[go: up one dir, main page]

JPH06280117A - Heating furnace for graphite fiber production - Google Patents

Heating furnace for graphite fiber production

Info

Publication number
JPH06280117A
JPH06280117A JP6663393A JP6663393A JPH06280117A JP H06280117 A JPH06280117 A JP H06280117A JP 6663393 A JP6663393 A JP 6663393A JP 6663393 A JP6663393 A JP 6663393A JP H06280117 A JPH06280117 A JP H06280117A
Authority
JP
Japan
Prior art keywords
heating element
coating layer
resistance heating
heating furnace
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6663393A
Other languages
Japanese (ja)
Inventor
Akira Okuda
章 奥田
Masayoshi Washiyama
正芳 鷲山
Seiji Tanaka
清次 田中
Tomihiro Ishida
富弘 石田
Shunei Sekido
俊英 関戸
Hideo Saruyama
秀夫 猿山
Yoshiki Masaki
孝樹 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6663393A priority Critical patent/JPH06280117A/en
Publication of JPH06280117A publication Critical patent/JPH06280117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Resistance Heating (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To prolong the life of the resistance heater element by covering the cylindrical heating resistor made of graphite with a high-melting material on its surface. CONSTITUTION:The heating resistor 1 of graphite cylinder for heating yarn Y is covered with a high-melting material 2 melting over 2800 deg.C and having a coefficient of thermal expansion from equal to till less than 2.0 times that of the heater material such as W, Ta, HfC, TaC, NbC, VC, SiC, HfN, TaN, ZrN, HfB2, TaB2, NbB2, WB, TiB2). The outside surface of the covering layer is protected with a carbon yarn layer 3 to inhibit or prevent the covering layer 2 from being deteriorated or peeled. The covering layer is formed by plasma- spraying or vacuum-spraying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は黒鉛繊維製造用加熱炉に
関するものである。さらに詳細には、高物性の黒鉛繊維
を連続的に効率よく製造するための黒鉛繊維製造用加熱
炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace for producing graphite fiber. More specifically, the present invention relates to a heating furnace for producing graphite fibers, which is for producing graphite fibers having high physical properties continuously and efficiently.

【0002】[0002]

【従来の技術】従来、炭素繊維等の炭素材料や、セラミ
ックス系材料等の各種工業用素材の焼成に用いられる高
温加熱炉として抵抗炉、誘導炉、アーク炉、プラズマ炉
等の数多くの加熱炉が用いられているが、特に黒鉛を抵
抗発熱体とする抵抗炉であるタンマン炉形式の加熱炉
(以下、タンマン式加熱炉という)は、その加熱手段が
比較的単純であるため、上記工業用素材の熱処理用とし
て広く使用されている。
2. Description of the Related Art Conventionally, a large number of heating furnaces such as resistance furnaces, induction furnaces, arc furnaces and plasma furnaces have been used as high temperature heating furnaces for firing carbon materials such as carbon fibers and various industrial materials such as ceramic materials. In particular, a heating furnace of the Tammann furnace type (hereinafter referred to as a “Tanman heating furnace”), which is a resistance furnace using graphite as a resistance heating element, has a relatively simple heating means. Widely used for heat treatment of materials.

【0003】このタンマン式加熱炉を用いて少なくとも
2000℃以上の高温加熱を行うには、黒鉛からなる円
筒状の抵抗発熱体に電流を通じ、発生するジュール熱に
より、抵抗発熱体内部に静置または連続的に通過する被
加熱処理物を加熱焼成するのであるが、この加熱処理
は、通常、窒素やアルゴン等の不活性ガス中あるいは減
圧真空下で行われる。
In order to perform high temperature heating of at least 2000 ° C. or higher using this Tammann type heating furnace, an electric current is passed through a cylindrical resistance heating element made of graphite, and Joule heat is generated to allow the resistance heating element to stand still or inside. The article to be heat-treated which continuously passes is heated and calcined. This heat treatment is usually carried out in an inert gas such as nitrogen or argon or under reduced pressure vacuum.

【0004】この黒鉛からなる抵抗発熱体は、金属材料
やセラミックス系材料の抵抗発熱体では実用に供し得な
い2000〜3000℃の高温領域においても、溶融、
分解等を起こさないので、抵抗発熱体として十分その機
能を発揮し、かつ比較的安価な材料ではあるが、前述の
高温下で長時間使用すると徐々に減耗、劣化するので継
続使用が困難となる欠点があった。特に高性能の黒鉛繊
維を製造するためには2500℃以上の高温加熱が必要
であり、この温度領域では抵抗発熱体の減耗劣化が一層
著しいものとなる。
The resistance heating element made of this graphite melts even in a high temperature range of 2000 to 3000 ° C., which cannot be practically used in the resistance heating element made of a metal material or a ceramic material.
Since it does not cause decomposition, it functions sufficiently as a resistance heating element, and it is a relatively inexpensive material, but if it is used for a long time at the above-mentioned high temperature, it gradually wears out and deteriorates, making continuous use difficult. There was a flaw. Particularly, in order to produce a high-performance graphite fiber, it is necessary to heat it at a high temperature of 2500 ° C. or higher, and the wear deterioration of the resistance heating element becomes more remarkable in this temperature range.

【0005】すなわち、抵抗発熱体の減耗、劣化により
肉厚が薄くなると、その部分の電気抵抗が局部的に高く
なって加速度的に減耗が促進し、さらには発熱密度の変
化に伴う炉内の温度分布の変化を来たすため、焼成した
製品の品質安定に対する阻害要因となる。従って、抵抗
発熱体は経時的に新しいものと交換する必要がある。抵
抗発熱体の交換作業は安全上、炉を冷却した後に行う必
要があるが、特に大型の加熱炉においては、冷却、解
体、組立、再加熱といった一連の作業に多大の時間や労
力を必要とし、抵抗発熱体の交換周期が短くなるほど、
単に抵抗発熱体の材料費だけでなく生産性を著しく阻害
し、焼成コストの増大をもたらすことになる。
That is, if the thickness of the resistance heating element becomes thin due to wear and deterioration, the electrical resistance at that portion locally increases, and wear is accelerated at an accelerated rate. Since the temperature distribution changes, it becomes an impediment factor to the quality stability of the baked product. Therefore, it is necessary to replace the resistance heating element with a new one over time. For safety reasons, it is necessary to replace the resistance heating element after cooling the furnace, but especially in a large heating furnace, a series of operations such as cooling, dismantling, assembly, and reheating require a lot of time and labor. , The shorter the replacement cycle of the resistance heating element,
Not only the material cost of the resistance heating element but also the productivity is significantly impaired, and the firing cost is increased.

【0006】かかる問題を解決する手法として、円筒状
黒鉛抵抗発熱体の外周面に炭素繊維糸条を捲回積層して
発熱体炭素の蒸発、酸化を抑制する方法(特公昭59−
25936号公報)あるいは、黒鉛からなる抵抗発熱体
の外周面にペースト状のジルコニア(ZrO2 )を被覆
し、該発熱体の周囲の保温用炭素材に吸着される空気中
の水分等による該発熱体の消耗を減少する方法(特開昭
63−62182号公報)さらには光ファイバー用ガラ
ス母材製造用加熱炉の炉芯管内表面にガス不透過性皮膜
を形成させる方法(特開平4−50129号公報)が提
案されている。また、加熱炉としての適用例の記載は無
いが、炭素系材料の耐酸化性を向上させるために炭素系
母材表面に金属材料およびセラミックス材料を被覆する
方法(特開平4−59978号公報)および炭素繊維複
合材料の耐酸化性、高温強度の向上を目的として炭素繊
維複合材料の表層にSiまたはHfの炭化物、窒化物ま
たは炭窒化物をさらにその外層にTiまたはBの炭化
物、窒化物または炭窒化物を被覆した被覆炭素繊維強化
複合材料(特開平3−290375号公報)が提案され
ている。
As a method for solving such a problem, a method of suppressing the evaporation and oxidation of the carbon of the heating element by winding and laminating a carbon fiber yarn on the outer peripheral surface of the cylindrical graphite resistance heating element (Japanese Patent Publication No. 59-59-
No. 25936) or a resistance heating element made of graphite is coated with paste zirconia (ZrO 2 ) on the outer peripheral surface thereof, and the heat generation is caused by moisture in the air adsorbed on the carbon material for heat retention around the heating element. A method for reducing body wastage (JP-A-63-62182) and a method for forming a gas-impermeable film on the inner surface of the furnace core tube of a heating furnace for producing a glass preform for optical fibers (JP-A-4-50129). Gazette) has been proposed. Further, although there is no description of an application example as a heating furnace, a method of coating the surface of a carbon-based base material with a metal material and a ceramic material in order to improve the oxidation resistance of the carbon-based material (JP-A-4-59978). For the purpose of improving the oxidation resistance and high temperature strength of the carbon fiber composite material, the surface layer of the carbon fiber composite material is made of Si or Hf carbide, nitride or carbonitride and the outer layer thereof is made of Ti or B carbide, nitride or A coated carbon fiber reinforced composite material coated with carbonitride (JP-A-3-290375) has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記特
公昭59−25936号公報提案の抵抗発熱体の場合で
も、2500℃以上の高温においては炭素繊維糸条を捲
回積層しただけでは、発熱体表面からの炭素の蒸発抑制
や酸化性ガスの浸透防止を十分に果たすことができない
問題がある。
However, even in the case of the resistance heating element proposed in the above Japanese Patent Publication No. 59-25936, the surface of the heating element can be obtained only by winding and laminating the carbon fiber yarn at a high temperature of 2500 ° C. or higher. There is a problem that it is not possible to sufficiently prevent the evaporation of carbon from the inside and prevent the permeation of oxidizing gas.

【0008】また、上記特開昭63−62182号公報
に提案のタングステンカーバイド(WC)粉末製造用の
抵抗発熱体では、該抵抗発熱体の表面に被覆されたジル
コニアがペースト状であるため、2500℃以上の加熱
炉に適用すると、ジルコニアが溶融し被覆層が破壊され
該抵抗発熱体の外周面が露出するため、発熱体表面から
の炭素の蒸発を抑制することができないという欠点があ
った。
Further, in the resistance heating element for producing tungsten carbide (WC) powder proposed in the above-mentioned JP-A-63-62182, since the zirconia coated on the surface of the resistance heating element is in a paste form, 2500 When applied to a heating furnace at a temperature of not lower than 0 ° C., zirconia is melted, the coating layer is broken, and the outer peripheral surface of the resistance heating element is exposed, so that there is a drawback that evaporation of carbon from the surface of the heating element cannot be suppressed.

【0009】また、特開平4−50129号公報に提案
の光ファイバー用ガラス母材製造用加熱炉においては、
炉芯管の内側表面にのみガス不透過性皮膜を形成させる
ため、2500℃以上の高温域では炭素の蒸発が炉芯管
の外表面で主体的に起こり、内側表面の被覆だけでは炭
素の蒸発抑制効果は殆どない。
Further, in the heating furnace for producing a glass preform for optical fibers proposed in Japanese Patent Laid-Open No. 4-50129,
Since the gas impermeable film is formed only on the inner surface of the furnace core tube, carbon evaporation mainly occurs on the outer surface of the furnace core tube in the high temperature range of 2500 ° C or higher, and the evaporation of carbon occurs only by coating the inner surface. There is almost no suppression effect.

【0010】また、特開平4−59978号公報に提案
の炭素系材料の耐酸化性被覆方法については、酸化性ガ
スの透過を防止する白金焼結層が2000℃以上では融
解してしまい被覆層が破壊され、炭素系母材の表面が露
出し炭素の蒸発を抑制することができない。さらに、特
開平3−290375号公報に提案の耐酸化性、高温強
度の向上を目的とした被覆炭素繊維強化複合材料につい
ては、被覆層のガス不透過性の効果があるものの、母材
である炭素繊維強化複合材料が電気的異方性があること
や、構造が不均一であることから本発明の用途である黒
鉛繊維製造用加熱炉としては適用し得ないのである。
Further, in the oxidation-resistant coating method of carbonaceous material proposed in Japanese Patent Application Laid-Open No. 4-59978, the platinum sintered layer which prevents the permeation of oxidizing gas is melted at 2000 ° C. or higher and the coating layer is formed. Is destroyed, the surface of the carbon-based base material is exposed, and evaporation of carbon cannot be suppressed. Further, the coated carbon fiber reinforced composite material proposed in JP-A-3-290375 for the purpose of improving oxidation resistance and high temperature strength is a base material although it has an effect of gas impermeability of the coating layer. Since the carbon fiber reinforced composite material has electrical anisotropy and the structure is non-uniform, it cannot be applied as a heating furnace for producing graphite fiber which is an application of the present invention.

【0011】本発明はかかる事情に鑑みてなされたもの
で、抵抗発熱体表面からの炭素の蒸発を遮断もしくは著
しく抑制すると同時に、酸化性ガスの浸透を防止するこ
とにより、2500℃以上の高温下で、大幅な寿命延長
を図ることができる抵抗発熱体を備えた加熱炉を提供す
ることを課題とする。
The present invention has been made in view of the above circumstances. At the same time, the evaporation of carbon from the surface of the resistance heating element is blocked or remarkably suppressed, and at the same time, the permeation of an oxidizing gas is prevented, so that the high temperature of 2500 ° C. or higher is achieved. It is an object of the present invention to provide a heating furnace provided with a resistance heating element that can significantly extend the life.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するため次の構成を有する。すなわち、黒鉛材料からな
る円筒状抵抗発熱体を有する加熱炉において、該発熱体
の外表面に、融点が2800℃以上、熱膨張係数が該抵
抗発熱体材料と同等以上2.0倍以下の高融点材料から
なる被覆層が形成されていることを特徴とする黒鉛繊維
製造用加熱炉である。
The present invention has the following constitution in order to solve the above problems. That is, in a heating furnace having a cylindrical resistance heating element made of a graphite material, a high melting point of 2800 ° C. or higher and a coefficient of thermal expansion equal to or higher than the resistance heating material of 2.0 times or less are provided on the outer surface of the heating element. A heating furnace for producing graphite fibers, characterized in that a coating layer made of a melting point material is formed.

【0013】本発明において、抵抗発熱体の外表面に形
成する被覆層は2800℃においても溶融しない物質で
構成することが必要であり、さらには2000℃以上の
高温における蒸気圧が炭素に比べて大幅に低く、殆ど昇
華しないことが必要である。これは黒鉛繊維製造用加熱
炉において、黒鉛繊維を得るには2000℃以上の温度
で熱処理する必要があるが、より高い弾性率を有する黒
鉛繊維を得るためには例えば2500℃以上の高温処理
が必要であり、2800℃未満で溶融あるいは昇華する
物質を被覆すると、昇温中に被覆層が溶融、昇華して形
態が破壊され、その部分から発熱体炭素の蒸発や酸化が
誘発されることとなり、抵抗発熱体の寿命を延ばすこと
ができないばかりでなく、被覆層が破壊された部分で電
気抵抗が変化し温度分布が不均一となって、目的とした
品質の黒鉛繊維が得られないためである。
In the present invention, the coating layer formed on the outer surface of the resistance heating element must be made of a material that does not melt even at 2800 ° C., and the vapor pressure at a high temperature of 2000 ° C. or higher is higher than that of carbon. It is significantly lower and requires almost no sublimation. This is because in a heating furnace for producing graphite fibers, it is necessary to perform heat treatment at a temperature of 2000 ° C. or higher in order to obtain graphite fibers, but in order to obtain graphite fibers having a higher elastic modulus, for example, high temperature treatment of 2500 ° C. or higher is required. It is necessary, and when coating a substance that melts or sublimes below 2800 ° C, the coating layer melts and sublimes during temperature rise, destroying the morphology, and evaporating or oxidizing the heating element carbon from that part. Not only is it not possible to extend the life of the resistance heating element, but also the electrical resistance changes at the part where the coating layer is broken, and the temperature distribution becomes uneven, so that the desired quality of graphite fiber cannot be obtained. is there.

【0014】本発明の黒鉛繊維製造用加熱炉において
は、使用する温度範囲において、被覆層を形成する化合
物の熱膨張係数を抵抗発熱体の熱膨張係数と同等以上
2.0倍以下にするものである。被覆層を形成する化合
物の熱膨張係数が抵抗発熱体の熱膨張係数と同等未満ま
たは2.0倍を越える場合には、昇温中に抵抗発熱体か
ら被覆層が剥離したり、被覆層に亀裂が生じたりして抵
抗発熱体の劣化を引き起こす。
In the heating furnace for producing graphite fiber of the present invention, the thermal expansion coefficient of the compound forming the coating layer is made equal to or more than 2.0 times the thermal expansion coefficient of the resistance heating element in the temperature range used. Is. When the thermal expansion coefficient of the compound forming the coating layer is less than or equal to the thermal expansion coefficient of the resistance heating element or exceeds 2.0 times, the coating layer peels from the resistance heating element during heating or the coating layer This may cause cracks and deterioration of the resistance heating element.

【0015】なお、熱膨張係数は次式で定義される。即
ち、ある基準温度t0 からある温度tまでの試験体の寸
法が、L0 からLになったとき、L=L0 {1+α(t
−t0 )}で表わされるαを熱膨張係数とする。
The thermal expansion coefficient is defined by the following equation. That is, when the size of the test body from a certain reference temperature t 0 to a certain temperature t changes from L 0 to L, L = L 0 {1 + α (t
Let α represented by −t 0 )} be a coefficient of thermal expansion.

【0016】このような特性を満足する高融点材料とし
ては、実用性の観点から、W,Ta,HfC,TaC,
NbC,ZrC,TiC,VC,SiC,HfN,Ta
N,ZrN,TiN,BN,HfB2 ,TaB2 ,Nb
2 ,WB,TiB2 ,およびZrB2 の中から選ばれ
た1種以上が好ましい。
From the point of view of practicality, W, Ta, HfC, TaC,
NbC, ZrC, TiC, VC, SiC, HfN, Ta
N, ZrN, TiN, BN, HfB 2 , TaB 2 , Nb
At least one selected from B 2 , WB, TiB 2 and ZrB 2 is preferable.

【0017】上記の高融点材料からなる被覆層は、抵抗
発熱体の外表面では炭素元素比率が高く、被覆層の表面
方向に上記高融点金属および高融点化合物の比率が連続
的に高くなる傾斜組織とすることがより好ましい。ここ
で傾斜組織とは、ある組成(本発明の場合は発熱体の炭
素)から別の組成(本発明の場合は上記高融点金属また
は化合物の1種以上の組成)に連続的または段階的に変
化する一連の組織を意味する。この場合、傾斜組織の厚
み方向の組成は、例えば1種類の高融点物質を被覆する
場合、被覆層の2分の1の厚み位置において高融点物質
の濃度が20〜80%の範囲になるようにすることが好
ましい。
In the coating layer made of the high melting point material, the carbon element ratio is high on the outer surface of the resistance heating element, and the gradient of the high melting point metal and the high melting point compound increases continuously in the surface direction of the coating layer. It is more preferable to use a tissue. The term "gradient structure" as used herein means to continuously or stepwise from one composition (in the case of the present invention, carbon of the heating element) to another composition (in the case of the present invention, one or more compositions of the above-mentioned refractory metal or compound). Means a changing set of organizations. In this case, the composition of the graded structure in the thickness direction is such that, when one kind of high melting point substance is coated, the concentration of the high melting point substance is in the range of 20 to 80% at a half thickness position of the coating layer. Is preferred.

【0018】さらに被覆層の剥離、亀裂防止に完全を期
す観点からも、被覆層が傾斜組織をとることが好まし
い。被覆層を傾斜組織とした場合は、組成が徐々に変化
するため熱膨張の差が緩和され、抵抗発熱体から被覆層
が剥離したり、被覆層に亀裂が生じたりするような現象
を抑制することができる。また、該被覆層を有した抵抗
発熱体の外周面に炭素繊維または上記抵抗発熱体の被覆
層として適用された化合物と同様な炭化物、窒化物また
はホウ素化合物を被覆した炭素繊維糸条を捲回積層する
ことにより、被覆層の熱膨張を吸収緩和し、抵抗発熱体
と被覆層を強固に結合することができるのである。
From the viewpoint of complete prevention of peeling and cracking of the coating layer, it is preferable that the coating layer has a graded structure. When the coating layer has a graded structure, the difference in thermal expansion is relaxed because the composition gradually changes, and the phenomenon that the coating layer peels from the resistance heating element or cracks occur in the coating layer is suppressed. be able to. Further, a carbon fiber yarn coated with carbon fibers or a carbide, nitride or boron compound similar to the compound applied as the coating layer of the resistance heating element is wound around the outer peripheral surface of the resistance heating element having the coating layer. By laminating the layers, the thermal expansion of the coating layer can be absorbed and relaxed, and the resistance heating element and the coating layer can be firmly bonded.

【0019】以下、本発明の加熱炉について図面を参照
しつつ具体的に説明する。
The heating furnace of the present invention will be specifically described below with reference to the drawings.

【0020】図1は本発明の黒鉛繊維製造用加熱炉の一
実施態様を示す概略縦断面図である。図1において、1
は内部を連続的に通過する糸条Yを加熱するための黒鉛
からなる円筒状の抵抗発熱体で、2は1の抵抗発熱体の
外表面に融点が2800℃以上で、かつ熱膨張係数が該
抵抗発熱体材料と同等ないし2.0倍以下の金属または
化合物の1種以上からなる被覆層である。3は該被覆層
を有した抵抗発熱体の外周面に、炭素繊維糸条が複数回
捲回積層されてなる炭素繊維糸条層である。4は発熱体
1を同芯とした黒鉛からなる外筒であり、輻射熱を内部
に反射させて均熱ゾーンを長くするために設けられてい
る。5は外筒4の保持と炉の保温を行なうための炭素質
や黒鉛質からなるフェルト状断熱材である。断熱材5の
外側はさらに薄鋼板の炉殻6で被覆保護されている。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the heating furnace for producing graphite fiber of the present invention. In FIG. 1, 1
Is a cylindrical resistance heating element made of graphite for heating the yarn Y continuously passing through the inside, and 2 is a resistance heating element having a melting point of 2800 ° C. or more and an expansion coefficient of 2800 ° C. or more on the outer surface of the resistance heating element 1. The coating layer is made of one or more metals or compounds that are equal to or less than 2.0 times the resistance heating material. Reference numeral 3 denotes a carbon fiber yarn layer formed by winding a plurality of carbon fiber yarns on the outer peripheral surface of the resistance heating element having the coating layer. Reference numeral 4 denotes an outer cylinder made of graphite with the heating element 1 as a concentric core, and is provided to reflect radiant heat to the inside and lengthen the soaking zone. Reference numeral 5 is a felt-like heat insulating material made of carbon or graphite for holding the outer cylinder 4 and keeping the furnace warm. The outside of the heat insulating material 5 is further covered and protected by a furnace shell 6 made of a thin steel plate.

【0021】また、抵抗発熱体1の両端部には抵抗発熱
体の中心部よりも断面積が大きい端子部1a、1bが形
成され、それぞれの端子部には抵抗発熱体1に電流を通
電するための電極7(図示せず)が固定されている。電
極7は低電圧大電流の電源部に接続され、その電源部か
らの通電によって抵抗発熱体がジュール発熱するように
されている。なお、8a、8bはそれぞれ糸条Yの入口
と出口であり、この出入口を有するリング状部材9が端
子部1a,1bの開口部に固定されることによって、抵
抗発熱体内部に供給された不活性ガスが、外部に漏出し
ないようにするシール部をも兼用している。このように
抵抗発熱体1の内部や、炉殻6内には糸条Yや炉内の各
部材が酸化により劣化するのを防止するため、通常、窒
素やアルゴン等の不活性ガスで満たされる。
Further, terminal portions 1a and 1b having a larger cross-sectional area than the central portion of the resistance heating element are formed at both ends of the resistance heating element 1, and a current is supplied to the resistance heating element 1 at each terminal portion. An electrode 7 (not shown) for is fixed. The electrode 7 is connected to a low-voltage, large-current power supply unit, and the resistance heating element generates Joule heat when energized by the power supply unit. Reference numerals 8a and 8b respectively denote an inlet and an outlet of the yarn Y, and the ring-shaped member 9 having the inlet and outlet is fixed to the openings of the terminal portions 1a and 1b, so that the heat supplied to the inside of the resistance heating element can be prevented. It also serves as a seal part for preventing active gas from leaking to the outside. As described above, in order to prevent the yarn Y and each member in the furnace from deteriorating due to oxidation, the inside of the resistance heating element 1 and the inside of the furnace shell 6 are usually filled with an inert gas such as nitrogen or argon. .

【0022】被覆層2は、予め抵抗発熱体1の外表面の
異物等を除却すると同時に、素材表面を粗面化して被覆
材に対してアンカー効果をもたせるため、サンドブラス
ト加工を施した後に皮膜形成させるのが好ましい。その
表面粗さはJIS B 0601規定の中心線平均粗さ
(Ra)が3〜10μm、最大高さ(Rmax)が50
μm以下の範囲が好ましい。
The coating layer 2 removes foreign matters and the like on the outer surface of the resistance heating element 1 in advance, and at the same time, roughens the surface of the material to give an anchor effect to the coating material. Therefore, the coating layer is formed after sandblasting. Preferably. The surface roughness is such that the center line average roughness (Ra) specified by JIS B 0601 is 3 to 10 μm and the maximum height (Rmax) is 50.
A range of μm or less is preferable.

【0023】皮膜形成は、例えば、空気雰囲気中または
窒素やアルゴン等の不活性ガス雰囲気中でプラズマ溶射
によって、または30〜300Torrの減圧下(不活
性ガス雰囲気)での減圧溶射によって形成することがで
きる。母材の素地が現れにくく、またガスを通過しにく
く抵抗発熱体炭素の蒸発抑制効果を向上させる一方、剥
離やクラックが生じるのを防止する観点から膜厚20〜
1000μmさらには50〜500μmの範囲で形成す
るのが好ましい。また、より緻密な皮膜形成を行なうた
めには30〜300Torrの減圧下でのCVD法を採
用することも好ましい。CVD法で皮膜を形成する場合
は溶射法に比べて皮膜が緻密なために膜厚を薄くするこ
とができ好ましい。
The coating can be formed, for example, by plasma spraying in an air atmosphere or an inert gas atmosphere such as nitrogen or argon, or by vacuum spraying under a reduced pressure of 30 to 300 Torr (inert gas atmosphere). it can. From the viewpoint of preventing peeling and cracks from occurring, the base material of the base material is less likely to appear, and the gas is less likely to pass through to improve the evaporation suppressing effect of the resistance heating element carbon.
The thickness is preferably 1000 μm, more preferably 50 to 500 μm. Further, it is also preferable to employ the CVD method under a reduced pressure of 30 to 300 Torr in order to form a denser film. When the coating is formed by the CVD method, the thickness of the coating is smaller than that of the thermal spraying method.

【0024】なお、溶射に用いられる高融点金属粉末ま
たは高融点化合物粉末の粒度は特に限定されないが、1
00μm以下で通常溶射に用いられるものであればよ
い。
The particle size of the high melting point metal powder or the high melting point compound powder used for thermal spraying is not particularly limited, but 1
Any material having a thickness of 00 μm or less and usually used for thermal spraying may be used.

【0025】この際、炭素繊維糸条を抵抗発熱体の外周
面に捲回積層する手段を採用すると、被覆層の欠陥部を
通過して徐々に蒸発するカーボン蒸気を完全に遮断もし
くは著しく抑制するばかりでなく、被覆層の熱膨脹を炭
素繊維事態の熱収縮により吸収緩和し抵抗発熱体からの
被覆層の剥離や亀裂の生成を有効に防止し、抵抗発熱体
と被覆層を強固に結合することができるので好ましい。
At this time, if a means for winding and laminating the carbon fiber yarn on the outer peripheral surface of the resistance heating element is adopted, the carbon vapor which passes through the defective portion of the coating layer and is gradually evaporated is completely blocked or remarkably suppressed. Not only that, the thermal expansion of the coating layer is absorbed and relaxed by the thermal contraction of the carbon fiber situation, effectively preventing the coating layer from peeling or cracking from the resistance heating element, and firmly bonding the resistance heating element and the coating layer. It is possible to do so, which is preferable.

【0026】炭素繊維糸条層3は、例えばピッチ系、セ
ルロース系、およびアクリル系等の有機繊維を不活性ガ
ス中で800℃以上で焼成して得られる一般の炭素繊維
糸条を抵抗発熱体の外側に複数回捲回したもので、その
積層厚さは発熱体の肉厚等により一概には決められない
が、発熱体の肉厚が10mm程度であれば5〜20mm
程度が好ましい。なお、通常市販の炭素繊維糸条はエポ
キシ系等のサイジング剤が付与されている場合が多く、
これらサイジング剤は加熱されると分解ガス化し、炉内
雰囲気を汚染するので、抵抗発熱体の外側に捲回積層す
る前にサイジング剤を除去するのが好ましく、もともと
サイジング剤が付与されていない炭素繊維糸条を用いる
のがより好ましい。炭素繊維糸条の総繊度は特に限定さ
れないが、通常1000〜20000デニールのものが
用いられる。また、この捲回層は抵抗発熱体1の外側に
位置し、長時間加熱され黒鉛化が進むことになるので、
炭化糸、黒鉛化糸のいずれでも用いることができる。
The carbon fiber thread layer 3 is formed by firing a general carbon fiber thread obtained by firing organic fibers such as pitch-based, cellulose-based, and acrylic-based fibers in an inert gas at 800 ° C. or higher as a resistance heating element. It is wound multiple times on the outside of the, and its laminated thickness cannot be determined unconditionally depending on the wall thickness of the heating element, but if the wall thickness of the heating element is about 10 mm, it will be 5 to 20 mm.
A degree is preferable. Incidentally, usually commercially available carbon fiber threads are often provided with a sizing agent such as an epoxy type,
Since these sizing agents are decomposed and gasified when heated and pollute the atmosphere in the furnace, it is preferable to remove the sizing agent before winding and laminating on the outside of the resistance heating element. More preferably, fiber yarn is used. The total fineness of the carbon fiber yarns is not particularly limited, but usually 1000 to 20000 denier is used. In addition, since this wound layer is located outside the resistance heating element 1 and is heated for a long time to be graphitized,
Either carbonized yarn or graphitized yarn can be used.

【0027】さらにまた、捲回積層される炭素繊維は抵
抗発熱体の外周側近に位置するため、高温に曝され、そ
れ自体、少なからず蒸発減耗する傾向がある。これを有
効に防止するため、炭素繊維表面に融点が2800℃以
上の高融点化合物、例えばTiC、NbC,TaC、お
よびSiCのような炭化物またはBN、TaN、HfN
等の窒化物またはNbB2 、TaB2 、ZrB2 等のホ
ウ素化合物のような耐熱性化合物を通常行なわれるCV
D法で皮膜形成させた炭素繊維糸条を用いるのが好まし
い。この場合、炭素繊維表面の素地が現れ炭素の蒸発抑
制効果が減少するのを防止する一方、厚すぎて繊維自体
が剛直になり抵抗発熱体の外周面への巻付けが困難にな
ったり、皮膜が破れ易く炭素繊維の蒸発減耗の抑制効果
が減少するのを防止する観点から、高融点化合物の皮膜
の厚さは0.05〜2μmにするのが好ましい。
Furthermore, since the carbon fibers to be wound and laminated are located near the outer peripheral side of the resistance heating element, they are exposed to high temperatures and, by themselves, tend to evaporate and wear to some extent. In order to effectively prevent this, a high melting point compound having a melting point of 2800 ° C. or higher on the carbon fiber surface, for example, a carbide such as TiC, NbC, TaC, and SiC, or BN, TaN, HfN.
CV which is usually carried out with a refractory compound such as a nitride such as NbB 2 , TaB 2 , ZrB 2 or the like.
It is preferable to use a carbon fiber yarn formed by the method D. In this case, the carbon fiber surface matrix is prevented from appearing and the carbon evaporation suppression effect is reduced, while the fiber itself is too thick and the resistance heating element becomes difficult to wind around the outer peripheral surface of the resistance heating element. It is preferable that the thickness of the high melting point compound film is 0.05 to 2 μm from the viewpoint of preventing the carbon fiber from easily breaking and reducing the effect of suppressing the evaporation loss of the carbon fiber.

【0028】炭素繊維糸条の捲回積層にあたっては、抵
抗発熱体の外側に密着させ、かつ糸条間に間隔ができな
いように密に巻き付けることが好ましく、例えば巻取機
や旋盤等を用い、発熱体を回転させつつ炭素繊維を10
0〜1000g程度の一定張力化で発熱体の軸方向に対
し、ほぼ直角に捲回積層するのがさらに好ましい。
When the carbon fiber yarns are wound and laminated, it is preferable that the carbon fiber yarns are closely adhered to the outside of the resistance heating element and closely wound so that there is no space between the yarns. For example, a winding machine or a lathe is used. While rotating the heating element, 10 carbon fibers
It is more preferable to wind and laminate at a constant tension of about 0 to 1000 g substantially perpendicular to the axial direction of the heating element.

【0029】さらに、抵抗発熱体やその外周面に捲回積
層した炭素繊維からの炭素の蒸発を抑制することやさら
に断熱効果を高めるために、炭素繊維糸条捲回層の外側
に可撓性のシート状黒鉛を捲回積層してもよい。
Further, in order to suppress evaporation of carbon from the resistance heating element and the carbon fiber wound and laminated on the outer peripheral surface of the resistance heating element and further enhance the heat insulating effect, a flexible material is formed on the outside of the carbon fiber yarn winding layer. The sheet-shaped graphite may be wound and laminated.

【0030】[0030]

【実施例】次に実施例および比較例により本発明の態様
を具体的に説明する。
EXAMPLES Next, the embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.

【0031】<実施例1>内径30mm、外径50mm
(中央部の肉厚10mm)、長さ1250mmの黒鉛製
円筒状抵抗発熱体の中央部(長さ600mm)の外表面
に、平均粒子径40μmのニオブカーバイド(NbC)
を大気中でプラズマ溶射し、膜厚200μmの被覆層を
形成した。次にこのNbC被覆抵抗発熱体を図1に示し
た加熱炉にセットし、アルゴンガス雰囲気中常圧下で3
000℃に昇温し連続運転した。なお、3000℃の温
度制御は発熱体パイプ内部の中心位置にセットした黒鉛
製小ブロックの表面温度を発熱体の軸方向の一端部(加
熱炉外部)に設置した放射温度計で測定し電力制御し
た。
<Example 1> Inner diameter 30 mm, outer diameter 50 mm
Niobium carbide (NbC) having an average particle diameter of 40 μm is formed on the outer surface of the central portion (length 600 mm) of a graphite resistance heating element made of graphite (thickness of central portion 10 mm) and length 1250 mm.
Was plasma sprayed in the atmosphere to form a coating layer having a thickness of 200 μm. Next, this NbC-coated resistance heating element was set in the heating furnace shown in FIG.
The temperature was raised to 000 ° C and continuous operation was performed. For temperature control at 3000 ° C, power control is performed by measuring the surface temperature of a small graphite block set at the center of the heating element pipe with a radiation thermometer installed at one end of the heating element in the axial direction (outside the heating furnace). did.

【0032】運転開始後、発熱体が減耗破断し運転でき
なくなるまでに17日を要し、下記の比較例1に比べて
本発明の発熱体の寿命が大幅に延長し効果が認められ
た。結果を表1に示した。
After the start of the operation, it took 17 days for the heating element to wear out and break and could not be operated, and the life of the heating element of the present invention was significantly extended as compared with Comparative Example 1 below, and the effect was recognized. The results are shown in Table 1.

【0033】[0033]

【表1】 <実施例2>実施例1で用いたものと同じNbCをプラ
ズマ溶射した抵抗発熱体について、その外周面に120
00フィラメントのサイジング剤を付与していない炭素
繊維糸条を約250gの巻き張力で円筒軸に直交するよ
うに密に捲回し、厚さ5mmの炭素繊維糸条層を形成し
た。
[Table 1] <Embodiment 2> With respect to the resistance heating element in which the same NbC as that used in Embodiment 1 is plasma-sprayed, 120 is formed on the outer peripheral surface thereof.
A carbon fiber yarn having no sizing agent of 00 filaments was tightly wound with a winding tension of about 250 g so as to be orthogonal to the cylindrical axis to form a carbon fiber yarn layer having a thickness of 5 mm.

【0034】次にこの炭素繊維糸条を巻き付けたNbC
被覆抵抗発熱体を図1に示した加熱炉にセットし、実施
例1と同様にアルゴンガス雰囲気中常圧下で3000℃
に昇温し連続運転した。
Next, NbC wound with this carbon fiber yarn is wound.
The coating resistance heating element was set in the heating furnace shown in FIG. 1 and, in the same manner as in Example 1, 3000 ° C. in an argon gas atmosphere under normal pressure.
The temperature was raised to 0 and continuous operation was performed.

【0035】運転を始めてから20日目に一次電流が上
限値近くに達し、二次電流が大きく振れ始め運転が不可
能になったので停機し、冷却後発熱体を抜き出し観察し
たところ、NbCを被覆した発熱体は何ら異常がなく、
NbCの被覆効果が大きいことが判明した。しかし、発
熱体の外周面に捲回積層した炭素繊維糸条層は中央部で
損傷劣化し、図1に示した外筒4の内面に接触した状態
になっていた。結果を表1に併せて示した。
On the 20th day from the start of operation, the primary current reached near the upper limit value, the secondary current began to largely fluctuate, and the operation became impossible. Therefore, the operation was stopped and the heating element was taken out after cooling and observed. There is no abnormality in the coated heating element,
It was found that the NbC coating effect was great. However, the carbon fiber yarn layer wound and laminated on the outer peripheral surface of the heating element was damaged and deteriorated in the central portion, and was in contact with the inner surface of the outer cylinder 4 shown in FIG. The results are also shown in Table 1.

【0036】<実施例3>実施例2において、NbC溶
射抵抗発熱体の外周面に巻き付ける炭素繊維の代わり
に、CVD法によりNbCを単糸表面に被覆した炭素繊
維を用いる以外は実施例2と全く同じ方法で加熱炉の運
転を行った。なお、炭素繊維へのNbCの被覆は500
〜600℃でH2 を伴なうN2 雰囲気中でNbCl5
還元し、続いてCH4 の反応ガス中で1100℃で炭化
する2段階過程で連続的に行った。これにより皮膜の厚
みが1μmの被覆炭素繊維を得た。なお、基材となる炭
素繊維は12000フィラメントのサイジングを付与し
ていないものを用いた。
<Embodiment 3> In Embodiment 2, except that the carbon fiber coated with NbC on the surface of the single yarn by the CVD method is used instead of the carbon fiber wound around the outer peripheral surface of the NbC thermal spray resistance heating element. The heating furnace was operated in exactly the same manner. The NbC coating on the carbon fiber is 500
NbCl 5 was reduced in a N 2 atmosphere with H 2 at ˜600 ° C., followed by continuous carbonization in a reaction gas of CH 4 at 1100 ° C. in a two-step process. As a result, a coated carbon fiber having a coating thickness of 1 μm was obtained. The carbon fiber used as the base material was 12000 filaments without sizing.

【0037】運転を始めてから27日目に電流変動によ
り運転が不可能になったが、発熱体の損耗は殆ど無く、
さらに、炭素繊維のNbC被覆による損傷抑制効果が認
められた。結果を表1に併せて示した。
On the 27th day from the start of the operation, the operation became impossible due to the current fluctuation, but there was almost no wear of the heating element,
Furthermore, the damage suppressing effect of the NbC coating of carbon fiber was recognized. The results are also shown in Table 1.

【0038】<実施例4>内径30mm、外径50mm
(中央部の肉厚10mm)、長さ1250mmの高密度
等方性黒鉛からなる円筒状抵抗発熱体の中央部(長さ6
00mm)の外表面に、減圧CVD法により1300
℃、100Torrで約3時間NbCを被覆した。原料
ガスにはNbCl5 、CH4 、H2 を用い、NbCl5
の流量は0.3l/分と一定にした。得られた被覆層の
厚みは100μmであった。
<Embodiment 4> Inner diameter 30 mm, outer diameter 50 mm
(The thickness of the central portion is 10 mm) and the length is 1250 mm. The central portion (length 6) of the cylindrical resistance heating element made of high density isotropic graphite.
00 mm) on the outer surface by low pressure CVD method 1300
The NbC was coated at 100 ° C. at 100 ° C. for about 3 hours. NbCl 5 , CH 4, and H 2 were used as source gases, and NbCl 5
The flow rate was constant at 0.3 l / min. The thickness of the obtained coating layer was 100 μm.

【0039】このNbC被覆発熱体を図1に示した加熱
炉にセットし、実施例1と同様にアルゴンガス雰囲気中
3000℃に昇温し連続運転した。円筒状発熱体が減耗
破断し、運転できなくなるまでに20時間を要し、下記
に示した比較例1に比べて発熱体の寿命が大幅に向上し
た。結果を表1に併せて示した。
The NbC-coated heating element was set in the heating furnace shown in FIG. 1 and, similarly to Example 1, the temperature was raised to 3000 ° C. in an argon gas atmosphere to continuously operate. It took 20 hours for the cylindrical heating element to wear out and break, and to be unable to operate, and the life of the heating element was significantly improved as compared with Comparative Example 1 shown below. The results are also shown in Table 1.

【0040】<実施例5>実施例4で使用したと同様の
黒鉛からなる円筒状抵抗発熱体の中央部(長さ600m
m)の外表面に、減圧CVD法により1300℃、10
0Torrで約3時間NbCを被覆した。原料ガスには
NbCl5 、CH4 、H2 を用い、NbCl5 の流量を
0リットル/分から0.6リットル/分まで、0.2リ
ットル/時間の割合で増加させ、発熱体表面からNbC
が連続的に増加する傾斜組織の被覆層を100μm形成
させた。図2は得られた被覆層をEPMAにより解析し
た結果を示したものであるが、Nbの濃度が発熱体炭素
の外表面から被覆層表面に連続的に増加する傾斜組織と
なっていることがわかる。
<Embodiment 5> A cylindrical resistance heating element made of graphite similar to that used in Embodiment 4 has a central portion (length 600 m).
m) on the outer surface by a low pressure CVD method at 1300 ° C., 10
NbC was coated at 0 Torr for about 3 hours. NbCl 5 , CH 4 , and H 2 were used as the source gas, and the flow rate of NbCl 5 was increased from 0 liter / minute to 0.6 liter / minute at a rate of 0.2 liter / hour, so that NbC was removed from the surface of the heating element.
A 100 μm thick coating layer having a gradually increasing gradient was formed. FIG. 2 shows a result of analyzing the obtained coating layer by EPMA. It is shown that the Nb concentration has a graded structure in which the concentration of Nb continuously increases from the outer surface of the heating element carbon to the surface of the coating layer. Recognize.

【0041】このNbC被覆発熱体を図1に示した加熱
炉にセットし、実施例1と同様にアルゴンガス雰囲気中
3000℃に昇温し連続運転した。円筒状発熱体が減耗
破断し、運転できなくなるまでに23時間を要し、下記
に示した比較例1に比べて発熱体の寿命が大幅に向上し
た。結果を表1に併せて示した。
This NbC-coated heating element was set in the heating furnace shown in FIG. 1 and, similarly to Example 1, the temperature was raised to 3000 ° C. in an argon gas atmosphere to continuously operate. It took 23 hours for the cylindrical heating element to wear out and break, and to become inoperable, and the life of the heating element was significantly improved as compared with Comparative Example 1 shown below. The results are also shown in Table 1.

【0042】<比較例1>内径30mm、外径50mm
(中央部の肉厚10mm)、長さ1250mmの黒鉛か
らなる円筒状抵抗発熱体の単体品を、図1に示した加熱
炉にセットし、実施例1と同様に3000℃で連続運転
した結果、36時間で発熱体が減耗破断し、運転不可能
になった。結果を表1に併せて示した。
<Comparative Example 1> Inner diameter 30 mm, outer diameter 50 mm
A single piece of a cylindrical resistance heating element made of graphite (thickness of the central portion: 10 mm) and having a length of 1250 mm was set in the heating furnace shown in FIG. 1, and continuously operated at 3000 ° C. as in Example 1. After 36 hours, the heating element was depleted due to wear and became inoperable. The results are also shown in Table 1.

【0043】<比較例2>実施例2において、抵抗発熱
体の外表面にNbCの溶射によるコーテイングをしない
ことを除いては、実施例と全く同じ条件で連続運転した
結果、6日間で発熱体が減耗破断し、運転できなくなっ
た。結果を表1に併せて示した。
<Comparative Example 2> In Example 2, as a result of continuous operation under exactly the same conditions as in Example 2, except that the outer surface of the resistance heating element was not coated with NbC by spraying, the heating element was heated for 6 days. Became depleted due to wear and tear and became inoperable. The results are also shown in Table 1.

【0044】<比較例3>実施例1において、抵抗発熱
体のNbC被覆層の膜厚を10μmにする以外は、実施
例と全く同じ条件で連続運転した結果、2.5日で発熱
体が減耗破断し、運転できなくなった。結果を表1に併
せて示した。
<Comparative Example 3> In Example 1, as a result of continuous operation under exactly the same conditions as in Example 1 except that the film thickness of the NbC coating layer of the resistance heating element was changed to 10 μm, the heating element was found to disappear in 2.5 days. It broke down due to wear and tear and could not be operated. The results are also shown in Table 1.

【0045】[0045]

【発明の効果】本発明の加熱炉によれば、高融点の金属
および高融点化合物からなる被覆層は抵抗発熱体の外表
面からの炭素の蒸発を遮断もしくは著しく抑制し、炭素
の蒸発による抵抗発熱体の減耗劣化を防止もしくは極力
減少させることができる。また、被覆層の組成を傾斜組
織にすることにより、抵抗発熱体と被覆層の熱膨張の差
を緩和し被覆層の発熱体からの剥離や亀裂の生成を抑制
することができる。さらに抵抗発熱体の外周面に炭素繊
維糸条を捲回積層することにより、抵抗発熱体表面から
の炭素の蒸発を抑制するばかりでなく、炭素繊維自体の
熱収縮により抵抗発熱体と被覆層の熱膨張の差を吸収緩
和し、被覆層の発熱体からの剥離や亀裂の生成を防止す
ることができる。さらにまた、高融点化合物を被覆した
炭素繊維糸条を抵抗発熱体の外周面に捲回積層すること
により、炭素繊維自体の減耗劣化を防止することができ
る。
According to the heating furnace of the present invention, the coating layer made of a metal having a high melting point and a compound having a high melting point blocks or significantly suppresses the evaporation of carbon from the outer surface of the resistance heating element, and the resistance due to the evaporation of carbon is reduced. It is possible to prevent or reduce the wear and deterioration of the heating element as much as possible. Further, by making the composition of the coating layer a gradient structure, it is possible to reduce the difference in thermal expansion between the resistance heating element and the coating layer, and to suppress the peeling or cracking of the coating layer from the heating element. Further, by winding and laminating a carbon fiber thread on the outer peripheral surface of the resistance heating element, not only the evaporation of carbon from the surface of the resistance heating element is suppressed, but also the thermal contraction of the carbon fiber itself causes the resistance heating element and the coating layer to be separated. It is possible to absorb and relax the difference in thermal expansion, and prevent the coating layer from peeling or cracking from the heating element. Furthermore, by winding and laminating the carbon fiber yarn coated with the high melting point compound on the outer peripheral surface of the resistance heating element, it is possible to prevent deterioration of the carbon fiber itself due to wear.

【0046】従って、本発明の加熱炉は2500℃以上
の高温下においても、抵抗発熱体の寿命が大幅に延長さ
れた状態で黒鉛繊維を連続的に製造することができる。
Therefore, the heating furnace of the present invention can continuously produce the graphite fiber even at a high temperature of 2500 ° C. or higher, with the life of the resistance heating element being greatly extended.

【0047】本発明により、黒鉛からなる円筒状抵抗発
熱体を有した黒鉛繊維製造用加熱炉において、抵抗発熱
体炭素の蒸発、酸化を抑制して寿命の長い加熱炉を提供
することができる。
According to the present invention, it is possible to provide a heating furnace for graphite fiber production having a cylindrical resistance heating element made of graphite, which has a long life by suppressing evaporation and oxidation of the resistance heating element carbon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の黒鉛繊維製造用加熱炉の一実施態様の
概略縦断面図。
FIG. 1 is a schematic vertical sectional view of an embodiment of a heating furnace for producing graphite fibers of the present invention.

【図2】NbCの傾斜組織の被覆層をEPMAにより、
円筒状発熱体の断面方向に解析したグラフ。
FIG. 2 shows a coating layer of NbC gradient structure by EPMA,
The graph which analyzed in the cross section direction of a cylindrical heating element.

【符号の説明】[Explanation of symbols]

1 :円筒状抵抗発熱体 1a、1b:発熱体端子部 2 :円筒状抵抗発熱体の被覆層 3 :炭素繊維糸条層 4 :黒鉛製外筒 5 :フェルト状断熱材 6 :炉殻 7 :電極 8a :入口 8b :出口 9 :リング状部材 Y :糸条 1: Cylindrical resistance heating element 1a, 1b: Heating element terminal part 2: Cylindrical resistance heating element coating layer 3: Carbon fiber yarn layer 4: Graphite outer cylinder 5: Felt-like heat insulating material 6: Furnace shell 7: Electrode 8a: Inlet 8b: Outlet 9: Ring-shaped member Y: Thread

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05B 3/62 7913−3K (72)発明者 石田 富弘 愛媛県伊予郡松前町大字筒井1515 東レ株 式会社愛媛工場内 (72)発明者 関戸 俊英 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 (72)発明者 猿山 秀夫 愛媛県伊予郡松前町大字筒井1515 東レ株 式会社愛媛工場内 (72)発明者 正木 孝樹 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H05B 3/62 7913-3K (72) Inventor Tomihiro Ishida 1515 Tsutsui, Matsuemae, Iyo-gun, Ehime Toray Co., Ltd. Ceremony Company Ehime Plant (72) Inventor Toshihide Sekido 1-1-1, Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd. Shiga Business Site (72) Inventor Hideo Saruyama 1515 Tsutsui, Matsumae-cho, Iyo-gun, Ehime Prefecture Toray Co., Ltd. Ehime Plant (72) Inventor Takaki Masaki 1-1-1, Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd. Shiga Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】黒鉛材料からなる円筒状抵抗発熱体を有す
る加熱炉において、該発熱体の外表面に、融点が280
0℃以上、熱膨張係数が該抵抗発熱体材料と同等以上
2.0倍以下の高融点材料からなる被覆層が形成されて
いることを特徴とする黒鉛繊維製造用加熱炉。
1. A heating furnace having a cylindrical resistance heating element made of a graphite material, having a melting point of 280 on the outer surface of the heating element.
A heating furnace for producing graphite fibers, characterized in that a coating layer made of a high melting point material having a coefficient of thermal expansion of 0 ° C. or higher and a resistance heating element material which is equal to or more than 2.0 times is formed.
【請求項2】発熱体外表面の被覆層がW,Ta,Hf
C,TaC,NbC,ZrC,TiC,VC,SiC,
HfN,TaN,ZrN,TiN,BN,HfB2 ,T
aB2 ,NbB2 ,WB,TiB2 ,およびZrB2
中から選ばれた1種以上から形成されていることを特徴
とする請求項1に記載の黒鉛繊維製造用加熱炉。
2. The coating layer on the outer surface of the heating element is W, Ta, Hf.
C, TaC, NbC, ZrC, TiC, VC, SiC,
HfN, TaN, ZrN, TiN, BN, HfB 2 , T
The heating furnace for producing graphite fibers according to claim 1, wherein the heating furnace is formed of at least one selected from aB 2 , NbB 2 , WB, TiB 2 , and ZrB 2 .
【請求項3】被覆層が発熱体の外表面から被覆層の外表
面まで連続的に変化する傾斜組織からなることを特徴と
する請求項1に記載の黒鉛繊維製造用加熱炉。
3. The heating furnace for producing graphite fibers according to claim 1, wherein the coating layer has a gradient structure that continuously changes from the outer surface of the heating element to the outer surface of the coating layer.
【請求項4】被覆層を有した発熱体の外周面に炭素繊維
糸条を捲回積層することを特徴とする請求項1に記載の
黒鉛繊維製造用加熱炉。
4. The heating furnace for producing graphite fiber according to claim 1, wherein a carbon fiber yarn is wound and laminated on an outer peripheral surface of a heating element having a coating layer.
【請求項5】炭素繊維糸条の単繊維表面に融点が280
0℃以上の高融点化合物を被覆した炭素繊維糸条を捲回
積層することを特徴とする請求項4に記載の黒鉛繊維製
造用加熱炉。
5. A melting point of 280 on the surface of a single fiber of carbon fiber yarn.
The heating furnace for producing graphite fiber according to claim 4, wherein carbon fiber yarns coated with a high melting point compound of 0 ° C. or higher are wound and laminated.
JP6663393A 1993-03-25 1993-03-25 Heating furnace for graphite fiber production Pending JPH06280117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6663393A JPH06280117A (en) 1993-03-25 1993-03-25 Heating furnace for graphite fiber production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6663393A JPH06280117A (en) 1993-03-25 1993-03-25 Heating furnace for graphite fiber production

Publications (1)

Publication Number Publication Date
JPH06280117A true JPH06280117A (en) 1994-10-04

Family

ID=13321497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6663393A Pending JPH06280117A (en) 1993-03-25 1993-03-25 Heating furnace for graphite fiber production

Country Status (1)

Country Link
JP (1) JPH06280117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100047448A1 (en) * 2006-12-25 2010-02-25 Tokyo Electron Limited Film forming apparatus and method
CN102660809A (en) * 2012-03-21 2012-09-12 上海联川自动化科技有限公司 A novel graphite heater with a single end fixed
US8535600B2 (en) 2009-03-23 2013-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive
CN115014084A (en) * 2022-06-21 2022-09-06 中材人工晶体研究院(山东)有限公司 Sintering furnace and method for preparing tantalum carbide coating on graphite substrate surface
CN115654932A (en) * 2022-10-19 2023-01-31 陕西天策新材料科技有限公司 A graphitization furnace device and a heating element load online compensation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100047448A1 (en) * 2006-12-25 2010-02-25 Tokyo Electron Limited Film forming apparatus and method
US8328943B2 (en) * 2006-12-25 2012-12-11 Tokyo Electron Limited Film forming apparatus and method
US8535600B2 (en) 2009-03-23 2013-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive
CN102660809A (en) * 2012-03-21 2012-09-12 上海联川自动化科技有限公司 A novel graphite heater with a single end fixed
CN115014084A (en) * 2022-06-21 2022-09-06 中材人工晶体研究院(山东)有限公司 Sintering furnace and method for preparing tantalum carbide coating on graphite substrate surface
CN115014084B (en) * 2022-06-21 2025-02-14 中材人工晶体研究院(山东)有限公司 Sintering furnace and method for preparing tantalum carbide coating on graphite substrate surface
CN115654932A (en) * 2022-10-19 2023-01-31 陕西天策新材料科技有限公司 A graphitization furnace device and a heating element load online compensation method
CN115654932B (en) * 2022-10-19 2025-08-19 陕西有色天策新材料科技有限公司 Graphitizing furnace device and heating element load on-line compensation method

Similar Documents

Publication Publication Date Title
US12278017B2 (en) Silicon carbide reinforced zirconium based cladding
CA1332698C (en) High purity diffusion furnace components
US5283109A (en) High temperature resistant structure
US4716572A (en) Method for coating carbon and graphite bodies
US6866897B2 (en) Method for manufacturing articles for high temperature use, and articles made therewith
JPH06280117A (en) Heating furnace for graphite fiber production
US4031851A (en) Apparatus for producing improved high strength filaments
CN108754390A (en) The preparation method of the small-bore graphite crucible protective coating of melting radioactive metal
JP3287029B2 (en) heating furnace
JPH07218145A (en) Heating furnace
RU2710176C1 (en) Pass-through furnace for high-temperature treatment of carbon-fiber materials with induction heating of working zone
JPS6311448B2 (en)
CN108004517B (en) A kind of fiber-reinforced metal matrix composite Y2O3The physical gas-phase deposite method of coating
KR102845759B1 (en) Method for Manufacturing Metal carbide Interface Layer for Thermal Protection Material and Thermal Protection Material Using the Same
KR102416899B1 (en) Jig for sintering and method for preparation of jig for sintering
US20220106221A1 (en) Protective coating for muffle in optical fiber draw furnace
RU2149478C1 (en) Thermionic cathode
JPS5814487A (en) Electric furnace heater
JPH0630161U (en) Heating furnace for graphite fiber production
CN119241282B (en) Composite rare earth silicate-rare earth zirconate gradient structure ultra-temperature heat/environment barrier coating and preparation method thereof
KR100419169B1 (en) Manufacturing method of graphite arc electrode using steam plasma
GB1566369A (en) Carbon and graphite electrodes for use in steel making
CN220643336U (en) Heat screen and single crystal furnace thermal field
JPS6363649B2 (en)
JPS6356471B2 (en)