプリント配
線板,いわゆるフレックスリジッド多層プリント配線板
が提案された。このフレックスリジッド多層プリント配
線板によれば、多層部では高密度部品実装が可能であ
り、各層から自由に引き出されたリード部,いわゆるフ
レックス部では、機器内配線として、必要なところにス
ペースをとらず引きまわしができるという特徴がある。On the other hand, conventionally, a partial multilayer flexible printed wiring board, so-called flex-rigid multilayer printed wiring board, has been proposed as a printed wiring board for high-density mounting in which the above-mentioned drawbacks of flexible printed wiring boards have been solved. According to this flex-rigid multilayer printed wiring board, high-density components can be mounted in the multi-layer part, and in the lead part that is freely pulled out from each layer, the so-called flex part, space is taken up as necessary for wiring inside the device. It has the characteristic that it can be turned around without any need.
【0006】図1は、典型的なフレックスリジッド多層
プリント配線板の図であり、これは、少なくとも一か所
以上の可撓性を有するフレックス部と、部品を搭載した
り固定したりするためのリジッド部とからなる基本構成
を有するものである。図2は、この配線板の断面構造を
示す図である。内層はカバーレイフィルムで保護された
両面フレキシブル基板で構成され、リジッド部は、部分
的にプリプレグを介して銅箔を加圧加熱処理して貼り合
わせて形成され、前記内層フレックス層がキャップと呼
ばれるガラス・エポキシのような硬質材(最外層)によ
って挟まれたサンドイッチ構造を呈している。そして、
各層間の導通は、貫通スルーホールを介して行われてい
る。なお、フレックス部は、もちろんフレックス層だけ
で構成されるが、基本的に各フレックス層は最大でも両
面構造であり、導体層が3層以上になることはない。な
お、フレックス部に3層以上の配線が必要な場合は、互
いに接着されていない独立の両面フレキシブル基板を重
ねる構造にする(図2参照)。FIG. 1 is a diagram of a typical flex-rigid multilayer printed wiring board, which has at least one or more flexible flex portions for mounting and fixing components. It has a basic structure including a rigid portion. FIG. 2 is a diagram showing a cross-sectional structure of this wiring board. The inner layer is composed of a double-sided flexible substrate protected by a coverlay film, and the rigid portion is formed by partially pressing and heating copper foil through a prepreg to bond them together, and the inner flex layer is called a cap. It has a sandwich structure sandwiched by hard materials (outermost layer) such as glass epoxy. And
Conduction between the layers is performed through the through holes. The flex section is of course composed of only flex layers, but basically each flex layer has a double-sided structure at the maximum, and the conductor layer does not have three or more layers. In addition, when wiring of three or more layers is required for the flex portion, a structure is adopted in which independent double-sided flexible substrates that are not bonded to each other are stacked (see FIG. 2).
【0007】次に、このようなフレックスリジッド多層
プリント配線板の代表的な製造方法を図3に示す。この
図から明らかなように、フレックスリジッド多層プリン
ト配線板は、例えば、フレキシブル基板上に、外層銅張
り基板,プリプレグおよび予めエッチング加工した内層
回路板を重ね合わせてプレスで加熱加圧し、次いで穴明
けしたのち電気めっきし、その後エッチングして導体回
路を形成することにより製造される。Next, a typical manufacturing method of such a flex-rigid multilayer printed wiring board is shown in FIG. As is clear from this figure, a flex-rigid multilayer printed wiring board can be manufactured by, for example, stacking an outer layer copper-clad board, a prepreg, and an inner layer circuit board that has been pre-etched on a flexible board, heating and pressing with a press, and then punching. It is then manufactured by electroplating and then etching to form a conductor circuit.
【0008】ここに、フレックスリジッド多層プリント
配線板において導体回路を形成する方法としては、従
来、基板に銅箔を積層した後、フォトエッチングするこ
とにより、導体回路を形成するエッチドフォイル方法
(サブトラクティブ法)が一般的であった。As a method for forming a conductor circuit in a flex-rigid multilayer printed wiring board, heretofore, an etched foil method (subtrade method) for forming a conductor circuit by laminating a copper foil on a substrate and then photoetching it has been used. The active method) was common.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上述し
たようなフレックスリジッド多層配線板は、導体層,樹
脂絶縁層という材質の異なる材料を交互に積層するとと
もに、部分によっては積層構成が異なるため、一般に、
その製造工程は複雑であった。そのため、薄くて寸法精
度の厳しい材料を扱う上記配線板の製造では、パターン
のズレによる不良率が高く、位置精度が得られにくいと
いう問題があった。However, in the flex-rigid multilayer wiring board as described above, the conductor layers and the resin insulating layers, which are different in material, are alternately laminated, and the laminated structure is different depending on the part. ,
The manufacturing process was complicated. Therefore, in the production of the above wiring board that handles a material that is thin and has strict dimensional accuracy, there is a problem in that the defect rate due to the pattern deviation is high and it is difficult to obtain the positional accuracy.
【0010】さらに、エッチドフォイル方法による導体
回路の形成は、基板との密着性に優れた導体回路を形成
できる利点があるものの、コスト高になること、銅箔の
厚さが厚いためにエッチングにより高精度のファインパ
ターンが得難いという大きな欠点があり、上記製造工程
を一層複雑なものとし、効率が良くないなどの問題があ
った。Further, the formation of the conductor circuit by the etched foil method has an advantage that the conductor circuit having excellent adhesion to the substrate can be formed, but the cost becomes high and the copper foil is thick so that the etching is performed. Therefore, there is a big drawback that it is difficult to obtain a high-precision fine pattern, and there is a problem that the manufacturing process is made more complicated and the efficiency is not good.
【0011】本発明の目的は、従来技術が抱える上述し
た課題を有利に解決することにあり、特に、高精度のフ
ァインパターンを有し,かつ信頼性に優れたフレックス
リジッド多層プリント配線板を、簡単な製造工程により
提供する技術を確立することにある。An object of the present invention is to advantageously solve the above-mentioned problems of the prior art. In particular, a flex-rigid multilayer printed wiring board having a high precision fine pattern and excellent reliability is provided. It is to establish the technology provided by a simple manufacturing process.
【0012】[0012]
【課題を解決するための手段】上記目的を実現するため
に、発明者らは、主としてフレキシブル基板上に導体回
路を形成する方法に関し鋭意研究をした結果、フレキシ
ブル基板上に、アディティブ法によって導体回路を形成
し、多層リジット部の樹脂絶縁層として感光性絶縁材料
を使用して多層構造化すれば、複雑な工程を経ることな
く、高精度でかつ高密度に回路形成できることを見出
し、本発明に想到した。In order to achieve the above object, the inventors of the present invention have conducted extensive studies mainly on a method of forming a conductor circuit on a flexible substrate, and as a result, have conducted a conductor circuit on the flexible substrate by an additive method. It has been found that high-precision and high-density circuit formation can be performed without complicated steps by forming a multi-layer structure by using a photosensitive insulating material as a resin insulating layer of a multi-layer rigid portion, I thought about it.
【0013】すなわち、本発明は、それぞれ複数層の導
体層と樹脂絶縁層とを有する多層リジッド部と、この多
層リジッド部に連設されたフレックス部とによって構成
されたフレックスリジッド多層プリント配線板におい
て、上記多層リジッド部の樹脂絶縁層が感光性絶縁材料
にて形成されていることを特徴とするフレックスリジッ
ド多層プリント配線板である。そして、本発明の製造方
法は、それぞれ複数層の導体層と樹脂絶縁層とを有する
多層リジッド部と、この多層リジッド部に連設されたフ
レックス部とによって構成されたフレックスリジッド多
層プリント配線板を製造する方法において、少なくとも
下記(a) 〜(d) 工程;すなわち、(a) 少なくとも一方の
面に導体回路を有するフレキシブル基板上に、部分的に
感光性樹脂絶縁層を形成する工程、(b) 前記感光性樹脂
絶縁層の表面部分を、酸あるいは酸化剤処理して粗化す
る工程、(c) 粗化された前記感光性樹脂絶縁層上に無電
解めっきを施すことにより、導体回路を形成する工程、
を、一回以上繰り返すことを特徴とする。ここに、上記
感光性絶縁材料は、硬化処理を受けると酸あるいは酸化
剤に対して難溶性となる未硬化の耐熱性樹脂マトリック
ス中に、酸あるいは酸化剤に対して可溶性の予め硬化処
理された耐熱性樹脂微粉末を分散させてなる接着剤であ
ることが好ましい。That is, according to the present invention, there is provided a flex-rigid multilayer printed wiring board comprising a multilayer rigid portion having a plurality of conductor layers and a resin insulating layer, and a flex portion connected to the multilayer rigid portion. The flexible rigid multilayer printed wiring board is characterized in that the resin insulating layer of the multilayer rigid portion is formed of a photosensitive insulating material. Then, the manufacturing method of the present invention provides a flex-rigid multilayer printed wiring board constituted by a multilayer rigid part having a plurality of conductor layers and a resin insulating layer, and a flex part continuous with the multilayer rigid part. In the manufacturing method, at least the following steps (a) to (d); namely, (a) a step of partially forming a photosensitive resin insulating layer on a flexible substrate having a conductor circuit on at least one surface thereof, (b) ) A step of roughening the surface portion of the photosensitive resin insulating layer by treating with an acid or an oxidant, (c) applying electroless plating on the roughened photosensitive resin insulating layer to form a conductor circuit. Forming process,
Is repeated once or more. Here, the photosensitive insulating material is pre-cured to be soluble in an acid or an oxidant in an uncured heat-resistant resin matrix that is hardly soluble in an acid or an oxidant when subjected to a curing treatment. The adhesive is preferably a dispersion of fine powder of heat resistant resin.
【0014】[0014]
【作用】さて、硬質多層基板に導体回路を形成する方法
としては、従来、ジエン系合成ゴムを含む接着剤を基板
表面に塗布して接着剤層を形成し、この接着剤層の表面
を粗化した後、無電解めっきを施して導体を形成するア
ディティブ法が採用されている。この方法によれば、レ
ジスト形成後に無電解めっきを施して導体を形成するた
め、エッチングによりパターン形成を行うエッチドフォ
イル方法(サブトラクティブ法)よりも、より高密度で
パターン精度のよい配線が可能である。しかしながら、
この方法で一般的に使用されている接着剤は、合成ゴム
を含むため、例えば高温時に密着強度が大きく低下した
り、はんだ付けの際に無電解めっき膜がふくれるなど耐
熱性が低いこと、表面抵抗などの電気特性が充分でない
ことなどの問題があり、使用範囲がかなり制限されてい
る。Now, as a method for forming a conductor circuit on a hard multilayer substrate, conventionally, an adhesive containing diene-based synthetic rubber is applied to the surface of the substrate to form an adhesive layer, and the surface of this adhesive layer is roughened. After that, an additive method of forming a conductor by electroless plating is adopted. According to this method, since a conductor is formed by applying electroless plating after forming a resist, it is possible to provide wiring with higher density and higher pattern accuracy than the etched foil method (subtractive method) in which pattern formation is performed by etching. Is. However,
Since the adhesive that is commonly used in this method contains synthetic rubber, it has a low heat resistance, such as a significant decrease in adhesion strength at high temperatures, or swelling of the electroless plating film during soldering. There are problems such as insufficient electrical characteristics such as resistance, and the range of use is considerably limited.
【0015】これに対し、発明者らは、先に、無電解め
っきを施すための接着剤が有する前述の如き欠点を解消
し、耐熱性,電気特性および無電解めっき膜との密着性
に優れ、かつ比較的容易に実施できる接着剤およびこの
接着剤を用いた配線板の製造方法を提案した(特開昭61
−276875号公報参照)。すなわち、発明者らが提案した
この従来技術は、酸化剤に対して可溶性の予め硬化処理
された耐熱性樹脂粉末が、硬化処理することにより酸化
剤に対して難溶性となる特性を有する未硬化の耐熱性樹
脂液中に分散されてなる接着剤、およびこの接着剤を基
板に塗布した後、乾燥硬化して接着剤層を形成させ、前
記接着剤層の表面部分に分散している上記微粉末の少な
くとも一部を溶解除去して接着剤層の表面を粗化し、次
いで無電解めっきを施すことを特徴とする配線板の製造
方法である。この発明者らが提案した技術によれば、従
来接着剤のような欠点がなく製造が容易で、密着強度が
大きく信頼性の高い配線板を得ることができる。On the other hand, the present inventors have solved the above-mentioned drawbacks of the adhesive for applying electroless plating, and have excellent heat resistance, electrical characteristics and adhesion to the electroless plated film. In addition, an adhesive which is relatively easy to carry out and a method for manufacturing a wiring board using this adhesive have been proposed (Japanese Patent Laid-Open No. Sho 61-61).
-276875 gazette). That is, the conventional technique proposed by the inventors is such that an uncured resin powder having a property that a pre-cured heat-resistant resin powder that is soluble in an oxidant is hardly soluble in the oxidant when subjected to a curing treatment. Of the heat-resistant resin liquid, and after applying the adhesive to a substrate, it is dried and cured to form an adhesive layer, and the above-mentioned fine particles dispersed on the surface portion of the adhesive layer. In this method, at least a part of the powder is dissolved and removed to roughen the surface of the adhesive layer, and then electroless plating is performed. According to the technique proposed by the present inventors, it is possible to obtain a wiring board which does not have the drawbacks of conventional adhesives, is easy to manufacture, has a large adhesion strength, and is highly reliable.
【0016】このような背景技術の下に、発明者らは、
特に上述したような特徴を有する接着剤をフレックスリ
ジッド多層プリント配線板に適用することに着目し、鋭
意研究を行った。その結果、上記接着剤を感光性絶縁材
料に特定し、かつ、フレキシブル基板上の多層リジッド
部のみに上記感光性絶縁材料を形成して多層化すること
により、上述した目的が確実に達成できることを見出し
たのである。Under such background art, the inventors have
In particular, the present inventors have conducted intensive studies focusing on the application of the adhesive having the above-described characteristics to a flex-rigid multilayer printed wiring board. As a result, by specifying the adhesive as a photosensitive insulating material, and by forming the photosensitive insulating material only in the multilayer rigid portion on the flexible substrate to form a multilayer, it is possible to reliably achieve the above-mentioned object. I found it.
【0017】本発明の特徴は、第1に、接着剤を感光性
絶縁材料からなるものに特定した点にある。これによ
り、写真法を用いて、積層プレス工程を経ることなく、
フレックス部または多層リジッド部をフレキシブル基板
上の所定の箇所に精度良く形成することができるように
なる。The feature of the present invention is, firstly, that the adhesive is made of a photosensitive insulating material. This makes it possible to use the photographic method without going through the lamination pressing process.
The flex portion or the multilayer rigid portion can be accurately formed at a predetermined position on the flexible substrate.
【0018】第2の特徴は、導体回路の形成をアディテ
ィブ法によって行い、フレキシブル基板上の多層リジッ
ド部をビルドアップ法によって多層構造化した点にあ
る。これにより、多層リジッド部とフレックス部間の接
続信頼性に優れ、また高密度化が可能となる。しかも、
従来の複雑な工程に比べて、製造工程を著しく簡略化す
ることができるようになる。The second feature is that the conductor circuit is formed by the additive method, and the multilayer rigid portion on the flexible substrate is made into a multilayer structure by the build-up method. As a result, the connection reliability between the multilayer rigid portion and the flex portion is excellent, and the density can be increased. Moreover,
The manufacturing process can be remarkably simplified as compared with the conventional complicated process.
【0019】第3の特徴は、接着剤中に耐熱性樹脂微粉
末を含有させた点にある。これにより、フレックス部の
変形の際に生じる応力を緩和でき、仮にフレックス部の
変形によって接着剤中にマイクロクラックが発生して
も、その成長を抑制でき、フレックスリジッド板の機能
を十分に生かすことが可能となる。The third feature is that the heat-resistant resin fine powder is contained in the adhesive. As a result, the stress generated during the deformation of the flex part can be relaxed, even if micro cracks occur in the adhesive due to the deformation of the flex part, their growth can be suppressed and the function of the flex rigid plate can be fully utilized. Is possible.
【0020】以上説明したところから判るように本発明
によれば、搭載する機器のスペースに合わせて任意に装
入でき、しかも実装基板全体をコンパクト化することが
できるフレックスリジッド多層プリント配線板を容易に
製造することができる。さらに、本発明によれば、高精
度のファインパターンを有し,かつ信頼性に優れたフレ
ックスリジッド多層プリント配線板を、安価でしかも容
易に提供することができる。As can be seen from the above description, according to the present invention, a flex-rigid multilayer printed wiring board which can be inserted arbitrarily according to the space of the equipment to be mounted and which can make the entire mounting board compact is easy. Can be manufactured. Furthermore, according to the present invention, it is possible to easily and inexpensively provide a flex-rigid multilayer printed wiring board having a highly precise fine pattern and excellent reliability.
【0021】ここで、本発明のフレックスリジッド多層
プリント配線板において、感光性絶縁材料からなる接着
剤を構成する未硬化の感光性樹脂マトリックスとして
は、耐熱性,電気絶縁性,化学的安定性および接着性に
優れ、かつ硬化処理することにより酸あるいは酸化剤に
対して難溶性となる特性を示す感光性樹脂を使用するこ
とができる。Here, in the flex-rigid multilayer printed wiring board of the present invention, the uncured photosensitive resin matrix constituting the adhesive made of the photosensitive insulating material is heat resistance, electrical insulation, chemical stability and It is possible to use a photosensitive resin which has excellent adhesiveness and is hardly soluble in an acid or an oxidizing agent when cured.
【0022】このような感光性樹脂としては、アクリ
ル系ポリマーおよび光重合性モノマーを主成分とする感
光性樹脂組成物、光反応基を付加したエポキシ樹脂を
主成分とする感光性樹脂組成物、光反応基を付加した
ポリイミド樹脂を主成分とする感光性樹脂組成物のいず
れか1種以上が好適に用いられる。なかでも、光反応基
を付加したエポキシ樹脂を主成分とする感光性樹脂組成
物が好ましい。As such a photosensitive resin, a photosensitive resin composition containing an acrylic polymer and a photopolymerizable monomer as main components, a photosensitive resin composition containing an epoxy resin having a photoreactive group as a main component, Any one or more of the photosensitive resin compositions containing a polyimide resin having a photoreactive group as a main component is preferably used. Among them, a photosensitive resin composition containing an epoxy resin having a photoreactive group as a main component is preferable.
【0023】この感光性樹脂組成物には、必要に応じ
て、開始剤,増感剤,光重合性モノマー,エポキシ樹脂
の硬化剤などの成分を適宜配合してもよい。If necessary, components such as an initiator, a sensitizer, a photopolymerizable monomer, and a curing agent for epoxy resin may be added to the photosensitive resin composition.
【0024】なお、本発明の接着剤における感光性樹脂
マトリックスは、溶剤を含まない耐熱感光性樹脂をその
まま使用することもできるが、感光性樹脂を溶剤に溶解
してなるものは、粘度調節が容易にできるため微粉末を
均一に分散させることができ、しかも塗布し易いという
性質があるので、有利に使用することができる。この感
光性樹脂を溶解するのに使用する溶剤としては、通常溶
剤、例えばメチルエチルケトン,メチルセロソルブ,エ
チルセロソルブ,ブチルセロソルブ,ブチルセロソルブ
アセテート,ブチルカルビトール,ブチルセルロース,
テトラリン,ジメチルホルムアミド,ノルマルメチルピ
ロリドンなどを挙げることができる。As the photosensitive resin matrix in the adhesive of the present invention, a heat-resistant photosensitive resin containing no solvent can be used as it is, but the one prepared by dissolving the photosensitive resin in a solvent does not have a viscosity control. Since it can be easily carried out, the fine powder can be uniformly dispersed, and since it is easy to apply, it can be advantageously used. The solvent used for dissolving the photosensitive resin is usually a solvent such as methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl cellulose,
Examples thereof include tetralin, dimethylformamide, normal methylpyrrolidone and the like.
【0025】また、この感光性樹脂マトリックスには、
例えば、着色剤(顔料)やレベリング剤,消泡剤,紫外
線吸収剤,難燃化剤などの添加剤、あるいはその他の充
填材を適宜配合してもよい。Further, in this photosensitive resin matrix,
For example, an additive such as a colorant (pigment), a leveling agent, a defoaming agent, an ultraviolet absorber, a flame retardant, or other filler may be appropriately mixed.
【0026】次に、このような未硬化の感光性樹脂マト
リックス中に分散させる耐熱性樹脂微粉末は、耐熱性と
電気絶縁性に優れ、通常の薬品に対して安定である必要
性から、予め硬化された耐熱性樹脂微粉末または耐熱性
樹脂で被覆された無機微粉末のいずれかであることが好
ましい。例えば、予め硬化された耐熱性樹脂微粉末とし
ては、エポキシ樹脂やアミノ樹脂(メラミン樹脂,尿素
樹脂,グアナミン樹脂)、ポリエステル樹脂、ビスマレ
イミドトリアジン、フェノール樹脂などが用いられ、被
覆される無機微粉末としては、シリカやアルミナなどが
好適に用いられる。Next, the heat-resistant resin fine powder to be dispersed in such an uncured photosensitive resin matrix is excellent in heat resistance and electric insulation, and it is necessary to be stable to ordinary chemicals. It is preferably either a hardened heat-resistant resin fine powder or an inorganic fine powder coated with a heat-resistant resin. For example, as the pre-cured heat-resistant resin fine powder, epoxy resin, amino resin (melamine resin, urea resin, guanamine resin), polyester resin, bismaleimide triazine, phenol resin, etc. are used, and the inorganic fine powder to be coated is used. As such, silica and alumina are preferably used.
【0027】このような耐熱性樹脂微粉末は、耐熱性樹
脂マトリックスの合計固形分100 重量部に対して、5〜
80重量部の範囲を混合することが望ましい。この理由
は、この微粉末の配合量が5重量部より少ないと、アン
カー密度が小さく十分な密着強度が得られないからであ
る。一方、微粉末の配合量が80重量部よりも多くなる
と、接着層がほとんど溶解除去されてしまい明確なアン
カーが形成できないからである。Such a heat-resistant resin fine powder is added in an amount of 5 to 5 parts by weight based on 100 parts by weight of the total solid content of the heat-resistant resin matrix.
It is desirable to mix a range of 80 parts by weight. The reason for this is that if the amount of the fine powder blended is less than 5 parts by weight, the anchor density is low and sufficient adhesion strength cannot be obtained. On the other hand, if the blending amount of the fine powder is more than 80 parts by weight, the adhesive layer is almost completely dissolved and removed, and a clear anchor cannot be formed.
【0028】また、このような耐熱性樹脂微粉末の粒度
は、平均粒径が10μm以下であることが好ましく、特に
5μm以下であることが好適である。その理由は、平均
粒径が10μmより大きいと、溶解除去して形成されるア
ンカーの密度が小さくなり、かつ不均一になりやすいた
め、密着強度とその信頼性が低下する。しかも、接着剤
層表面の凹凸が激しくなるので、導体の微細パターンが
得にくく、かつ部品などを実装する上でも好ましくない
からである。The particle size of such heat-resistant resin fine powder is preferably 10 μm or less in average particle size, and particularly preferably 5 μm or less. The reason is that if the average particle size is larger than 10 μm, the density of the anchor formed by dissolution and removal tends to be low and the anchor tends to be non-uniform, so that the adhesion strength and its reliability decrease. Moreover, since the unevenness of the surface of the adhesive layer becomes severe, it is difficult to obtain a fine pattern of the conductor, and it is not preferable for mounting components and the like.
【0029】なお、このような予め硬化された耐熱性樹
脂微粉末としては、平均粒径5μm以下のものが好適に
使用できるが、平均粒径が2μm以下の耐熱性樹脂微粉
末を凝集させて平均粒径2〜10μmの大きさとした凝集
粒子、平均粒径2〜10μmの耐熱性樹脂粉末と平均粒径
2μm以下の耐熱性樹脂粉末との粒子混合物、または平
均粒径2〜10μmの耐熱性樹脂粉末の表面に平均粒径2
μm以下の耐熱性樹脂粉末もしくは無機微粉末のいずれ
か少なくとも1種を付着させてなる疑似粒子なども使用
できる。As such a pre-cured heat-resistant resin fine powder, those having an average particle diameter of 5 μm or less can be preferably used, but the heat-resistant resin fine powder having an average particle diameter of 2 μm or less is agglomerated. Aggregated particles having an average particle size of 2 to 10 μm, a particle mixture of a heat resistant resin powder having an average particle size of 2 to 10 μm and a heat resistant resin powder having an average particle size of 2 μm or less, or a heat resistance having an average particle size of 2 to 10 μm Average particle size 2 on the surface of resin powder
Pseudo particles obtained by adhering at least one of a heat resistant resin powder having a particle size of not more than μm and an inorganic fine powder can also be used.
【0030】本発明において、酸や酸化剤に不溶性の耐
熱性樹脂マトリックスの熱硬化性樹脂成分としては、エ
ポキシ樹脂を使用でき、一方、酸や酸化剤に可溶性の耐
熱性樹脂粉末としても、エポキシ樹脂を使用できる。こ
の点について、酸化剤に対する溶解度を例にとり、以下
に説明する。エポキシ樹脂は、これらのプレポリマー
(分子量300 〜10000 程度の比較的低分子量のポリマ
ー)、硬化剤の種類、架橋密度を制御することにより、
その物性を大きく異ならしめることができる。この物性
の差は、酸化剤に対する溶解度に対しても例外ではな
く、プレポリマーの種類、硬化剤の種類、架橋密
度を適宜選択することにより、任意の溶解度のものに調
整することができる。例えば、耐熱性樹脂粉末を構成す
る”酸化剤に可溶性のエポキシ樹脂”としては、(A)
「エポキシプレポリマーとして脂環式エポキシを選択
し、硬化剤として鎖状脂肪族ポリアミン硬化剤を使用
し、架橋点間分子量(架橋点の間の分子量のこと。大き
いほど架橋密度は低くなる。)を700 程度として穏やか
に架橋したもの」が用いられる。これに対して、耐熱性
樹脂マトリックスの熱硬化性樹脂成分である”酸化剤に
難溶性(不溶性も含む)のエポキシ樹脂”としては、
(B)「エポキシプレポリマーとしてビスフェノールA
型エポキシ樹脂を選択し、硬化材として芳香族ジアミン
系硬化剤を使用し、架橋点間分子量を500 前後に架橋し
たもの」や、これよりさらに溶解度の低い、(C)「エ
ポキシプレポリマーとしてフェノールノボラック型エポ
キシ樹脂を選択し、硬化剤として酸無水物系硬化剤を使
用し、架橋点間分子量を400 程度に架橋したもの」が用
いられる。また、前記エポキシ樹脂(B)を、”酸化剤
に可溶性のエポキシ樹脂”として用いることもでき、こ
の場合には、前記エポキシ樹脂(C)を”酸化剤に難溶
性のエポキシ樹脂”として採用する。以上説明したよう
に、エポキシ樹脂は、プレポリマーの種類、硬化剤
の種類、架橋密度を適宜選択することにより、任意の
溶解度のものに調整することができる。また、前述の例
から理解されるように、酸化剤に可溶性か酸化剤に難溶
性(あるいは不溶性)ということは、酸化剤に対する相
対的な溶解速度を意味しており、酸化剤に可溶性,不溶
性のエポキシ樹脂微粉末としては、溶解度差のあるもの
を任意に選択すればよい。なお、樹脂に溶解度差をつけ
る手段としては、プレポリマーの種類、硬化剤の種
類、架橋密度の調整だけに限定されるものではなく、
他の手段であってもよい。表1には、前述の各エポキシ
樹脂について、そのプレポリマー、硬化剤、架橋密度、
溶解度を列記する。In the present invention, an epoxy resin can be used as the thermosetting resin component of the heat-resistant resin matrix insoluble in an acid or an oxidizing agent, while an epoxy resin can be used as a heat-resistant resin powder soluble in an acid or an oxidizing agent. Resin can be used. This point will be described below by taking solubility in an oxidizing agent as an example. Epoxy resin can be prepared by controlling these prepolymers (polymers with a relatively low molecular weight of about 300-10000), the type of curing agent, and the crosslink density.
The physical properties can differ greatly. This difference in physical properties is not an exception even with respect to the solubility in an oxidizing agent, and can be adjusted to an arbitrary one by appropriately selecting the type of prepolymer, the type of curing agent, and the crosslinking density. For example, as the "oxidizing agent-soluble epoxy resin" that constitutes the heat-resistant resin powder, (A)
“Alicyclic epoxy is selected as the epoxy prepolymer, a chain aliphatic polyamine curing agent is used as the curing agent, and the molecular weight between cross-linking points (the molecular weight between cross-linking points. The larger the cross-linking density, the lower the cross-linking density). The value is about 700 and gently cross-linked "is used. On the other hand, the "hardly soluble (including insoluble) epoxy resin" that is a thermosetting resin component of the heat resistant resin matrix is
(B) "Bisphenol A as an epoxy prepolymer
Type epoxy resin was selected, and an aromatic diamine-based curing agent was used as the curing material, and the cross-linking point molecular weight was cross-linked to about 500. "or (C)" Phenol as an epoxy prepolymer having a lower solubility. " A novolac type epoxy resin is selected, an acid anhydride type curing agent is used as a curing agent, and the molecular weight between crosslinking points is crosslinked to about 400 ”. Further, the epoxy resin (B) can also be used as the "oxidizing agent-soluble epoxy resin". In this case, the epoxy resin (C) is adopted as the "oxidizing agent-insoluble epoxy resin". . As described above, the epoxy resin can be adjusted to have an arbitrary solubility by appropriately selecting the type of prepolymer, the type of curing agent, and the crosslinking density. Further, as understood from the above-mentioned examples, being soluble in an oxidant or sparingly soluble (or insoluble) in an oxidant means a relative dissolution rate in the oxidant. As the epoxy resin fine powder of (3), those having a difference in solubility may be arbitrarily selected. The means for imparting a solubility difference to the resin is not limited to the type of prepolymer, the type of curing agent, and the adjustment of the crosslink density,
Other means may be used. Table 1 shows the prepolymer, curing agent, crosslink density, and
The solubilities are listed.
【0031】[0031]
【表1】 [Table 1]
【0032】本発明においては、上述したような各エポ
キシ樹脂の溶解度差を利用して、一定時間の酸化処理を
施すのである。このような処理を施すことにより、酸化
剤に対する溶解度が最も大きい可溶性のエポキシ樹脂微
粉末の溶解が激しく起こり、大きな凹部が形成される。
同時に酸化剤に難溶性のエポキシ樹脂マトリックスが残
存して、図4(4) に示すような粗化面(アンカー)が形
成されるのである。In the present invention, the oxidation treatment is carried out for a certain period of time by utilizing the difference in the solubility of each epoxy resin as described above. By performing such a treatment, the soluble epoxy resin fine powder having the highest solubility in the oxidizing agent is vigorously dissolved, and a large recess is formed.
At the same time, the epoxy resin matrix, which is hardly soluble in the oxidizing agent, remains to form a roughened surface (anchor) as shown in FIG. 4 (4).
【0033】次に、本発明のフレックスリジッド多層プ
リント配線板の製造方法について説明する。本発明の製
造方法は、まず、導体回路を形成したフレキシブル基板
上の多層リジッド部となる部分に、硬化処理を受けると
酸あるいは酸化剤に対して難溶性となる未硬化の耐熱性
樹脂マトリックス中に、酸あるいは酸化剤に対して可溶
性の予め硬化処理された耐熱性樹脂微粉末を分散させて
なる感光性樹脂絶縁層を形成する。Next, a method of manufacturing the flex-rigid multilayer printed wiring board of the present invention will be described. In the manufacturing method of the present invention, first, a portion of a flexible substrate on which a conductor circuit is formed, which becomes a multilayer rigid portion, is in an uncured heat-resistant resin matrix that becomes hard to dissolve in an acid or an oxidizing agent when subjected to a curing treatment. A heat-resistant resin fine powder that is soluble in an acid or an oxidant and that has been previously cured is dispersed to form a photosensitive resin insulating layer.
【0034】導体回路を形成した基板上に、上記感光性
樹脂絶縁層を形成する方法としては、例えば硬化後の特
性が酸あるいは酸化剤に対して難溶性である未硬化の感
光性樹脂中に、酸あるいは酸化剤に対して可溶性の耐熱
性樹脂微粉末を分散させた接着剤を塗布する方法、ある
いは前記接着剤をフィルム状に加工した樹脂フィルム,
もしくはこの接着剤をガラスクロス等の繊維に含浸させ
たプリプレグを貼付する方法を適用することができる。
これの形成の方法としては、例えばローラーコート法、
ディップコート法、スプレーコート法、スピナーコート
法、カーテンコート法およびスクリーン印刷法などの各
種の手段を適用することができる。As a method of forming the above-mentioned photosensitive resin insulating layer on the substrate on which the conductor circuit is formed, for example, an uncured photosensitive resin whose characteristics after curing are hardly soluble in acid or oxidant is used. A method of applying an adhesive in which fine powder of a heat-resistant resin soluble in an acid or an oxidizing agent is dispersed, or a resin film obtained by processing the adhesive into a film,
Alternatively, a method of applying a prepreg in which fibers such as glass cloth are impregnated with this adhesive can be applied.
As a method of forming this, for example, a roller coating method,
Various means such as a dip coating method, a spray coating method, a spinner coating method, a curtain coating method and a screen printing method can be applied.
【0035】上述した酸あるいは酸化剤に対して可溶性
の耐熱性樹脂微粉末は、いずれも硬化処理された耐熱性
樹脂で構成される。この耐熱性樹脂微粉末を構成する耐
熱性樹脂を硬化処理されたものに限ったのは、硬化処理
していないものを用いると、マトリックスを形成する耐
熱性樹脂液あるいはこのマトリックスを形成する耐熱性
樹脂を溶剤を用いて溶解した溶液中に添加した場合、こ
の耐熱性樹脂微粉末を構成する耐熱性樹脂も該耐熱性樹
脂液あるいは溶液中に溶解してしまい、耐熱性樹脂微粉
末としての機能を発揮させることが不可能になるからで
ある。The above-mentioned fine powder of heat-resistant resin soluble in acid or oxidizing agent is composed of a heat-resistant resin which has been hardened. The heat-resistant resin constituting this fine powder of heat-resistant resin is limited to the one that has been subjected to the curing treatment. If an uncured resin is used, the heat-resistant resin liquid that forms the matrix or the heat-resistant resin that forms this matrix is used. When the resin is added to a solution that is dissolved using a solvent, the heat-resistant resin that constitutes this heat-resistant resin fine powder also dissolves in the heat-resistant resin liquid or solution, and functions as a heat-resistant resin fine powder. This is because it will be impossible to make full use of it.
【0036】かかる耐熱性樹脂微粉末は、例えば、耐熱
性樹脂を熱硬化させてからジェットミルや凍結粉砕機な
どを用いて粉砕したり、硬化処理する前に耐熱性樹脂溶
液を噴霧乾燥したのち硬化処理したり、あるいは未硬化
耐熱性樹脂エマルジョンに水溶液硬化剤を加えて攪拌し
たりして得られる粒子を、風力分級機などにより分級す
ることによって製造される。Such a heat-resistant resin fine powder is obtained by, for example, thermosetting the heat-resistant resin and then pulverizing it with a jet mill or freeze pulverizer, or spray-drying the heat-resistant resin solution before curing treatment. Particles obtained by curing treatment or addition of an aqueous solution curing agent to an uncured heat-resistant resin emulsion and stirring are classified by an air classifier or the like to produce.
【0037】前記耐熱性樹脂微粉末のうち、耐熱性樹脂
粉末の表面に耐熱性樹脂微粉末もしくは無機微粉末のい
ずれか少なくとも1種を付着させてなる擬似粒子とする
方法としては、例えば、耐熱性樹脂粉末の表面に耐熱性
樹脂微粉末もしくは無機微粉末をまぶした後、加熱して
融着させるか、結合剤を介して接着させる方法を適用す
ることが有利である。Among the above heat-resistant resin fine powders, as a method for forming pseudo particles by adhering at least one of heat-resistant resin fine powders or inorganic fine powders to the surface of heat-resistant resin powders, for example, heat-resistant resin It is advantageous to apply a method in which the surface of the heat-resistant resin powder is sprinkled with the heat-resistant resin fine powder or the inorganic fine powder and then heated and fused or adhered via a binder.
【0038】前記耐熱性樹脂微粉末のうち、耐熱性樹脂
微粉末を凝集させた凝集粒子とする方法としては、例え
ば、耐熱性樹脂微粉末を、熱風乾燥器などで単に加熱す
るか、あるいは各種バインダーを添加、混合して乾燥す
るなどして凝集させる。そして、その後、ボールミル、
超音波分散機などを用いて解砕し、さらに風力分級機な
どにより分級することによって製造することが有利であ
る。Among the above-mentioned heat-resistant resin fine powders, the heat-resistant resin fine powders may be aggregated into agglomerated particles by, for example, simply heating the heat-resistant resin fine powders with a hot air dryer or the like. The binder is added, mixed and dried to aggregate. And then the ball mill,
It is advantageous to disintegrate using an ultrasonic disperser or the like, and further classify with an air classifier or the like to manufacture.
【0039】このようにして得られる耐熱性樹脂微粉末
の形状は、球形だけでなく各種の複雑な形状を有してお
り、そのためこれにより形成されるアンカーの形状もそ
れに応じて複雑形状になるため、ピール強度、プル強度
などのめっき膜の密着強度を向上させるのに有効に作用
する。The shape of the heat-resistant resin fine powder thus obtained is not only spherical but also various complicated shapes, so that the shape of the anchor formed thereby also has a complicated shape accordingly. Therefore, it effectively acts to improve the adhesion strength of the plating film such as peel strength and pull strength.
【0040】上述の如くして製造された耐熱性樹脂微粉
末は、マトリックスを形成する耐熱性樹脂液あるいはこ
のマトリックスを形成する耐熱性樹脂を溶剤を用いて溶
解した溶液中に添加して、均一分散させる。The heat-resistant resin fine powder produced as described above is added uniformly to a heat-resistant resin liquid that forms a matrix or a solution in which the heat-resistant resin that forms the matrix is dissolved in a solvent to obtain a uniform mixture. Disperse.
【0041】なお、本発明における前記樹脂絶縁層の好
適な厚さは、約20〜 100μm程度であるが、特に高い絶
縁性が要求される場合にはそれ以上に厚くすることもで
きる。The preferable thickness of the resin insulating layer in the present invention is about 20 to 100 μm, but it can be made thicker if a particularly high insulating property is required.
【0042】本発明に使用する基板としては、適度な屈
曲性を有するものであればよく、例えばプラスチック基
板、金属基板、フィルム基板などを使用することがで
き、具体的にはガラスエポキシ基板、ガラスポリイミド
基板、アルミニウム基板、鉄基板、ポリイミドフィルム
基板、ポリエチレンフィルム基板などを使用することが
できる。The substrate used in the present invention may be any one having appropriate flexibility, and for example, a plastic substrate, a metal substrate, a film substrate or the like can be used. Specifically, a glass epoxy substrate, a glass substrate or the like can be used. A polyimide substrate, an aluminum substrate, an iron substrate, a polyimide film substrate, a polyethylene film substrate, or the like can be used.
【0043】次の工程は、多層リジット部を形造る位置
の前記感光性樹脂絶縁層の導体層間を接続するためのバ
イアホール部(微細孔)を、露光し、現像処理すること
によって形成する。この工程におけるバイアホール部の
形成方法としては、所定の箇所をフォトレジストのマス
クで覆い露光した後、現像する方法が好適であるが、そ
の他にレーザ加工によりバイアホール部を形成する方法
を適用することもできる。In the next step, a via hole portion (fine hole) for connecting the conductor layers of the photosensitive resin insulating layer at a position where a multilayer rigid portion is formed is formed by exposing and developing. As a method of forming a via hole portion in this step, a method of covering a predetermined portion with a photoresist mask and exposing and then developing is suitable, but in addition, a method of forming a via hole portion by laser processing is applied. You can also
【0044】次の工程は、前記感光性樹脂絶縁層の表面
部分に点在している耐熱性樹脂微粉末を酸や酸化剤を用
いて溶解除去する処理である。この工程における溶解除
去の方法としては、前記感光性樹脂絶縁層が形成された
基板を、酸や酸化剤の溶液中に浸漬するか、あるいはこ
の感光性樹脂絶縁層の表面に酸や酸化剤の溶液をスプレ
ーするなどの手段によって実施することができる。その
結果、この感光性樹脂絶縁層の表面を粗化することがで
きる。なお、前記耐熱性樹脂微粉末の溶解除去を効果的
に行わせることを目的として、予め前記感光性樹脂絶縁
層の表面部分を、例えば微粉研磨剤を用いてポリシング
や液体ホーニングを行うことにより軽く粗化することが
極めて有効である。The next step is a treatment for dissolving and removing the heat-resistant resin fine powder scattered on the surface portion of the photosensitive resin insulating layer by using an acid or an oxidizing agent. As a method of dissolving and removing in this step, the substrate on which the photosensitive resin insulating layer is formed is immersed in a solution of an acid or an oxidizing agent, or the surface of the photosensitive resin insulating layer is treated with an acid or an oxidizing agent. It can be carried out by means such as spraying the solution. As a result, the surface of this photosensitive resin insulating layer can be roughened. In order to effectively remove the heat-resistant resin fine powder by dissolving, the surface portion of the photosensitive resin insulating layer is lightly lightened by polishing or liquid honing using, for example, a fine powder abrasive. Roughening is extremely effective.
【0045】かかる感光性樹脂絶縁層を粗化する酸化剤
としては、クロム酸やクロム酸塩,過マンガン酸塩,オ
ゾンなどがよい。また、酸としては、塩酸や硫酸,有機
酸などがよい。Chromic acid, chromate, permanganate, ozone, etc. are preferable as the oxidizing agent for roughening the photosensitive resin insulating layer. As the acid, hydrochloric acid, sulfuric acid, organic acid and the like are preferable.
【0046】さらに次の工程は、前記感光性樹脂絶縁層
の表面を粗化した後、その粗化表面に無電解めっきを施
して、導体回路を形成する処理である。この無電解めっ
きの方法としては、例えば無電解銅めっき、無電解ニッ
ケルめっき、無電解スズめっき、無電解金めっきおよび
無電解銀めっきなどを挙げることができ、特に無電解銅
めっき、無電解銅/ニッケル共晶めっき、無電解ニッケ
ルめっきおよび無電解金めっきのいずれか少なくとも1
種であることが好適である。また、前記無電解めっきを
施した上にさらに異なる種類の無電解めっきあるいは電
気めっきを行ったり、はんだをコートしたりすることも
できる。そして、上述したような各工程を1回以上繰り
返すことにより、本発明のフレックスリジッド多層プリ
ント配線板を製造する。Further, the next step is a treatment for roughening the surface of the photosensitive resin insulating layer and then subjecting the roughened surface to electroless plating to form a conductor circuit. Examples of this electroless plating method include electroless copper plating, electroless nickel plating, electroless tin plating, electroless gold plating and electroless silver plating, and in particular electroless copper plating, electroless copper / Nickel eutectic plating, electroless nickel plating, or electroless gold plating, at least 1
The seed is preferred. In addition, it is also possible to further perform different types of electroless plating or electroplating on the above-mentioned electroless plating, or to coat solder. Then, the flex-rigid multilayer printed wiring board of the present invention is manufactured by repeating the above-mentioned steps one or more times.
【0047】なお、本発明方法において上記の導体回路
は、既知のプリント配線板について実施されている他の
方法でも形成することができ、例えば基板に無電解めっ
きを施してから回路をエッチングする方法や無電解めっ
きを施す際に直接回路を形成する方法などを適用しても
よい。In the method of the present invention, the above-mentioned conductor circuit can be formed by another method which has been carried out for a known printed wiring board. For example, a method of subjecting a substrate to electroless plating and then etching the circuit. Alternatively, a method of directly forming a circuit when performing electroless plating may be applied.
【0048】[0048]
【実施例】(実施例1) (1) 感光性ポリイミド樹脂(日立化成工業製)固形分10
0 重量部に対して、エポキシ樹脂微粉末(東レ製)を12
重量部の割合で配合し、さらにN−メチルピロリドン溶
剤を添加しながらホモディスパー分散機で粘度5000cpに
調整し、次いで3本ロールで混練して感光性樹脂絶縁層
用の接着剤溶液を得た。 (2) 次に、導体回路を形成したフレキシブル基板1上
に、カバーレイフィルムをラミネートした後、前記感光
性絶縁層用の接着剤溶液をスピナー(1000rpm )を用い
て塗布し、水平状態で60分間室温放置した後、80℃で10
分間乾燥させて、厚さ60μmの感光性樹脂絶縁層2を形
成した(図4(2) 参照)。 (3) 次に、バイアホール部およびフレックス部にフォト
レジストのマスクを形成し、超高圧水銀灯で30秒間露光
した。これをN−メチルピロリドン−メタノール(3:
1)混合溶媒で1分間現像処理することにより、導体間
接続用のバイアホールを形成した。その後、超高圧水銀
灯で5分間露光し、さらに200 ℃で30分間加熱処理する
ことにより、感光性樹脂絶縁層を完全に硬化させた(図
4(3) 参照)。 (4) この基板をクロム酸(CrO3)800g/l 水溶液からなる
酸化剤に60℃で2分間浸漬して樹脂絶縁層2の表面を粗
化してから、中和溶液(シプレイ社製)に浸漬し、水洗
した(図4(4) 参照)。 (5) 樹脂絶縁層2の表面を粗化したプリント配線板にパ
ラジウム(シプレイ社製)を付与して樹脂絶縁層2の表
面を活性化させた後、液状フォトレジスト3を塗布し、
アディティブ用の無電解銅めっき液に10時間浸漬して、
めっき膜6の厚さ25μmの無電解銅めっきを施した(図
4(5) 参照)。 (6) 次に、(1) で作成した接着剤を塗布し、(2),(3),
(4),(5) の工程を3回繰り返した。 (7) 最後に(5) で塗布した液状フォトレジスト3を除去
し、4層(4,6,8,10)のフレックスリジッド多層プリン
ト配線板とした(図4(6) 参照)。[Example] (Example 1) (1) Photosensitive polyimide resin (manufactured by Hitachi Chemical Co., Ltd.) Solid content 10
0 parts by weight of epoxy resin fine powder (manufactured by Toray)
The viscosity was adjusted to 5000 cp with a homodisper disperser while adding an N-methylpyrrolidone solvent, and then kneaded with three rolls to obtain an adhesive solution for a photosensitive resin insulating layer. . (2) Next, after laminating a coverlay film on the flexible substrate 1 on which the conductor circuit is formed, the adhesive solution for the photosensitive insulating layer is applied by using a spinner (1000 rpm), and it is kept horizontal in 60 After leaving it at room temperature for 10 minutes,
After being dried for a minute, a photosensitive resin insulating layer 2 having a thickness of 60 μm was formed (see FIG. 4 (2)). (3) Next, a photoresist mask was formed on the via hole part and the flex part, and exposed with an ultrahigh pressure mercury lamp for 30 seconds. This was N-methylpyrrolidone-methanol (3:
1) A via hole for connecting between conductors was formed by developing the mixed solvent for 1 minute. Then, the photosensitive resin insulating layer was completely cured by exposing it to an ultra-high pressure mercury lamp for 5 minutes and then heating it at 200 ° C. for 30 minutes (see FIG. 4 (3)). (4) The surface of the resin insulation layer 2 is roughened by immersing this substrate in an oxidizing agent consisting of an aqueous solution of chromic acid (CrO 3 ) 800 g / l at 60 ° C. for 2 minutes, and then using a neutralizing solution (manufactured by Shipley). It was dipped and washed with water (see Fig. 4 (4)). (5) Palladium (manufactured by Shipley Co.) is applied to the printed wiring board having the surface of the resin insulating layer 2 roughened to activate the surface of the resin insulating layer 2, and then the liquid photoresist 3 is applied.
Immerse in electroless copper plating solution for additive for 10 hours,
The electroless copper plating having a thickness of 25 μm was applied to the plating film 6 (see FIG. 4 (5)). (6) Next, apply the adhesive prepared in (1), and (2), (3),
The steps (4) and (5) were repeated three times. (7) Finally, the liquid photoresist 3 applied in (5) was removed to form a 4-layer (4,6,8,10) flex-rigid multilayer printed wiring board (see FIG. 4 (6)).
【0049】(実施例2) (1) 感光性ポリイミド樹脂(日立化成工業製)固形分10
0 重量部に対して、エポキシ樹脂微粉末(東レ製)を12
重量部の割合で配合し、さらにN−メチルピロリドン溶
剤を添加しながらホモディスパー分散機で粘度5000cpに
調整し、次いで3本ロールで混練して感光性絶縁層用の
接着剤溶液を得た。 (2) 次に、導体回路を形成したフレキシブル基板1上
に、前記感光性絶縁層用の接着剤溶液をスピナー(1000
rpm )を用いて塗布し、水平状態で60分間室温放置した
後、80℃で10分間乾燥させて、厚さ60μmの感光性樹脂
絶縁層2を形成した。 (3) 次に、バイアホール部およびフレックス部にフォト
レジストのマスクを密着させ、超高圧水銀灯で30秒間露
光した。これをN−メチルピロリドン−メタノール
(3:1)混合溶媒で1分間現像処理することにより、
導体間接続用のバイアホールを形成した。その後、超高
圧水銀灯で5分間露光し、さらに200 ℃で30分間加熱処
理することにより、感光性樹脂絶縁層2を完全に硬化さ
せた。 (4) この基板をクロム酸(CrO3)800g/l 水溶液からなる
酸化剤に60℃で2分間浸漬して樹脂絶縁層2の表面を粗
化してから、中和溶液(シプレイ社製)に浸漬し、水洗
した。 (5) 樹脂絶縁層2の表面を粗化したプリント配線板にパ
ラジウム(シプレイ社製)を付与して樹脂絶縁層2の表
面を活性化させた後、フルアディティブ用の無電解銅め
っき液に10時間浸漬して、めっき膜6の厚さ25μmの無
電解銅めっきを施した。 (6) 全面に、耐酸性ネガ型フォトレジストを塗布した。 (7) フレックス部分にフォトレジストのマスクを密着さ
せ、前記(6) で塗布したフォトレジストを感光した。こ
れにより、フレックス部分のみレジストが載っていない
状態とした。 (8) この基板を希酸に浸漬し、フレックス部の銅めっき
を除去し、その後、水洗洗浄した。 (9) 次に、(1) で作成した接着剤を塗布し、(2)〜(8)の
工程を3回繰り返した。 (10)以上の工程で、4層(4,6,8,10)のフレックスリジ
ッド多層プリント配線板を作成した。Example 2 (1) Photosensitive polyimide resin (manufactured by Hitachi Chemical Co., Ltd.) Solid content 10
0 parts by weight of epoxy resin fine powder (manufactured by Toray)
The viscosity was adjusted to 5000 cp with a homodisper disperser while adding N-methylpyrrolidone solvent, and then kneaded with three rolls to obtain an adhesive solution for a photosensitive insulating layer. (2) Next, the adhesive solution for the photosensitive insulating layer is spun on a flexible substrate 1 having a conductor circuit formed thereon (1000
rpm), left at room temperature for 60 minutes in a horizontal state, and then dried at 80 ° C. for 10 minutes to form a photosensitive resin insulating layer 2 having a thickness of 60 μm. (3) Next, a photoresist mask was brought into close contact with the via hole portion and the flex portion, and exposed with an ultrahigh pressure mercury lamp for 30 seconds. By developing this with a mixed solvent of N-methylpyrrolidone-methanol (3: 1) for 1 minute,
Via holes for connecting conductors were formed. After that, the photosensitive resin insulating layer 2 was completely cured by exposing it to an ultra-high pressure mercury lamp for 5 minutes and then heating it at 200 ° C. for 30 minutes. (4) The surface of the resin insulation layer 2 is roughened by immersing this substrate in an oxidizing agent consisting of an aqueous solution of chromic acid (CrO 3 ) 800 g / l at 60 ° C. for 2 minutes, and then using a neutralizing solution (manufactured by Shipley). It was dipped and washed with water. (5) Palladium (manufactured by Shipley Co.) is applied to the printed wiring board with the surface of the resin insulating layer 2 roughened to activate the surface of the resin insulating layer 2, and then the electroless copper plating solution for full additive is applied. After immersion for 10 hours, electroless copper plating with a thickness of 25 μm was applied to the plating film 6. (6) An acid-resistant negative photoresist was applied on the entire surface. (7) A photoresist mask was brought into close contact with the flex portion, and the photoresist coated in (6) was exposed. As a result, the resist was not placed on only the flex portion. (8) This substrate was immersed in dilute acid to remove the copper plating on the flex portion, and then washed with water. (9) Next, the adhesive prepared in (1) was applied, and the steps (2) to (8) were repeated three times. (10) Through the above steps, a 4-layer (4,6,8,10) flex-rigid multilayer printed wiring board was prepared.
【0050】(実施例3) (1) エポキシ樹脂(三井石油化学工業製)を熱風乾燥器
内にて160 ℃で1時間、引き続いて180 ℃で4時間乾燥
して硬化させ、この硬化させたエポキシ樹脂を粗粉砕し
た後、さらに液体窒素で凍結させながら音速ジェット粉
砕機を用いて微粉砕し、平均粒径1.6 μmのエポキシ樹
脂微粉末を得た。 (2) 次に、感光性ポリイミド樹脂(日立化成工業製)固
形分100 重量部に対して、前記エポキシ樹脂微粉末を 1
00重量部の割合で配合し、さらにN−メチルピロリドン
溶剤を添加しながらホモディスパー分散機で粘度5000cp
に調整し、次いで3本ロールで混練して感光性絶縁層用
の接着剤溶液を得た。 (3) 次に、導体回路を形成したフレキシブル基板1上
に、前記感光性絶縁層用の接着剤溶液を実施例1と同様
にして塗布し、厚さ60μmの感光性樹脂絶縁層2を形成
した。 (4) 次に、バイアホール部およびフレックス部にフォト
レジストのマスクを密着させ、超高圧水銀灯で30秒間露
光した。これをN−メチルピロリドン−メタノール
(3:1)混合溶媒で1分間現像処理することにより、
導体間接続用のバイアホールを形成した。その後、超高
圧水銀灯で5分間露光し、さらに200 ℃で30分間加熱処
理することにより、感光性樹脂絶縁層2を完全に硬化さ
せた。 (5) 次に、この基板をクロム酸(CrO3)800g/l 水溶液か
らなる酸化剤に60℃で2分間浸漬して樹脂絶縁層2の表
面を粗化してから、中和溶液(シプレイ社製)に浸漬
し、水洗した。 (6) 樹脂絶縁層2の表面を粗化したプリント配線板にパ
ラジウム(シプレイ社製)を付与して樹脂絶縁層2の表
面を活性化させた後、液状フォトレジスト3を塗布し、
フルアディティブ用の無電解銅めっき液に10時間浸漬し
て、めっき膜6の厚さ25μmの無電解銅めっきを施し
た。 (7) 次に、(1) で作成した接着剤を塗布し、(3),(4),
(5),(6) の工程を3回繰り返した。 (8) 最後に、(6) で塗布した液状フォトレジスト3を除
去し、4層(4,6,8,10)のフレックスリジッド多層プリ
ント配線板とした。Example 3 (1) An epoxy resin (manufactured by Mitsui Petrochemical Co., Ltd.) was dried in a hot air dryer at 160 ° C. for 1 hour and subsequently at 180 ° C. for 4 hours to be cured, and then cured. After the epoxy resin was roughly pulverized, it was further pulverized with a sonic jet pulverizer while being frozen with liquid nitrogen to obtain an epoxy resin fine powder having an average particle size of 1.6 μm. (2) Next, 1 part of the epoxy resin fine powder was added to 100 parts by weight of the solid content of the photosensitive polyimide resin (manufactured by Hitachi Chemical Co., Ltd.).
It is blended at a ratio of 00 parts by weight, and the viscosity is 5000 cp with a homodisper disperser while adding an N-methylpyrrolidone solvent
And then kneading with a three-roll mill to obtain an adhesive solution for the photosensitive insulating layer. (3) Next, the adhesive solution for the photosensitive insulating layer is applied on the flexible substrate 1 on which the conductor circuit is formed in the same manner as in Example 1 to form the photosensitive resin insulating layer 2 having a thickness of 60 μm. did. (4) Next, a photoresist mask was brought into close contact with the via hole portion and the flex portion, and exposed with an ultrahigh pressure mercury lamp for 30 seconds. By developing this with a mixed solvent of N-methylpyrrolidone-methanol (3: 1) for 1 minute,
Via holes for connecting conductors were formed. After that, the photosensitive resin insulating layer 2 was completely cured by exposing it to an ultra-high pressure mercury lamp for 5 minutes and then heating it at 200 ° C. for 30 minutes. (5) Next, the surface of the resin insulation layer 2 is roughened by immersing the substrate in an oxidizer composed of an aqueous solution of 800 g / l chromic acid (CrO 3 ) at 60 ° C. for 2 minutes, and then a neutralizing solution (Shipley Company). Manufactured) and washed with water. (6) Palladium (manufactured by Shipley Co.) is applied to the printed wiring board having the surface of the resin insulating layer 2 roughened to activate the surface of the resin insulating layer 2, and then the liquid photoresist 3 is applied.
The electroless copper plating solution for full additive was immersed for 10 hours to perform electroless copper plating with a plating film 6 having a thickness of 25 μm. (7) Next, apply the adhesive created in (1), and (3), (4),
The steps (5) and (6) were repeated 3 times. (8) Finally, the liquid photoresist 3 applied in (6) was removed to obtain a 4-layer (4,6,8,10) flex-rigid multilayer printed wiring board.
【0051】(実施例4) (1) クレゾールノボラック型エポキシ樹脂の50%アクリ
ル化物(日本化薬製)70重量部、ビスフェノールA型エ
ポキシ樹脂(油化シェル製)30重量部、感光性モノマー
として、ジペンタエリスリトールヘキサアクリレート
(共栄社油脂製)7.5 重量部とネオペンチルグリコール
変性トリメチロールプロパンジアクリレート(日本化薬
製)3.75重量部、光重合開始剤として、ベンゾフェノン
5重量部とミヒラーケトン0.5 重量部、イミダゾール系
硬化剤(四国化成製)4重量部、およびエポキシ樹脂フ
ィラー(東レ製)を、5.5 μmのものを25重量部と0.5
μmのものを10重量部を混合した後、ブチルセロソルブ
アセテートを添加しながらホモディスパー攪拌機で攪拌
し、さらに、この混合物にレベリング剤(サンノプコ
製、商品名:ダッポS-65)を0.9 wt%添加し、3本ロー
ルで混練して固形分70%の感光性樹脂絶縁層用の接着剤
溶液を得た。 (2)以下実施例1と同様にして、4層のフレックスリジ
ッド多層プリント配線板とした。Example 4 (1) 70 parts by weight of 50% acrylate of cresol novolac type epoxy resin (manufactured by Nippon Kayaku), 30 parts by weight of bisphenol A type epoxy resin (manufactured by Yuka Shell), as a photosensitive monomer , 7.5 parts by weight of dipentaerythritol hexaacrylate (made by Kyoeisha Yushi) and 3.75 parts by weight of neopentyl glycol-modified trimethylolpropane diacrylate (made by Nippon Kayaku), 5 parts by weight of benzophenone and 0.5 parts by weight of Michler's ketone as a photopolymerization initiator, 4 parts by weight of imidazole type curing agent (manufactured by Shikoku Kasei) and 25 parts by weight of epoxy resin filler (manufactured by Toray) of 5.5 μm and 0.5 parts by weight
After mixing 10 parts by weight of μm, the mixture was stirred with a homodisper stirrer while adding butyl cellosolve acetate, and 0.9 wt% of a leveling agent (manufactured by San Nopco, trade name: Dappo S-65) was further added to this mixture. The mixture was kneaded with three rolls to obtain an adhesive solution for a photosensitive resin insulating layer having a solid content of 70%. (2) In the same manner as in Example 1 below, a 4-layer flex-rigid multilayer printed wiring board was prepared.
【0052】(比較例1) (1) フレキシブル基板上に、サブトラクティブ法によっ
て内層回路およびフレックス部に相当する導体回路を形
成し、次いで、その導体回路上に、打ち抜き加工したカ
バーレイフィルムを位置合わせして仮接着し、その後、
多段プレスにて加熱加圧することにより、内層回路基板
およびフレックス部となるフレキシブル基板を作製し
た。 (2) ガラスエポキシ両面銅張基板の一方の面に、サブト
ラクティブ法によって別の内層回路を形成し、次いで、
外型加工することにより、多層リジッド部の1つの導体
層を形成するリジッド基板を作製した。 (3) 前記(1),(2)で作製したフレキシブル基板と複数の
リジッド基板とをプリプレグを介して積層固定し、プレ
スにて加熱加圧して一体化した。次に、得られた基板に
孔明けをした後、無電解めっきを施すことにより、内層
回路と外層回路をスルーホールにて導通,接続し、さら
に、リジッド部の他の面の導体回路を形成することによ
って、フレックスリジッド多層プリント配線板とした。Comparative Example 1 (1) An inner layer circuit and a conductor circuit corresponding to a flex portion were formed on a flexible substrate by a subtractive method, and then a punched coverlay film was placed on the conductor circuit. Combine and temporarily bond, then
By heating and pressurizing with a multi-stage press, a flexible substrate to be the inner layer circuit board and the flex portion was produced. (2) Another inner layer circuit is formed on one surface of the glass epoxy double-sided copper clad board by the subtractive method, and then,
By external processing, a rigid substrate for forming one conductor layer of the multilayer rigid portion was produced. (3) The flexible substrate prepared in (1) and (2) above and a plurality of rigid substrates were laminated and fixed via a prepreg, and heated and pressed by a press to be integrated. Next, after making holes in the obtained substrate, electroless plating is performed to connect and connect the inner layer circuit and the outer layer circuit through through holes, and to form a conductor circuit on the other surface of the rigid portion. As a result, a flex-rigid multilayer printed wiring board was obtained.
【0053】(比較例2)通常のサブトラクティブ法に
よって製造したガラスエポキシ基板からなる両面回路付
プリント配線板をリジッド部とし、このリジッド部と前
記比較例1の(1)で製造したフレキシブル基板とを、図
5に示すようなはんだによる方法で接合することによっ
て、フレックスリジッド多層プリント配線板を製造し
た。(Comparative Example 2) A printed wiring board with a double-sided circuit made of a glass epoxy substrate manufactured by a normal subtractive method was used as a rigid part, and this rigid part and the flexible substrate manufactured in (1) of the comparative example 1 were used. Were joined by a soldering method as shown in FIG. 5 to produce a flex-rigid multilayer printed wiring board.
【0054】上述のようにして製造したフレックスリジ
ッド多層プリント配線板について、パターン間絶縁性
(接続信頼性)および耐折性(折り曲げ特性)を評価し
た結果を表2に示す。この表に示す結果から明らかなよ
うに、本発明のフレックスリジッド多層プリント配線板
は、従来の方法によるフレックスリジッド多層プリント
配線板に比べて、パターン間絶縁性や耐折性を損なうこ
となく、ファインパターンな回路を高精度でかつ容易に
形成できることを確認した。また、ピール強度について
は、1.4kg/cm以上を確保できることを確認した。Table 2 shows the results of evaluation of the inter-pattern insulation (connection reliability) and folding endurance (folding characteristics) of the flex-rigid multilayer printed wiring board manufactured as described above. As is clear from the results shown in this table, the flex-rigid multilayer printed wiring board of the present invention, as compared with the flex-rigid multilayer printed wiring board by the conventional method, without impairing the inter-pattern insulating property and the folding endurance, It was confirmed that a patterned circuit could be easily formed with high precision. Moreover, it was confirmed that the peel strength of 1.4 kg / cm or more could be secured.
【0055】[0055]
【表2】 [Table 2]
【0056】なお、上記パターン間絶縁性および耐折性
の評価方法を説明する。 (1) パターン間絶縁性 L/S=50/50μmのくしばパターンにて、80℃/85%
/24V,1000時間後のパターン間の絶縁抵抗を測定し
た。 (2) 耐折性 JIS−P−8115に準じて行った。A method for evaluating the inter-pattern insulating property and the folding endurance will be described. (1) Pattern insulation L / S = 80/85% at a comb pattern of 50/50 μm
The insulation resistance between the patterns after / 24 V and 1000 hours was measured. (2) Folding endurance was performed according to JIS-P-8115.
【0057】さらに、上述のような従来の方法によって
製造したフレックスリジッド多層プリント配線板では、
変形の際に多層リジッド部の端部に応力がかかり、リジ
ッド部の剥がれや割れ、フレックス部の裂けなどのトラ
ブルが発生しやすい。そのため、従来のフレックスリジ
ッド多層プリント配線板では、図6に示すように、リジ
ッド部の端面にシリコンゴム等でシーリングを行ってい
た。この点、本発明のフレックスリジッド多層プリント
配線板は、多層リジッド部の樹脂絶縁層として、耐熱性
微粉末を含有した樹脂組成物を用いているので、導体層
と樹脂絶縁層との密着強度は高く、変形の際に、リジッ
ド部の剥がれや割れなどが発生せず、変形後の曲率半径
を小さくすることができるので、電子機器の小型化に対
応できる。しかも、本発明の製造方法は、露光現像プロ
セスによりリジッド部を積層して多層化するので、図7
に示すように、多層リジッド部とフレックス部との境界
をシーリングをすることなく容易に強化することができ
る。Furthermore, in the flex-rigid multilayer printed wiring board manufactured by the conventional method as described above,
At the time of deformation, stress is applied to the end portions of the multilayer rigid portion, and troubles such as peeling or cracking of the rigid portion and tearing of the flex portion are likely to occur. Therefore, in the conventional flex-rigid multilayer printed wiring board, as shown in FIG. 6, the end face of the rigid portion is sealed with silicone rubber or the like. In this respect, since the flex-rigid multilayer printed wiring board of the present invention uses the resin composition containing the heat-resistant fine powder as the resin insulating layer of the multilayer rigid portion, the adhesion strength between the conductor layer and the resin insulating layer is Since the rigid portion is high, peeling or cracking of the rigid portion does not occur at the time of deformation, and the radius of curvature after deformation can be reduced, so that the electronic device can be downsized. Moreover, in the manufacturing method of the present invention, the rigid portions are laminated by the exposure and development process to form a multilayer structure.
As shown in, the boundary between the multilayer rigid portion and the flex portion can be easily strengthened without sealing.
【0058】[0058]
【発明の効果】以上説明したように本発明によれば、フ
レックスリジッド多層プリント配線板の製造工程を簡略
化することができ、しかも、高精度のファインパターン
を容易に形成できる他、パターン間絶縁性などの信頼性
に優れたフレックスリジッド多層プリント配線板を、安
価にかつ確実に提供することができる。As described above, according to the present invention, the manufacturing process of a flex-rigid multilayer printed wiring board can be simplified, and besides, a fine pattern with high precision can be easily formed and insulation between patterns can be achieved. It is possible to reliably and inexpensively provide a flex-rigid multilayer printed wiring board having excellent reliability such as properties.
【図1】典型的なフレックスリジッド多層プリント配線
板を示す概念図である。FIG. 1 is a conceptual diagram showing a typical flex-rigid multilayer printed wiring board.
【図2】典型的なフレックスリジッド多層プリント配線
板の断面構造を示す図である。FIG. 2 is a diagram showing a cross-sectional structure of a typical flex-rigid multilayer printed wiring board.
【図3】従来のフレックスリジッド多層プリント配線板
の製造工程を示す図である。FIG. 3 is a diagram showing a manufacturing process of a conventional flex-rigid multilayer printed wiring board.
【図4】本発明のフレックスリジッド多層プリント配線
板の製造工程を示す図である。FIG. 4 is a diagram showing a manufacturing process of the flex-rigid multilayer printed wiring board of the present invention.
【図5】従来技術にかかるリジッド部とフレックス部の
接合方法を示す図である。FIG. 5 is a diagram showing a method of joining a rigid portion and a flex portion according to a conventional technique.
【図6】従来技術にかかるリジッド端面部の補強シーリ
ングを示す図である。FIG. 6 is a view showing a reinforcing sealing of a rigid end surface portion according to a conventional technique.
【図7】本発明のフレックスリジッド多層プリント配線
板におけるリジッド端面部の一形態を示す図である。FIG. 7 is a view showing one form of a rigid end face portion in the flex-rigid multilayer printed wiring board of the present invention.
1 フレキシブル基板 2 感光性樹脂絶縁層 3 液状フォトレジスト 4,6,8,10 めっき膜(導体層) 5 バイアホール 1 flexible substrate 2 photosensitive resin insulating layer 3 liquid photoresist 4, 6, 8, 10 plating film (conductor layer) 5 via hole
Claims (4)
を有する多層リジッド部と、この多層リジッド部に連設
されたフレックス部とによって構成されたフレックスリ
ジッド多層プリント配線板において、 上記多層リジッド部の樹脂絶縁層が感光性絶縁材料にて
形成されていることを特徴とするフレックスリジッド多
層プリント配線板。1. A flex-rigid multilayer printed wiring board, comprising: a multilayer rigid portion each having a plurality of conductor layers and a resin insulating layer; and a flex portion connected to the multilayer rigid portion. A flex-rigid multilayer printed wiring board, characterized in that the resin insulating layer of the part is formed of a photosensitive insulating material.
酸あるいは酸化剤に対して難溶性となる未硬化の耐熱性
樹脂マトリックス中に、酸あるいは酸化剤に対して可溶
性の予め硬化処理された耐熱性樹脂微粉末を分散させて
なる接着剤である請求項1に記載のフレックスリジッド
多層プリント配線板。2. The photosensitive insulating material is pre-cured to be soluble in an acid or an oxidant in an uncured heat-resistant resin matrix that becomes hardly soluble in an acid or an oxidant when subjected to a curing treatment. The flex-rigid multilayer printed wiring board according to claim 1, which is an adhesive in which fine powder of heat-resistant resin is dispersed.
を有する多層リジッド部と、この多層リジッド部に連設
されたフレックス部とによって構成されたフレックスリ
ジッド多層プリント配線板を製造する方法において、少
なくとも下記(a) 〜(d) 工程;すなわち、 (a) 少なくとも一方の面に導体回路を有するフレキシブ
ル基板上に、部分的に感光性樹脂絶縁層を形成する工
程、 (b) 前記感光性樹脂絶縁層の表面部分を、酸あるいは酸
化剤処理して粗化する工程、 (c) 粗化された前記感光性樹脂絶縁層上に無電解めっき
を施すことにより、導体回路を形成する工程、 を、一回以上繰り返すことを特徴とするフレックスリジ
ッド多層プリント配線板の製造方法。3. A method of manufacturing a flex-rigid multilayer printed wiring board, comprising: a multilayer rigid part having a plurality of conductor layers and a resin insulating layer; and a flex part continuous with the multilayer rigid part. , At least the following steps (a) to (d); that is, (a) a step of partially forming a photosensitive resin insulating layer on a flexible substrate having a conductor circuit on at least one surface, (b) the photosensitivity A step of roughening the surface portion of the resin insulating layer by treating with an acid or an oxidant, (c) a step of forming a conductor circuit by performing electroless plating on the roughened photosensitive resin insulating layer, The method for producing a flex-rigid multilayer printed wiring board is characterized in that the above is repeated once or more.
酸あるいは酸化剤に対して難溶性となる未硬化の耐熱性
樹脂マトリックス中に、酸あるいは酸化剤に対して可溶
性の予め硬化処理された耐熱性樹脂微粉末を分散させて
なる接着剤である請求項3に記載の製造方法。4. The photosensitive insulating material is pre-cured to be soluble in an acid or an oxidant in an uncured heat-resistant resin matrix that is hardly soluble in an acid or an oxidant when subjected to a curing treatment. The manufacturing method according to claim 3, which is an adhesive obtained by dispersing the heat-resistant resin fine powder.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33467893A JP3064780B2 (en) | 1993-01-12 | 1993-12-28 | Manufacturing method of flex-rigid multilayer printed wiring board |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP329093 | 1993-01-12 | ||
| JP5-3290 | 1993-01-12 | ||
| JP33467893A JP3064780B2 (en) | 1993-01-12 | 1993-12-28 | Manufacturing method of flex-rigid multilayer printed wiring board |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06268339A true JPH06268339A (en) | 1994-09-22 |
| JP3064780B2 JP3064780B2 (en) | 2000-07-12 |
Family
ID=26336835
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33467893A Expired - Fee Related JP3064780B2 (en) | 1993-01-12 | 1993-12-28 | Manufacturing method of flex-rigid multilayer printed wiring board |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3064780B2 (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006140233A (en) * | 2004-11-10 | 2006-06-01 | Ibiden Co Ltd | Optical and electrical wiring board and device for optical communication |
| JP2006287007A (en) * | 2005-04-01 | 2006-10-19 | Cmk Corp | Multilayer printed wiring board and manufacturing method thereof |
| JP2006310544A (en) * | 2005-04-28 | 2006-11-09 | Ngk Spark Plug Co Ltd | Multilayer wiring board and its production process, multilayer wiring board structure |
| JP2006310541A (en) * | 2005-04-28 | 2006-11-09 | Ngk Spark Plug Co Ltd | Multilayer wiring board and its production process, multilayer wiring board structure and its production process |
| JP2007081408A (en) * | 2005-09-14 | 2007-03-29 | Samsung Electro-Mechanics Co Ltd | Printed circuit board for rigid-flexible package-on package (pop) and method for manufacturing the same |
| JP2007088229A (en) * | 2005-09-22 | 2007-04-05 | Daisho Denshi:Kk | Flex-rigid printed wiring board |
| JP2007109716A (en) * | 2005-10-11 | 2007-04-26 | Nippon Mektron Ltd | Process for producing printed board having cable portion |
| WO2007111236A1 (en) | 2006-03-24 | 2007-10-04 | Ibiden Co., Ltd. | Photoelectric wiring board, optical communication device and method for manufacturing optical communication device |
| US7729570B2 (en) | 2007-05-18 | 2010-06-01 | Ibiden Co., Ltd. | Photoelectric circuit board and device for optical communication |
| CN113503914A (en) * | 2021-06-29 | 2021-10-15 | 西北工业大学 | Preparation method of flexible sensor |
| EP4135489A4 (en) * | 2020-09-09 | 2023-12-27 | Shennan Circuits Co., Ltd. | Composite circuit board and manufacturing method therefor |
-
1993
- 1993-12-28 JP JP33467893A patent/JP3064780B2/en not_active Expired - Fee Related
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006140233A (en) * | 2004-11-10 | 2006-06-01 | Ibiden Co Ltd | Optical and electrical wiring board and device for optical communication |
| JP2006287007A (en) * | 2005-04-01 | 2006-10-19 | Cmk Corp | Multilayer printed wiring board and manufacturing method thereof |
| JP2006310544A (en) * | 2005-04-28 | 2006-11-09 | Ngk Spark Plug Co Ltd | Multilayer wiring board and its production process, multilayer wiring board structure |
| JP2006310541A (en) * | 2005-04-28 | 2006-11-09 | Ngk Spark Plug Co Ltd | Multilayer wiring board and its production process, multilayer wiring board structure and its production process |
| US7802358B2 (en) | 2005-09-14 | 2010-09-28 | Samsung Electro-Mechanics Co., Ltd. | Rigid-flexible printed circuit board manufacturing method for package on package |
| JP2007081408A (en) * | 2005-09-14 | 2007-03-29 | Samsung Electro-Mechanics Co Ltd | Printed circuit board for rigid-flexible package-on package (pop) and method for manufacturing the same |
| JP2007088229A (en) * | 2005-09-22 | 2007-04-05 | Daisho Denshi:Kk | Flex-rigid printed wiring board |
| JP2007109716A (en) * | 2005-10-11 | 2007-04-26 | Nippon Mektron Ltd | Process for producing printed board having cable portion |
| US7734125B2 (en) | 2006-03-24 | 2010-06-08 | Ibiden Co., Ltd. | Optoelectronic wiring board, optical communication device, and method of manufacturing the optical communication device |
| EP2000833A4 (en) * | 2006-03-24 | 2010-03-31 | Ibiden Co Ltd | Photoelectric wiring board, optical communication device and method for manufacturing optical communication device |
| JPWO2007111236A1 (en) * | 2006-03-24 | 2009-08-13 | イビデン株式会社 | Photoelectric wiring board, device for optical communication, and method for manufacturing device for optical communication |
| WO2007111236A1 (en) | 2006-03-24 | 2007-10-04 | Ibiden Co., Ltd. | Photoelectric wiring board, optical communication device and method for manufacturing optical communication device |
| US8311375B2 (en) | 2006-03-24 | 2012-11-13 | Ibiden Co., Ltd. | Optoelectronic wiring board, optical communication device, and method of manufacturing the optical communication device |
| US7729570B2 (en) | 2007-05-18 | 2010-06-01 | Ibiden Co., Ltd. | Photoelectric circuit board and device for optical communication |
| EP4135489A4 (en) * | 2020-09-09 | 2023-12-27 | Shennan Circuits Co., Ltd. | Composite circuit board and manufacturing method therefor |
| US12114436B2 (en) | 2020-09-09 | 2024-10-08 | Shennan Circuits Co., Ltd. | Composite circuit board and method of manufacturing the same |
| CN113503914A (en) * | 2021-06-29 | 2021-10-15 | 西北工业大学 | Preparation method of flexible sensor |
| CN113503914B (en) * | 2021-06-29 | 2023-11-17 | 西北工业大学 | A method for preparing a flexible sensor |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3064780B2 (en) | 2000-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5055321A (en) | Adhesive for electroless plating, printed circuit boards and method of producing the same | |
| KR100273089B1 (en) | Manufacturing method of multilayer printed wiring board and multilayer printed wiring board | |
| JP2547938B2 (en) | Photosensitive resin insulation | |
| JP3064780B2 (en) | Manufacturing method of flex-rigid multilayer printed wiring board | |
| JPS63126297A (en) | Multilayer printed interconnection board and manufacture of the same | |
| JPH08242064A (en) | Printed wiring board | |
| JP3138520B2 (en) | Multilayer printed wiring board and method of manufacturing the same | |
| JPH06260756A (en) | Manufacture of printed wiring board | |
| JP4199151B2 (en) | Adhesive and adhesive layer for printed wiring board | |
| JP2877993B2 (en) | Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board | |
| JP3090973B2 (en) | Method of forming adhesive layer for additive printed wiring board | |
| JP3261314B2 (en) | Method of manufacturing multilayer printed wiring board and multilayer printed wiring board | |
| JP3137483B2 (en) | Multilayer printed wiring board and method of manufacturing the same | |
| JP3420860B2 (en) | Method for roughening adhesive for electroless plating and method for manufacturing printed wiring board | |
| JPH06268380A (en) | Printed wiring board | |
| JP3007648B2 (en) | Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board | |
| JPH01166598A (en) | Multi-layer printed circuit board and manufacture therefor | |
| JP2832181B2 (en) | Photosensitive resin insulation | |
| JP3002591B2 (en) | Adhesive sheet, method for manufacturing printed wiring board using this adhesive sheet, and printed wiring board | |
| JPH10282659A (en) | Photosensitive resin composition for wiring board, adhesive for electroless plating and printed circuit board | |
| JP2877992B2 (en) | Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board | |
| JP3469214B2 (en) | Build-up multilayer printed wiring board | |
| JP3469146B2 (en) | Build-up multilayer printed wiring board | |
| JPH10107436A (en) | Printed wiring board and manufacturing method thereof | |
| JPH10107449A (en) | Method for manufacturing multi-layer printed wiring board |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20080512 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090512 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110512 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110512 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20120512 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20120512 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20130512 |
|
| LAPS | Cancellation because of no payment of annual fees |