[go: up one dir, main page]

JPH06270006A - Working of arcuate root groove of turbine moving blade - Google Patents

Working of arcuate root groove of turbine moving blade

Info

Publication number
JPH06270006A
JPH06270006A JP6018493A JP6018493A JPH06270006A JP H06270006 A JPH06270006 A JP H06270006A JP 6018493 A JP6018493 A JP 6018493A JP 6018493 A JP6018493 A JP 6018493A JP H06270006 A JPH06270006 A JP H06270006A
Authority
JP
Japan
Prior art keywords
cutting
arc
cutting tool
root groove
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6018493A
Other languages
Japanese (ja)
Inventor
Akihiko Harima
昭彦 張間
Kazuyuki Suzuki
和志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6018493A priority Critical patent/JPH06270006A/en
Publication of JPH06270006A publication Critical patent/JPH06270006A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/28Grooving workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/12Cutters specially designed for producing particular profiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

(57)【要約】 【目的】 タービン動翼の円弧根溝の切削仕上げを高能
率かつ高精度に行う。 【構成】 タービン動翼1における粗加工後の円弧根溝
2の切削仕上げ表面を4区域に分割し、切削工具3を2
度円弧状に往復動させて切削仕上げを行う構成にしてあ
り、それらの切込み方向は、切削仕上げしょうとする円
弧根溝の円弧の径方向とタービン動翼1の軸方向との合
成方向であり、各切削行程ごとに、左上方向9、左下方
向10、右上方向11及び右下方向12と、切込み方向
を異にさせている。例えば、被切削部13は、切込み方
向が左上方向9であるときの、軸中心線から上部に位置
する上部切刃7による切削仕上げ箇所を示している。
(57) [Summary] [Purpose] Highly efficient and highly accurate cutting of circular arc root grooves of turbine blades. [Structure] The surface of the turbine rotor blade 1 of the arc root groove 2 after rough machining is divided into 4 sections, and the cutting tool 3 is divided into 2 sections.
The cutting direction is the combined direction of the radial direction of the arc of the arc root groove to be cut and the axial direction of the turbine rotor blade 1. The cutting direction is set to be different for each cutting process, that is, the upper left direction 9, the lower left direction 10, the upper right direction 11, and the lower right direction 12. For example, the to-be-cut portion 13 shows a cutting finish portion by the upper cutting edge 7 located above the axial center line when the cutting direction is the upper left direction 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タービンディスクの外
周溝にタービン動翼の根元部を組み合わせるために設け
るタービン動翼の根元部の円弧根溝を切削仕上げするタ
ービン動翼円弧根溝加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for machining an arc root groove of a turbine rotor blade, which is provided to combine a root portion of a turbine rotor blade with an outer peripheral groove of a turbine disk by cutting and finishing an arc root groove of the root portion of the turbine rotor blade. Regarding

【0002】[0002]

【従来の技術】従来のタービン動翼円弧根溝加工方法
を、図5及び図6を用いて説明する。
2. Description of the Related Art A conventional turbine blade arc root groove machining method will be described with reference to FIGS.

【0003】図5は、タービンディスクの外周溝とター
ビン動翼の円弧根溝との組合せについての説明図であ
り、図5のうち、図5の(a)はタービンロータの斜視
図、図5の(b)は図5の(a)のA部拡大図、図5の(c)
は図5の(b)のB−B断面図である。
FIG. 5 is an explanatory view of a combination of an outer peripheral groove of a turbine disk and an arc root groove of a turbine rotor blade. In FIG. 5, (a) of FIG. 5 is a perspective view of a turbine rotor, and FIG. (B) is an enlarged view of part A of (a) of FIG. 5, (c) of FIG.
FIG. 6 is a sectional view taken along line BB in FIG.

【0004】また、図6は従来のタービン動翼円弧根溝
加工装置及び加工具の説明図であり、図6の(a)及び
(b)は平面図及び側面図、図6の(c)は図6の(b)の要
部の拡大図、図6の(d)は図6の(c)の矢視図である。
FIG. 6 is an explanatory view of a conventional turbine blade arc root groove processing device and processing tool.
6B is a plan view and a side view, FIG. 6C is an enlarged view of a main part of FIG. 6B, and FIG. 6D is an arrow view of FIG. 6C.

【0005】図5に示すように、タービン動翼1は、ロ
ータシャフト40に固着させてあるロータディスク41
のディスク外周溝42とタービン動翼1の根元部に設け
てある円弧根溝43とを組合わせることにより、ロータ
シャフト40と一体化させている。
As shown in FIG. 5, the turbine rotor blade 1 has a rotor disk 41 fixed to a rotor shaft 40.
The disk outer peripheral groove 42 and the circular arc root groove 43 provided at the root of the turbine rotor blade 1 are combined to be integrated with the rotor shaft 40.

【0006】ロータシャフト40の回転中、タービン動
翼1には遠心力が加わるが、この場合、遠心力は全てデ
ィスク外周溝42と円弧根溝43とが接触する面、すな
わちディスク外周溝と円弧根溝との接触面44で受け、
ディスク外周溝と円弧根溝との接触面44には、タービ
ン動翼1の1本当たりで数10トンにも及ぶ力が長期間
加わることになる。
While the rotor shaft 40 is rotating, a centrifugal force is applied to the turbine rotor blade 1. In this case, the centrifugal force is entirely applied to the surface where the disk outer peripheral groove 42 and the circular arc root groove 43 contact each other, that is, the disk outer peripheral groove and the circular arc. Received at the contact surface 44 with the root groove,
A force of several tens of tons per turbine moving blade 1 is applied to the contact surface 44 between the disk outer peripheral groove and the arc root groove for a long period of time.

【0007】このため、ロータシャフト40及びタービ
ン動翼1の各材質、並びに円弧根溝43の精度などにつ
いて、厳しい品質管理が行われている。
Therefore, strict quality control is performed on each material of the rotor shaft 40 and the turbine rotor blade 1 and the accuracy of the arc root groove 43.

【0008】特に、ディスク外周溝と円弧根溝との接触
面44に発生する応力の分布を均等化するため、ディス
ク外周溝と円弧根溝との接触面44における隣接の接触
面との間の寸法すなわちピッチ、及び円弧根溝43の円
弧は、それぞれミクロンオーダの精度で加工する必要が
ある。
In particular, in order to equalize the distribution of the stress generated in the contact surface 44 between the disk outer peripheral groove and the arc root groove, the contact surface 44 between the disk outer peripheral groove and the arc root groove is formed between the adjacent contact surfaces. The dimensions, that is, the pitch and the arc of the arc root groove 43 must be machined with an accuracy of the order of microns.

【0009】従来では、図6に示すように、総形エンド
ミル45に対して、往復動中心の回りを往復動するアー
ム48の先端部に設けた円弧送りテーブル47に取付け
たタービン動翼1を円弧送りするか、または、タービン
動翼1に対して、総形エンドミル45を取付けた主軸ヘ
ッド46を円弧送りするかによって、円弧根溝43が切
削されている。
Conventionally, as shown in FIG. 6, a turbine rotor blade 1 mounted on an arc feed table 47 provided at the tip of an arm 48 which reciprocates around a center of reciprocation with respect to a general-purpose end mill 45. The arc root groove 43 is cut depending on whether the arc feed is performed or the spindle head 46 to which the shaping end mill 45 is attached is fed to the turbine rotor blade 1 in the arc.

【0010】なお、図6の(c)には総形エンドミル45
の形状を示しており、49は切刃の最小径を、50は切
刃の最大径を、それぞれ表している。また、図6の(d)
には総形エンドミル45を他方向から見た切刃の形状を
示している。
In addition, in FIG. 6C, the form end mill 45 is shown.
In the figure, 49 represents the minimum diameter of the cutting edge, and 50 represents the maximum diameter of the cutting edge. Also, FIG. 6 (d)
Shows the shape of the cutting edge when the general-purpose end mill 45 is viewed from the other direction.

【0011】[0011]

【発明が解決しようとする課題】しかし、このような方
法により、タービン動翼の円弧根溝を切削する場合に、
次のような問題点があった。すなわち、 (1)総形エンドミルの切刃の最大径と最小径との比が
約4で、この比が大きい値となるため、切刃全部につい
て共通する適切な切削条件を得ることに無理があり、切
削条件を低切削諸元側での最適切削条件に合わせて切削
加工せざるを得ないため、加工能率が低下する。
However, in the case of cutting the arc root groove of the turbine rotor blade by such a method,
There were the following problems. That is, (1) the ratio between the maximum diameter and the minimum diameter of the cutting edge of the general-purpose end mill is about 4, and this ratio is a large value, so it is not possible to obtain appropriate cutting conditions common to all the cutting edges. Therefore, the cutting efficiency has to be reduced because the cutting conditions have to be adjusted according to the optimum cutting conditions on the low cutting specification side.

【0012】(2)総形エンドミル加工は、往き切削行
程だけの1パス加工であるため、切削抵抗が過大とな
り、切削振動が発生しやすい。また、加工精度を維持す
るために、微小切削送りとする場合には、加工能率が著
しく低下する。
(2) Since the general-purpose end mill processing is one-pass processing with only the forward cutting stroke, the cutting resistance becomes excessive and cutting vibration is likely to occur. In addition, in order to maintain the machining accuracy, when the minute cutting feed is used, the machining efficiency is significantly reduced.

【0013】本発明は、上記の実情に鑑みなされるもの
であり、タービン動翼における粗加工後の円弧根溝を、
高加工精度、かつ高い加工能率で切削仕上げする方法を
得ることを目的とする。
The present invention has been made in view of the above situation, in which an arc root groove after rough machining in a turbine rotor blade is
The purpose is to obtain a method for cutting and finishing with high processing accuracy and high processing efficiency.

【0014】[0014]

【課題を解決するための手段】上記目的は、次のように
して達成することができる。
The above object can be achieved as follows.

【0015】(1)タービンディスクの外周溝にタービ
ン動翼の根元部を組み合わせるために、タービン動翼の
根元部に設ける円弧根溝を切削加工するタービン動翼円
弧根溝加工方法において、粗加工後の円弧根溝の被切削
仕上げ表面を往き行程で切削する切刃と戻り行程で切削
する切刃とを互いに対角に備えた切削工具を、円弧根溝
における円弧の軌道上を往復動させることができ、かつ
円弧の径方向、及びタービン動翼の軸方向に位置調節が
可能な装置の刃物台に取付け、往き行程及び戻り行程の
各行程ごとに、円弧の径方向と、タービン動翼の軸方向
との位置を調節して切削工具に切込みを与え、円弧根溝
の切削仕上げを行うこと。
(1) Rough machining in a turbine blade arc root groove machining method for cutting an arc root groove provided in a root portion of a turbine rotor blade in order to combine a root portion of the turbine rotor blade with an outer peripheral groove of the turbine disk. A cutting tool equipped with a cutting edge that cuts the surface to be cut of the subsequent arc root groove in the forward stroke and a cutting edge that cuts in the return stroke in opposite directions reciprocates on the arc trajectory of the arc root groove. Can be mounted on a tool post of a device that can adjust the position in the radial direction of the circular arc and the axial direction of the turbine moving blade, and for each of the forward stroke and the return stroke, the radial direction of the circular arc and the turbine moving blade. Adjust the position of the tool and the axial direction to give a cut to the cutting tool and finish the cutting of the arc root groove.

【0016】(2)(1)において、粗加工後の前記円
弧根溝の被切削仕上げ表面を4区画に分割し、4区画の
1区画ずつを切削工具の往き行程及び戻り行程の各行程
ごとに切削し、切削工具を前記円弧の軌道上を2度往復
動させること。
(2) In (1), the surface to be cut of the arc root groove after rough machining is divided into four sections, and each section of the four sections is for each of the forward stroke and the return stroke of the cutting tool. And then reciprocating the cutting tool twice on the circular arc path.

【0017】(3)タービンディスクの外周溝にタービ
ン動翼の根元部を組み合わせるために、タービン動翼の
根元部に設ける円弧根溝を切削加工するタービン動翼円
弧根溝加工方法において、粗加工後の円弧根溝の被切削
仕上げ表面を往き行程で切削する切刃と戻り行程で切削
する切刃とを互いに対角に備えた切削工具(A)及び切削
工具(B)を準備し、切削工具(A)及び切削工具(B)共に
円弧根溝における円弧の軌道上を往復動させることがで
き、かつ円弧の径方向、及びタービン動翼の軸方向に位
置調節が可能な装置の刃物台に順次取付けられるように
し、往き行程及び戻り行程ごとに、切削工具(A)では円
弧の径方向、切削工具(B)ではタービン動翼の軸方向の
位置を調節して切込みを与えることにより、粗加工後の
円弧根溝の切削仕上げを行うこと。
(3) In a method for machining a circular arc root groove of a turbine rotor blade, the arc root groove provided in the root portion of the turbine rotor blade is cut to combine the outer peripheral groove of the turbine disk with the root portion of the turbine rotor blade. Prepare a cutting tool (A) and a cutting tool (B) that are diagonally provided with a cutting edge that cuts in the forward stroke and a cutting edge that cuts in the return stroke on the surface to be cut of the subsequent arc root groove. A tool rest of a device capable of reciprocating both the tool (A) and the cutting tool (B) on the circular arc trajectory of the circular arc root groove and adjusting the position in the radial direction of the circular arc and the axial direction of the turbine blade. The cutting tool (A) adjusts the radial position of the circular arc and the cutting tool (B) adjusts the axial position of the turbine rotor blade to make a cut for each forward stroke and return stroke. Cutting finish of arc root groove after rough machining It is carried out.

【0018】(4)(3)において、粗加工後の前記円
弧根溝の被切削仕上げ表面を4区画に分割し、4区画の
1区画ずつを切削工具(A)及び切削工具(B)の往き行程
及び戻り行程の各行程ごとに切削し、切削工具(A)及び
切削工具(B)を、円弧の軌道上をそれぞれ1度ずつ往復
動させること。
(4) In (3), the surface to be cut of the arc root groove after rough machining is divided into four sections, and each of the four sections is divided into a cutting tool (A) and a cutting tool (B). Cutting is performed for each of the forward stroke and the return stroke, and the cutting tool (A) and the cutting tool (B) are reciprocated once each on the circular orbit.

【0019】[0019]

【作用】本発明では、粗加工後の円弧根溝の被切削仕上
げ表面を4区画に分割し、各区画とも切削仕上げ時に、
円弧根溝の円弧の径方向、及びタービン動翼の軸方向の
位置を調節し、円弧の径方向とタービン動翼の軸方向と
の合成方向の切込みを与え、往き行程及び戻り行程の各
行程ごとにおいて1区画ずつを切削し、切削工具を2度
往復動することにより、粗加工後の円弧根溝の切削仕上
げを行う。
In the present invention, the surface to be cut of the arc root groove after rough machining is divided into four sections, and each section is
Adjusting the radial direction of the arc root groove and the axial position of the turbine blade, and making a cut in the combined direction of the radial direction of the arc and the axial direction of the turbine blade, each stroke of the forward stroke and the return stroke. Each section is cut, and the cutting tool is reciprocated twice to finish the arc root groove after rough machining.

【0020】このように、粗加工後の円弧根溝の被切削
仕上げ表面を、それぞれ異なる上記の合成4方向の切込
みを順次に与えて、小さい切削抵抗の下で円弧根溝の切
削仕上げを行うので、切削振動が発生せず、高加工精度
を維持でき、かつ切削仕上げ能率が向上する。
As described above, the cut surface of the arc root groove after the rough machining is sequentially provided with the different incisions in the above-described four synthetic directions, and the arc root groove is cut and finished under a small cutting resistance. Therefore, cutting vibration is not generated, high processing accuracy can be maintained, and cutting finishing efficiency is improved.

【0021】また、2種類の切削工具を用い、粗加工後
の円弧根溝の4区画に分割した被切削仕上げ表面を、一
方の切削工具では円弧根溝の円弧の径方向のみの切込み
を与えて、往き行程及び戻り行程の各行程において1区
画ずつを切削し、次いで他方の切削工具によりタービン
動翼の軸方向のみの切込みを与えて、往き行程及び戻り
行程の各行程において1区画ずつを切削して仕上げを行
う。
Further, by using two kinds of cutting tools, the surface to be cut divided into four sections of the arc root groove after rough machining is provided, and in one cutting tool, a cut is made only in the radial direction of the arc of the arc root groove. Then, one section is cut in each of the forward stroke and the return stroke, and then a cut is made only in the axial direction of the turbine blade by the other cutting tool, and one section is divided in each of the forward stroke and the return stroke. Cut and finish.

【0022】この場合は、切削仕上げの途中で、切削工
具を交換する必要があるが、上記の場合とは異なり、切
込み方向が合成方向をとらないので、切刃の形成が容易
となる利点を有する。
In this case, it is necessary to replace the cutting tool during the finishing of the cutting, but unlike the above case, the cutting direction does not take the combined direction, so that the cutting edge can be easily formed. Have.

【0023】[0023]

【実施例】以下、本発明の実施例を図1〜図4を用いて
説明する。図1は本発明の一実施例の切削仕上げ方法の
説明図であり、図1の(a)は切削仕上げ装置の平面図、
図1の(b)は図1の(a)の矢視図、図1の(c)は本発明
の一実施例の切削工具の縦断面図、図1の(d)は図1の
(c)のC−C断面図である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory view of a cutting finishing method according to an embodiment of the present invention. FIG. 1 (a) is a plan view of a cutting finishing device,
1B is a view in the direction of the arrow in FIG. 1A, FIG. 1C is a vertical cross-sectional view of a cutting tool according to an embodiment of the present invention, and FIG.
It is CC sectional drawing of (c).

【0024】また、図2は本発明の一実施例における切
削事例の説明図であり、図2の(a)は切削工具稼働時
の縦断面図、図2の(b)は切削開始時における切削工
具基準位置設定の説明図、図2の(c)及び(d)は切削工
具の往き工程における切削開始直前及び切削終了直後の
説明図、図2の(e)及び(f)は切削工具の戻り工程にお
ける切削開始直前及び切削終了直後の説明図である。
FIG. 2 is an explanatory view of a cutting example in one embodiment of the present invention. FIG. 2 (a) is a longitudinal sectional view when the cutting tool is in operation, and FIG. 2 (b) is when starting cutting. 2C is an explanatory view of setting the cutting tool reference position, FIGS. 2C and 2D are explanatory views immediately before and immediately after the start of cutting in the forward process of the cutting tool, and FIGS. 2E and 2F are cutting tools. FIG. 7 is an explanatory diagram immediately before the start of cutting and immediately after the end of cutting in the returning step of FIG.

【0025】図1の(a)及び(b)において、切削工具3
は、スイングアーム5の先端部に設置されている刃物台
4に取り付けられ、タービン動翼1の根元部における粗
加工後の円弧根溝2内を、切削工具3がこれから切削仕
上げしようとする円弧根溝43(図5参照)の円弧にで
きるだけ近づけた円弧の軌道で往復動できるように、刃
物台4に固定されている。
In FIGS. 1A and 1B, the cutting tool 3
Is attached to a tool rest 4 installed at the tip of the swing arm 5, and the arc in which the cutting tool 3 is about to finish cutting the arc root groove 2 after rough machining at the root of the turbine rotor blade 1 It is fixed to the tool rest 4 so that it can reciprocate in an arcuate path that is as close as possible to the arc of the root groove 43 (see FIG. 5).

【0026】すなわち、切削工具3が往復動する行程の
各始点において、スイングアーム5に対して刃物台4を
移動させ、切削工具3に所定の切込みを与えられるよう
にしている。
That is, at each starting point of the stroke in which the cutting tool 3 reciprocates, the tool rest 4 is moved with respect to the swing arm 5 so that the cutting tool 3 can be given a predetermined cut.

【0027】図1の(c)及び(d)に、切削工具3を示し
ている。切削工具3には、それらの図に示すように2個
の切刃が互いに対角に取付けられている。説明の便宜
上、図1の(c)の切削工具3の軸中心線を境として、そ
れより上部に位置する切刃を上部切刃、下部に位置する
切刃を下部切刃と呼ぶことにする。すなわち、図1の
(c)において、7は上部切刃、8は下部切刃を示してお
り、切削工具3は総形バイトとも称されるものである。
A cutting tool 3 is shown in FIGS. 1 (c) and 1 (d). The cutting tool 3 has two cutting edges diagonally attached to each other as shown in the drawings. For convenience of explanation, with the axis center line of the cutting tool 3 in FIG. 1 (c) as a boundary, the cutting edge located above it will be referred to as the upper cutting edge and the cutting edge located below will be referred to as the lower cutting edge. . That is, in FIG.
In (c), 7 indicates an upper cutting edge and 8 indicates a lower cutting edge, and the cutting tool 3 is also called a forming tool.

【0028】図2の(a)には、粗加工後の円弧根溝2の
切削仕上げ状況を示している。本実施例では、切削箇所
を4区域に分割し、切削工具3を2度往復動させて切削
仕上げを行うので、切削行程が往き行程及び戻り行程と
も2回ずつとなるが、いずれの行程においても、それぞ
れ切込み方向を異にする切込みを与えている。
FIG. 2 (a) shows the cutting finish of the arc root groove 2 after rough machining. In this embodiment, the cutting location is divided into four areas, and the cutting tool 3 is reciprocated twice to perform the cutting finish, so that the cutting stroke is performed twice in each of the forward stroke and the return stroke. In addition, each of the cuts has a different cut direction.

【0029】それらの切込み方向は、円弧根溝43の円
弧の径方向、及びタービン動翼1の軸方向の合成方向で
あり、合成方向は、図2の(a)における左上方向9、左
下方向10、右上方向11及び右下方向12の4方向で
ある。例えば、被切削部13は、切込み方向が左上方向
9であるときの上部切刃7による被切削箇所である。な
お、切込み方向の選定順序は、特に限定するものでな
く、与えられた切削工具3及び切削条件への対応が最適
であるように切込み方向の順序を選定している。図2の
(b)〜(f)には、切削工具3が往復動するときの、往き
行程及び戻り行程の各行程における、切削工具3による
切削仕上げ状況を示している。
The cutting directions are the combined direction of the radial direction of the arc of the arc root groove 43 and the axial direction of the turbine rotor blade 1. The combined directions are the upper left direction 9 and the lower left direction in FIG. 2 (a). There are four directions: 10, an upper right direction 11, and a lower right direction 12. For example, the cut portion 13 is a cut portion by the upper cutting edge 7 when the cutting direction is the upper left direction 9. The order of selecting the cutting directions is not particularly limited, and the order of the cutting directions is selected so that the given cutting tool 3 and cutting conditions can be optimally handled. Of FIG.
(b) to (f) show the cutting finish state by the cutting tool 3 in each of the forward stroke and the return stroke when the cutting tool 3 reciprocates.

【0030】すなわち、図2の(b)には、切削開始時に
おいて、切削工具3を、粗加工後の円弧根溝2内に挿入
し、切削工具3の中央点を工具設定基準位置18に位置
合わせしたときの状況を示している。挿入間隙量15
は、粗加工後根溝幅17と切削工具3の最大径との間の
半径差であり、切削工具3を粗加工後の動翼根溝2内に
挿入しやすくするために設けられているものである。し
たがって、切削工具3に切込みを与える場合、切込み量
19は、挿入間隙量15に仕上げ代16を加算した値と
なる。
That is, in FIG. 2B, at the start of cutting, the cutting tool 3 is inserted into the arc root groove 2 after rough machining, and the center point of the cutting tool 3 is set to the tool setting reference position 18. It shows the situation when alignment is performed. Insertion gap amount 15
Is a radius difference between the root groove width 17 after rough machining and the maximum diameter of the cutting tool 3, and is provided to facilitate insertion of the cutting tool 3 into the blade root groove 2 after rough machining. It is a thing. Therefore, when the cutting tool 3 is cut, the cut amount 19 has a value obtained by adding the finishing allowance 16 to the insertion gap amount 15.

【0031】図2の(c)の20は往き行程開始直前、図
2の(d)の21は往き行程終了直後、図2の(e)の22
は戻り行程開始直前、及び図2の(f)の23は戻り行程
終了直後における粗加工後の円弧根溝2に対する切削工
具3の中央点の位置を、それぞれ示している。
Reference numeral 20 in FIG. 2 (c) is immediately before the start of the forward stroke, 21 in FIG. 2 (d) is immediately after the end of the forward stroke, and 22 in FIG. 2 (e).
Indicates the position of the center point of the cutting tool 3 with respect to the arc-shaped root groove 2 after rough machining immediately before the start of the return stroke and 23 in (f) of FIG. 2 immediately after the end of the return stroke.

【0032】すなわち、1度目の切削工程では、往き行
程及び戻り行程の各行程において、図2の(a)における
左上方向9、左下方向10、右上方向11及び右下方向
12の4方向のうちの、いづれか1つを重複することが
ないように選択し、2度目の切削工程では、往き行程及
び戻り行程の各行程において、残りの切込み方向のうち
の1つを重複することがないように選択する。このよう
にして、4区画の被切削仕上げ表面のうちの1区画ずつ
を、順次切削仕上げしている。
That is, in the first cutting process, in each of the forward stroke and the return stroke, among the four directions of the upper left direction 9, the lower left direction 10, the upper right direction 11 and the lower right direction 12 in FIG. , So that one of the remaining cutting directions is not overlapped in each of the forward stroke and the return stroke in the second cutting process. select. In this way, one of the four sections of the surface to be cut is successively cut and finished.

【0033】本実施例の場合、被切削仕上げ表面を4区
画に分割するため、往き行程及び戻り行程の各行程にお
ける切削量は少なく、切削振動が著しく小さくなるの
で、高加工精度が得られる。また、加工速度を高めるこ
とができるので、加工能率を向上させることができる。
In the case of this embodiment, since the surface to be cut is divided into four sections, the amount of cutting in each of the forward stroke and the return stroke is small, and the cutting vibration is significantly reduced, so that high machining accuracy can be obtained. Moreover, since the processing speed can be increased, the processing efficiency can be improved.

【0034】次に、本発明の他の実施例を、図3及び図
4を用いて説明する。
Next, another embodiment of the present invention will be described with reference to FIGS.

【0035】図3は軸方向切削の説明図であり、図3の
(a)は切削工具稼働時の縦断面図、図3の(b)は図3の
(a)のE−E断面図である。また、図4は径方向切削の
説明図であり、図4の(a)は切削工具稼働時の縦断面
図、図4の(b)は図4の(a)のP矢視図である。
FIG. 3 is an explanatory view of axial cutting, and FIG.
(a) is a longitudinal sectional view of the cutting tool in operation, (b) of FIG. 3 is of FIG.
It is an EE sectional view of (a). 4 is an explanatory view of the radial direction cutting, FIG. 4 (a) is a vertical cross-sectional view when the cutting tool is in operation, and FIG. 4 (b) is a P arrow view of FIG. 4 (a). .

【0036】本実施例が、前述の実施例と比較して異な
る点は、前述の実施例では、切削工具が1個であり、切
刃の切込み方向が、円弧根溝43の円弧の径方向とター
ビン動翼1の軸方向との合成方向であったのに対し、本
実施例では、切刃を異にする2個の切削工具を用い、切
刃の切込み方向が、2個の切削工具のうちの1個が円弧
根溝43の円弧の径方向、他の1個がタービン動翼1の
軸方向となるように、切削工具により分けていることで
ある。
The present embodiment is different from the above-mentioned embodiments in that only one cutting tool is used and the cutting direction of the cutting edge is the radial direction of the arc of the arc root groove 43. In contrast to the combined direction of the turbine blade 1 and the axial direction of the turbine blade 1, in the present embodiment, two cutting tools having different cutting edges are used, and the cutting directions of the cutting edges are two. One of them is divided by the cutting tool so that one is in the radial direction of the arc of the arc root groove 43 and the other is in the axial direction of the turbine rotor blade 1.

【0037】図3の(a)には、切刃の切込み方向がター
ビン動翼1の軸方向であるときの、粗加工後の円弧根溝
2を切削仕上げしている状況を、図3の(b)には、その
ときに用いる軸方向切削工具24の切刃の形状を、それ
ぞれ示している。また、切刃の切込み方向がタービン動
翼1の軸方向の場合、切込み方向には図3の(a)に示す
上方向25と下方向26との2方向があるが、このうち
図3の(a)は上方向25の場合を示している。
FIG. 3A shows a situation in which the arc root groove 2 after rough machining is cut and finished when the cutting direction of the cutting blade is the axial direction of the turbine rotor blade 1. (b) shows the shape of the cutting edge of the axial cutting tool 24 used at that time, respectively. Further, when the cutting direction of the cutting blade is the axial direction of the turbine rotor blade 1, there are two cutting directions, that is, the upward direction 25 and the downward direction 26 shown in FIG. (a) shows the case of the upward direction 25.

【0038】すなわち、図3の(a)の軸方向切削工具2
4における軸中心線から上部に位置する切刃を上部切刃
27、下部に位置する切刃を下部切刃28とした場合、
図3の(a)は、上方向25に切込みを与え、上部切刃2
7を用いて被切削部29を切削仕上げしている場合であ
る。この切削仕上げ終了後、下方向26へ切込みを与
え、切刃28を用いて反対側を加工している。
That is, the axial cutting tool 2 shown in FIG.
When the cutting edge located above the axis center line in 4 is the upper cutting edge 27 and the lower cutting edge is the lower cutting edge 28,
In FIG. 3 (a), the upper cutting edge 2
This is the case where the cut portion 29 is cut and finished by using No. 7. After the completion of this cutting finish, a cut is made in the downward direction 26, and the opposite side is processed using the cutting edge 28.

【0039】次いで、軸方向切削工具を用いて、残りの
被切削仕上げ表面を仕上げるが、それについて説明す
る。
Next, an axial cutting tool is used to finish the remaining surface to be cut, which will be described.

【0040】図4の(a)には、切刃の切込み方向が円弧
根溝43の円弧の径方向であるときの、粗加工後の円弧
根溝2を切削仕上げしている状況を、図4の(b)には、
そのときに用いる径方向切削工具30の切刃の形状を、
それぞれ示している。
FIG. 4A shows a situation in which the arc root groove 2 after rough machining is cut and finished when the cutting direction of the cutting edge is the radial direction of the arc of the arc root groove 43. In (b) of 4,
The shape of the cutting edge of the radial cutting tool 30 used at that time is
Shown respectively.

【0041】このときは、径方向切削工具30を用い、
切込み方向は、図4の(a)の左方向31と右方向32の
2方向となる。すなわち、まず左方向31に切込みを与
え、切刃部33、34及び35により、被切削部36を
切削仕上げし、次いで右方向32に切込みを与えて、切
刃部37、38などにより、被切削部39を切削仕上げ
している。
At this time, the radial cutting tool 30 is used,
The cutting direction is two directions, that is, the left direction 31 and the right direction 32 of FIG. That is, first, a cut is made in the left direction 31, the cut part 36 is cut and finished by the cutting blade parts 33, 34, and 35, and then a cut is made in the right direction 32, and the cut blade parts 37, 38, etc. The cutting portion 39 is cut and finished.

【0042】この方法は、切削仕上げの途中で軸方向切
削工具24を径方向切削工具30と交換する必要がある
が、これらの切削工具の切込み方向が前述の実施例のよ
うな合成方向とならないために、切削工具の切刃の形成
が容易であり、切削工具を安価に製作できる利点を有し
ている。
In this method, it is necessary to replace the axial cutting tool 24 with the radial cutting tool 30 in the course of cutting finishing, but the cutting directions of these cutting tools are not the combined directions as in the above-mentioned embodiment. Therefore, the cutting edge of the cutting tool can be easily formed, and the cutting tool can be manufactured at low cost.

【0043】[0043]

【発明の効果】本方法によれば、タービンブレード動翼
円弧根溝を切削仕上げする場合、切削切刃全般について
最適な切削諸元で切削仕上げを行うことができ、加工能
率が向上する。また、切込み量を自由に設定できるた
め、仕上げ代が大きい場合でも最適切込みで切削するこ
とが可能であり、高加工精度が得られ、円弧根溝の切削
仕上げに対する信頼性が向上する。
According to the method of the present invention, in the case of cutting and finishing the arc root groove of the turbine blade moving blade, it is possible to carry out the cutting and finishing with the optimum cutting specifications for all the cutting edges, and the working efficiency is improved. Further, since the depth of cut can be freely set, even if the finishing allowance is large, it is possible to perform cutting with the most appropriate depth, high machining accuracy is obtained, and reliability of the arc root groove for cutting finish is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の切削仕上げ方法の説明図で
ある。
FIG. 1 is an explanatory diagram of a cutting finishing method according to an embodiment of the present invention.

【図2】同じく切削事例の説明図である。FIG. 2 is also an explanatory diagram of a cutting example.

【図3】本発明の他の実施例における軸方向切削の説明
図である。
FIG. 3 is an explanatory diagram of axial cutting according to another embodiment of the present invention.

【図4】同じく径方向切削の説明図である。FIG. 4 is likewise an explanatory view of radial cutting.

【図5】ディスク外周溝と動翼の円弧根溝との組合わせ
部の説明図である。
FIG. 5 is an explanatory diagram of a combined portion of a disk outer peripheral groove and an arc root groove of a moving blade.

【図6】従来のタービン動翼円弧根溝加工装置及び加工
具の説明図である。
FIG. 6 is an explanatory view of a conventional turbine blade arc root groove processing device and processing tool.

【符号の説明】[Explanation of symbols]

1…タービン動翼、2…粗加工後の円弧根溝、3…切削
工具、4…刃物台、5…スイングアーム、6…クランク
機構、7…上部切刃、8…下部切刃、9…左上方向、1
0…左下方向、11…右上方向、12…右下方向、13
…被切削部、14…工具最大幅、15…挿入間隙量、1
6…仕上げ代、17…粗加工後根溝幅、18…工具設定
基準位置、19…切込み量、20…往き行程の開始直前
の工具位置、21…往き行程の終了直後の工具位置、2
2…戻り行程の開始直前の工具位置、23…戻り往き行
程の終了直後の工具位置、24…軸方向切削工具、25
…上方向、26…下方向、27…上部切刃、28…下部
切刃、29…被切削部、30…径方向切削工具、31…
左方向、32…右方向、33、34、35…左方向切込
み時の切刃、36…被切削部、37、38…右方向切込
み時の切刃、39…被切削部、40…ロータシャフト、
41…ロータディスク、42…ディスク外周溝、43…
円弧根溝、44…ディスク外周溝と円弧根溝との接触
面、45…総形エンドミル、46…主軸ヘッド、47…
円弧送りテーブル、48…アーム、49…切刃の最小
径、50…切刃の最大径。
DESCRIPTION OF SYMBOLS 1 ... Turbine blade, 2 ... Arc root groove after rough machining, 3 ... Cutting tool, 4 ... Tool rest, 5 ... Swing arm, 6 ... Crank mechanism, 7 ... Upper cutting edge, 8 ... Lower cutting edge, 9 ... Top left direction, 1
0 ... lower left direction, 11 ... upper right direction, 12 ... lower right direction, 13
… Cut part, 14… Tool maximum width, 15… Insertion gap amount, 1
6 ... Finishing allowance, 17 ... Root groove width after rough machining, 18 ... Tool setting reference position, 19 ... Depth of cut, 20 ... Tool position immediately before the start of the forward stroke, 21 ... Tool position immediately after the end of the forward stroke, 2
2 ... Tool position immediately before the start of the return stroke, 23 ... Tool position immediately after the end of the return stroke, 24 ... Axial cutting tool, 25
... upward, 26 ... downward, 27 ... upper cutting edge, 28 ... lower cutting edge, 29 ... cutting portion, 30 ... radial cutting tool, 31 ...
Left direction, 32 ... Right direction, 33, 34, 35 ... Left cutting edge cutting edge, 36 ... Cutting portion, 37, 38 ... Right cutting edge cutting edge, 39 ... Cutting portion, 40 ... Rotor shaft ,
41 ... Rotor disk, 42 ... Disk outer peripheral groove, 43 ...
Arc root groove, 44 ... Contact surface between disk outer peripheral groove and arc root groove, 45 ... General-purpose end mill, 46 ... Spindle head, 47 ...
Arc feed table, 48 ... Arm, 49 ... Minimum diameter of cutting edge, 50 ... Maximum diameter of cutting edge.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タービンディスクの外周溝にタービン動
翼の根元部を組み合わせるために、前記タービン動翼の
根元部に設ける円弧根溝を切削加工するタービン動翼円
弧根溝加工方法において、粗加工後の前記円弧根溝の被
切削仕上げ表面を往き行程で切削する切刃と戻り行程で
切削する切刃とを互いに対角に備えた切削工具を、前記
円弧根溝における円弧の軌道上を往復動させることがで
き、かつ前記円弧の径方向、及び前記タービン動翼の軸
方向に位置調節が可能な装置の刃物台に取付け、前記往
き行程及び前記戻り行程の各行程ごとに、前記円弧の径
方向と、前記タービン動翼の軸方向との位置を調節して
前記切削工具に切込みを与え、前記円弧根溝の切削仕上
げを行うことを特徴とするタービン動翼円弧根溝加工方
法。
1. A method for machining a circular arc root groove of a turbine rotor blade, comprising: cutting a circular arc root groove provided at a root portion of the turbine rotor blade to combine a root portion of the turbine rotor blade with an outer peripheral groove of the turbine disk. A cutting tool provided with a cutting edge that cuts the surface to be cut of the arc root groove in the forward stroke and a cutting edge that cuts in the return stroke diagonally, and reciprocates on the arc trajectory of the arc root groove. It is attached to a tool rest of a device that can be moved and the position of which can be adjusted in the radial direction of the circular arc and the axial direction of the turbine rotor blade, and the arc of the circular arc can be adjusted for each of the forward stroke and the return stroke. A method for machining an arc root groove of a turbine blade, which comprises: adjusting a position between a radial direction and an axial direction of the turbine blade to give a cut to the cutting tool to finish the cutting of the arc root groove.
【請求項2】 前記粗加工後の前記円弧根溝の被切削仕
上げ表面を4区画に分割し、前記4区画の1区画ずつを
前記切削工具の前記往き行程及び前記戻り行程の各行程
ごとに切削し、前記切削工具を前記円弧の軌道上を2度
往復動させる請求項1記載のタービン動翼円弧根溝加工
方法。
2. The surface to be cut of the arc root groove after the rough machining is divided into four sections, and one section of each of the four sections is provided for each of the forward stroke and the return stroke of the cutting tool. The method for machining an arc root groove of a turbine rotor blade according to claim 1, wherein the cutting tool is cut and the cutting tool is reciprocated twice on an orbit of the arc.
【請求項3】 タービンディスクの外周溝にタービン動
翼の根元部を組み合わせるために、前記タービン動翼の
根元部に設ける円弧根溝を切削加工するタービン動翼円
弧根溝加工方法において、粗加工後の前記円弧根溝の被
切削仕上げ表面を往き行程で切削する切刃と戻り行程で
切削する切刃とを互いに対角に備えた切削工具(A)及び
切削工具(B)を準備し、前記切削工具(A)及び前記切削
工具(B)共に前記円弧根溝における円弧の軌道上を往復
動させることができ、かつ前記円弧の径方向、及び前記
タービン動翼の軸方向に位置調節が可能な装置の刃物台
に順次取付けられるようにし、前記往き行程及び前記戻
り行程ごとに、前記切削工具(A)では前記円弧の径方
向、前記切削工具(B)では前記タービン動翼の軸方向の
位置を調節して切込みを与えることにより、前記粗加工
後の前記円弧根溝の切削仕上げを行うことを特徴とする
タービン動翼円弧根溝加工方法。
3. A turbine rotor blade arc root groove machining method for cutting an arc root groove provided at a root portion of a turbine rotor blade in order to combine a root portion of a turbine rotor blade with an outer peripheral groove of a turbine disk. A cutting tool (A) and a cutting tool (B) provided with a cutting edge that cuts the surface to be cut of the arc root groove afterwards in a forward stroke and a cutting edge that cuts in a return stroke are diagonally provided, Both the cutting tool (A) and the cutting tool (B) can reciprocate on the circular arc orbit in the circular arc root groove, and the position can be adjusted in the radial direction of the circular arc and the axial direction of the turbine blade. The cutting tool (A) in the radial direction of the cutting tool (A) and the cutting tool (B) in the axial direction of the turbine blade for each of the forward stroke and the return stroke. Adjust the position of and make a cut By performing the cutting, the arc root groove after the rough machining is cut and finished.
【請求項4】 前記粗加工後の前記円弧根溝の被切削仕
上げ表面を4区画に分割し、前記4区画の1区画ずつを
前記切削工具(A)及び前記切削工具(B)の前記往き行程
及び前記戻り行程の各行程ごとに切削し、前記切削工具
(A)及び前記切削工具(B)を、前記円弧の軌道上をそれ
ぞれ1度ずつ往復動させる請求項3記載のタービン動翼
円弧根溝加工方法。
4. The surface to be cut of the arc-shaped root groove after the rough machining is divided into four sections, and each section of the four sections is used for the cutting tool (A) and the cutting tool (B). The cutting tool is cut after each stroke of the stroke and the return stroke.
The turbine blade arc root groove machining method according to claim 3, wherein (A) and the cutting tool (B) are reciprocated once each on the orbit of the arc.
JP6018493A 1993-03-19 1993-03-19 Working of arcuate root groove of turbine moving blade Pending JPH06270006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6018493A JPH06270006A (en) 1993-03-19 1993-03-19 Working of arcuate root groove of turbine moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6018493A JPH06270006A (en) 1993-03-19 1993-03-19 Working of arcuate root groove of turbine moving blade

Publications (1)

Publication Number Publication Date
JPH06270006A true JPH06270006A (en) 1994-09-27

Family

ID=13134827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6018493A Pending JPH06270006A (en) 1993-03-19 1993-03-19 Working of arcuate root groove of turbine moving blade

Country Status (1)

Country Link
JP (1) JPH06270006A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007382B2 (en) * 2003-07-24 2006-03-07 United Technologies Corporation Slot machining
WO2007052553A1 (en) 2005-11-01 2007-05-10 Honda Motor Co., Ltd. Method of machining work with offset tool
CN100402209C (en) * 2006-07-10 2008-07-16 潘毅 Turbine blade reverse-T shaped blade bottom arc machining method
JP2008213127A (en) * 2007-03-07 2008-09-18 Toshiba Corp Tab groove processing method
WO2009031311A1 (en) * 2007-09-06 2009-03-12 Kabushiki Kaisha Toshiba Grooving work method, and grooving work apparatus
WO2010013319A1 (en) * 2008-07-30 2010-02-04 オーエスジー株式会社 Cutting method for tree-shaped groove and cutting rotary tool
CN101780560A (en) * 2010-04-12 2010-07-21 如皋透平叶片制造有限公司 Blade double inverted T-shaped blade root slot milling cutter of steam turbine
US7846010B2 (en) 2008-09-10 2010-12-07 United Technologies Corporation Notched grind wheel and method to manufacture a rotor blade retention slot
CN103143758A (en) * 2013-03-14 2013-06-12 哈尔滨汽轮机厂有限责任公司 Blade root slope processing method of turbine medium-pressure first-stage movable blade
JP2013532248A (en) * 2010-05-27 2013-08-15 スネクマ Method for machining grooves in a turbine disk of a turbine engine
CN103639494A (en) * 2013-11-18 2014-03-19 四川成发航空科技股份有限公司 Method used for processing aeroengine guide vane small lock plate
JP2015211989A (en) * 2014-05-01 2015-11-26 山崎金属産業株式会社 Blade part processing device for wing material work-piece and blade part processing method
CN105397163A (en) * 2015-11-01 2016-03-16 四川泛华航空仪表电器有限公司 Method for numerical control machining of impeller by utilization of macroprogram
CN105414628A (en) * 2015-10-09 2016-03-23 滁州品之达电器科技有限公司 Numerical control grooving machine
RU2580254C2 (en) * 2011-03-11 2016-04-10 Альстом Текнолоджи Лтд Production of steam turbine diaphragm
CN107570807A (en) * 2017-10-12 2018-01-12 无锡透平叶片有限公司 It is a kind of to replace the method for rough milling shaping tooth form knife rough milling blade root tenon tooth
CN109047876A (en) * 2018-08-22 2018-12-21 苏州广型模具有限公司 A kind of seal groove molding cutter
CN111552234A (en) * 2020-05-12 2020-08-18 广州达意隆包装机械股份有限公司 Processing technology for four-axis linkage processing of sealing guide rail of bottle blowing machine

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007382B2 (en) * 2003-07-24 2006-03-07 United Technologies Corporation Slot machining
US8014893B2 (en) 2005-11-01 2011-09-06 Honda Motor Co., Ltd. Method of machining workpiece with offset tool
WO2007052553A1 (en) 2005-11-01 2007-05-10 Honda Motor Co., Ltd. Method of machining work with offset tool
JP2007144610A (en) * 2005-11-01 2007-06-14 Honda Motor Co Ltd Workpiece machining method with offset tool
CN100402209C (en) * 2006-07-10 2008-07-16 潘毅 Turbine blade reverse-T shaped blade bottom arc machining method
JP2008213127A (en) * 2007-03-07 2008-09-18 Toshiba Corp Tab groove processing method
WO2009031311A1 (en) * 2007-09-06 2009-03-12 Kabushiki Kaisha Toshiba Grooving work method, and grooving work apparatus
JP2009061549A (en) * 2007-09-06 2009-03-26 Toshiba Corp Groove cutting method and groove cutting apparatus
US8579559B2 (en) 2007-09-06 2013-11-12 Kabushiki Kaisha Toshiba Grooving work method and grooving work apparatus
CN102089106A (en) * 2008-07-30 2011-06-08 Osg株式会社 Method of cutting tree-shaped groove and rotary cutting tool
CN102089106B (en) 2008-07-30 2013-05-15 Osg株式会社 Method and rotary cutting tool for cutting tree-shaped groove
JP5230739B2 (en) * 2008-07-30 2013-07-10 オーエスジー株式会社 Cutting method of tree-like groove and cutting rotary tool
US8511949B2 (en) 2008-07-30 2013-08-20 Osg Corporation Method of cutting tree-shaped groove and rotary cutting tool
WO2010013319A1 (en) * 2008-07-30 2010-02-04 オーエスジー株式会社 Cutting method for tree-shaped groove and cutting rotary tool
US7846010B2 (en) 2008-09-10 2010-12-07 United Technologies Corporation Notched grind wheel and method to manufacture a rotor blade retention slot
US8313358B2 (en) 2008-09-10 2012-11-20 United Technologies Corporation Notched grind wheel and method to manufacture a rotor blade retention slot
CN101780560A (en) * 2010-04-12 2010-07-21 如皋透平叶片制造有限公司 Blade double inverted T-shaped blade root slot milling cutter of steam turbine
JP2013532248A (en) * 2010-05-27 2013-08-15 スネクマ Method for machining grooves in a turbine disk of a turbine engine
RU2580254C2 (en) * 2011-03-11 2016-04-10 Альстом Текнолоджи Лтд Production of steam turbine diaphragm
US9604323B2 (en) 2011-03-11 2017-03-28 General Electric Technology Gmbh Method of fabricating a steam turbine deflector
CN103143758A (en) * 2013-03-14 2013-06-12 哈尔滨汽轮机厂有限责任公司 Blade root slope processing method of turbine medium-pressure first-stage movable blade
CN103639494B (en) * 2013-11-18 2016-09-14 四川成发航空科技股份有限公司 A kind of method processing the little jam plate of aero-engine guide vane
CN103639494A (en) * 2013-11-18 2014-03-19 四川成发航空科技股份有限公司 Method used for processing aeroengine guide vane small lock plate
JP2015211989A (en) * 2014-05-01 2015-11-26 山崎金属産業株式会社 Blade part processing device for wing material work-piece and blade part processing method
CN105414628A (en) * 2015-10-09 2016-03-23 滁州品之达电器科技有限公司 Numerical control grooving machine
CN105397163A (en) * 2015-11-01 2016-03-16 四川泛华航空仪表电器有限公司 Method for numerical control machining of impeller by utilization of macroprogram
CN107570807A (en) * 2017-10-12 2018-01-12 无锡透平叶片有限公司 It is a kind of to replace the method for rough milling shaping tooth form knife rough milling blade root tenon tooth
CN109047876A (en) * 2018-08-22 2018-12-21 苏州广型模具有限公司 A kind of seal groove molding cutter
CN111552234A (en) * 2020-05-12 2020-08-18 广州达意隆包装机械股份有限公司 Processing technology for four-axis linkage processing of sealing guide rail of bottle blowing machine
CN111552234B (en) * 2020-05-12 2021-08-20 广州达意隆包装机械股份有限公司 Processing technology for four-axis linkage processing of sealing guide rail of bottle blowing machine

Similar Documents

Publication Publication Date Title
JPH06270006A (en) Working of arcuate root groove of turbine moving blade
US6905312B2 (en) Method of manufacturing an integral rotor blade disk and corresponding disk
EP1944109B1 (en) Method of machining workpiece with offset tool
EP3275591B1 (en) Machine tool and control device for said machine tool
KR100494182B1 (en) Manufacture method of hair clipper blade
JPH0898Y2 (en) Circular saw with carbide tip
JP3720362B2 (en) Saw blade tooth profile and method therefor
EP1683597A1 (en) Method of processing a semi-finished product for the production of a rotor with integral blades
KR100673964B1 (en) Electric Discharge Machining Method for Turbine Blades and Electric Discharge Machining Apparatus Applied to the Turbine Blade
JP4189878B2 (en) Manufacturing method of bevel gear forging die
JP4765533B2 (en) Thread cutting tool and thread processing device
JPH0465739B2 (en)
JP2002192417A (en) Grooving apparatus and grooving method using this grooving apparatus
CN101142046B (en) Tool and machine for machining operations posing an inverse operation risk
JP4354091B2 (en) Turbine rotor blade groove cutting tool and turbine rotor blade groove cutting method
CN100556625C (en) The sharp undercutter and the manufacturing of undercutter
JPH0155930B2 (en)
JP7143186B2 (en) Parts manufacturing method, processing equipment and parts
RU2248878C1 (en) Trying plane
CN117047193B (en) A method for grinding the butt-weld groove of a bimetallic band saw blade
JPS61219535A (en) Manufacture of blanking die
CN117817276A (en) Nozzle blade machining method
JP2002361513A (en) Punching method
JPH0985534A (en) Deburring tool
JP2002361512A (en) Punching method