JPH06295927A - Manufacture of solid-state image pickup element - Google Patents
Manufacture of solid-state image pickup elementInfo
- Publication number
- JPH06295927A JPH06295927A JP5083346A JP8334693A JPH06295927A JP H06295927 A JPH06295927 A JP H06295927A JP 5083346 A JP5083346 A JP 5083346A JP 8334693 A JP8334693 A JP 8334693A JP H06295927 A JPH06295927 A JP H06295927A
- Authority
- JP
- Japan
- Prior art keywords
- film
- transfer electrode
- transfer
- insulating film
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000003384 imaging method Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 23
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052710 silicon Inorganic materials 0.000 abstract description 16
- 239000010703 silicon Substances 0.000 abstract description 16
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 7
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 28
- 238000009792 diffusion process Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- -1 boron ions Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、多層構造の転送電極を
有する固体撮像素子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solid-state image pickup device having a multi-layered transfer electrode.
【0002】[0002]
【従来の技術】フレームトランスファ型のCCD固体撮
像素子において、被写体からの光を受ける撮像部は、照
射された光に応答して発生する情報電荷を蓄積すると同
時に、所定の期間蓄積された情報電荷を蓄積部へ転送出
力する構成となっている。このため、光の受光領域にも
情報電荷を転送駆動するための転送電極が設けられる。
この転送電極については、その側辺部が隣どうしオーバ
ーラップされており、転送経路のポテンシャル作用の連
続性が確保されて電荷の転送効率の低下防止が図られて
いる。2. Description of the Related Art In a frame transfer type CCD solid-state image pickup device, an image pickup portion which receives light from an object accumulates information charges generated in response to the applied light, and at the same time, accumulates information charges accumulated for a predetermined period. Is transferred to the storage unit and output. Therefore, transfer electrodes for transferring and driving information charges are also provided in the light receiving region.
The side edges of the transfer electrodes are overlapped with each other so that the continuity of the potential action of the transfer path is ensured and the reduction of the charge transfer efficiency is prevented.
【0003】図5は、フレームトランスファ型のCCD
固体撮像素子の撮像部を示す平面図で、図6は、そのX
−X線断面図である。この図面では、過剰な電荷を基板
側に吸収させる縦型オーバーフロードレイン構造のもの
を示している。N型のシリコン基板1の一面には、素子
領域となるP型の拡散層2が形成され、この拡散層2内
に高濃度のP型領域や厚い酸化膜(LOCOS)等から
なる複数の分離領域3が互いに平行に形成される。これ
らの分離領域3に挟まれたチャネル領域4には、表面部
分にN型の不純物が拡散されて埋め込みチャネル層5が
設けられている。そして、酸化膜6を介して1層目の転
送電極7がチャネル領域4と交差するようにして互いに
平行に配列され、さらに2層目の転送電極8が1層目の
転送電極7の間隙を覆うようにして配列される。これら
の転送電極7、8には、蓄積期間中にそれぞれ固定電位
が与えられ、これにより、4本の転送電極7、8を1単
位とした受光画素が設定される。そして、所定の受光期
間を経過した後には、各転送電極7、8に、4相のクロ
ックパルスが印加され、各受光画素に蓄積された情報電
荷がチャネル領域4に沿って蓄積部側に転送される。な
お、チャネル領域4に過剰な情報電荷が発生した場合に
は、その過剰電荷がシリコン基板1と拡散層2との間の
ポテンシャル障壁を越えてシリコン基板1側に吸収され
るように構成される。FIG. 5 shows a frame transfer type CCD.
FIG. 6 is a plan view showing an image pickup section of the solid-state image pickup element, and FIG.
It is a X-ray sectional view. This drawing shows a vertical overflow drain structure in which excessive charges are absorbed on the substrate side. A P-type diffusion layer 2 serving as an element region is formed on one surface of the N-type silicon substrate 1. In the diffusion layer 2, a plurality of isolation layers including a high-concentration P-type region and a thick oxide film (LOCOS) are formed. Regions 3 are formed parallel to each other. In the channel region 4 sandwiched between these isolation regions 3, a buried channel layer 5 is provided by diffusing N-type impurities in the surface portion. The transfer electrodes 7 of the first layer are arranged in parallel with each other so as to intersect the channel region 4 with the oxide film 6 interposed therebetween, and the transfer electrodes 8 of the second layer are separated from each other by a gap between the transfer electrodes 7 of the first layer. Arranged to cover. A fixed potential is applied to each of the transfer electrodes 7 and 8 during the accumulation period, so that a light receiving pixel with four transfer electrodes 7 and 8 as one unit is set. Then, after a lapse of a predetermined light receiving period, four-phase clock pulses are applied to the respective transfer electrodes 7 and 8, and the information charges accumulated in the respective light receiving pixels are transferred to the accumulating portion side along the channel region 4. To be done. When excessive information charges are generated in the channel region 4, the excess charges exceed the potential barrier between the silicon substrate 1 and the diffusion layer 2 and are absorbed by the silicon substrate 1 side. .
【0004】[0004]
【発明が解決しようとする課題】以上のようなCCD固
体撮像素子の受光部については、チャネル領域4に入射
する光の光電効果によって情報電荷を得ているため、転
送電極7、8の膜厚を薄くして光の入射効率を高くする
対策が考えられている。特に、高解像度化に対応して各
部の微細化が図られると、受光画素の面積が小さくな
り、入射効率の向上による受光感度の改善が問題とな
る。In the light receiving portion of the CCD solid-state image pickup device as described above, since information charges are obtained by the photoelectric effect of the light incident on the channel region 4, the film thickness of the transfer electrodes 7 and 8 is increased. Measures have been considered to reduce the thickness and increase the incidence efficiency of light. In particular, if each part is miniaturized in response to higher resolution, the area of the light receiving pixel becomes smaller, and the improvement of the light receiving sensitivity due to the improvement of the incident efficiency becomes a problem.
【0005】しかしながら、転送電極7、8の膜厚が薄
くなると、1層目の転送電極7と2層目の転送電極8と
の間を絶縁する層間絶縁膜を形成する際に、1層目の転
送電極7の側辺部が浮き上がり易くなるという問題が生
じる。即ち、層間絶縁膜が多結晶シリコンを材料とする
転送電極7の表面の熱酸化によって形成されるため、そ
の熱酸化処理の際にシリコン基板1と転送電極7との間
の酸化膜が転送電極7の側面側より成長し、転送電極7
の膜厚が薄い場合には、転送電極7の側辺部が浮き上が
る。このような転送電極7の側辺部の浮き上がりが生じ
ると、後のエッチング工程でその浮き上がり部分にエッ
チングの残りが生じ、電流リークを招く虞がある。ま
た、転送電極7の実効ゲート長が短くなり、所望の特性
が得られなくなると共に、浮き上がり部分で転送電極
7、8に突起が生じ、その突起部分に電界が集中して転
送不良を引き起こすことになる。However, when the film thickness of the transfer electrodes 7 and 8 becomes thin, the first layer is formed when the interlayer insulating film for insulating between the first layer transfer electrode 7 and the second layer transfer electrode 8 is formed. There is a problem that the side portion of the transfer electrode 7 is easily lifted. That is, since the interlayer insulating film is formed by thermal oxidation of the surface of the transfer electrode 7 made of polycrystalline silicon, an oxide film between the silicon substrate 1 and the transfer electrode 7 is formed during the thermal oxidation process. 7 is grown from the side surface side, and the transfer electrode 7
When the film thickness is thin, the side portion of the transfer electrode 7 floats. When the side portion of the transfer electrode 7 is lifted up, etching may remain in the lifted portion in a later etching step, which may cause current leakage. In addition, the effective gate length of the transfer electrode 7 becomes short, and desired characteristics cannot be obtained, and projections are formed on the transfer electrodes 7 and 8 at the raised portion, and the electric field is concentrated on the projection portion to cause transfer failure. Become.
【0006】そこで本発明は、信頼性及び特性の劣化を
防止しながら撮像部への光の入射効率を向上することを
目的とする。Therefore, an object of the present invention is to improve the incidence efficiency of light to the image pickup section while preventing the deterioration of reliability and characteristics.
【0007】[0007]
【課題を解決するための手段】本発明は、上述の課題を
解決するために成されたもので、その特徴とするところ
は、電荷の転送経路となるチャネル領域が設けられた半
導体基板上に、上記チャネル領域と交差する複数の転送
電極が多層に配置される固体撮像素子の製造方法におい
て、上記半導体基板上にゲート絶縁膜を介して第1の導
電膜及び第1の絶縁膜を順に形成する工程と、上記第1
の絶縁膜上に上記半導体基板のチャネル領域と交差する
方向に延在する形状のレジストマスクを形成し、このレ
ジストマスクに覆われた領域を除いて上記第1の導電膜
及び上記第1の絶縁膜を除去することで第1の転送電極
を形成する工程と、上記レジストマスクを除去した後、
上記第1の導電膜及び上記第1の絶縁膜が除去された領
域に露出する上記ゲート絶縁膜を除去する工程と、上記
第1の転送電極を覆って上記半導体基板上に第2の絶縁
膜及び第2の導電膜を順に形成する工程と、上記第2の
導電膜を少なくとも上記第1の転送電極の間隙部分を除
いて除去することで第2の転送電極を形成する工程と、
を備えることにある。The present invention has been made to solve the above-mentioned problems, and is characterized in that it is provided on a semiconductor substrate provided with a channel region serving as a charge transfer path. In the method for manufacturing a solid-state imaging device, in which a plurality of transfer electrodes intersecting the channel region are arranged in multiple layers, a first conductive film and a first insulating film are sequentially formed on the semiconductor substrate via a gate insulating film. And the first step
A resist mask having a shape extending in a direction intersecting with the channel region of the semiconductor substrate is formed on the insulating film, and the first conductive film and the first insulating film except the region covered with the resist mask. A step of forming a first transfer electrode by removing the film, and after removing the resist mask,
A step of removing the gate insulating film exposed in the region where the first conductive film and the first insulating film are removed; and a second insulating film on the semiconductor substrate, covering the first transfer electrode. And a step of sequentially forming the second conductive film, and a step of forming the second transfer electrode by removing the second conductive film except at least a gap portion of the first transfer electrode,
To prepare.
【0008】[0008]
【作用】本発明によれば、第1の転送電極の表面を薄く
酸化した後にCVD法等によって第2の絶縁膜を形成す
ることで、第1の転送電極と半導体基板との間の酸化膜
の成長が抑圧され、第1の転送電極の側辺部の浮き上が
りがなくなる。According to the present invention, the oxide film between the first transfer electrode and the semiconductor substrate is formed by thinly oxidizing the surface of the first transfer electrode and then forming the second insulating film by the CVD method or the like. Growth is suppressed, and lifting of the side portion of the first transfer electrode is eliminated.
【0009】[0009]
【実施例】図1乃至図4は、本発明の固体撮像素子の製
造方法を示す工程別の断面図である。なお、これらの図
は図6と同一部分を示している。まず、図1に示すよう
に、N型のシリコン基板10の一面にボロンイオン等の
P型の不純物を注入して拡散層11を形成し、この拡散
層11内に分離領域として高濃度のP型領域(図示せ
ず)を複数本平行に形成する。これらの分離領域に挟ま
れたチャネル領域には、リンイオン等のN型の不純物を
注入して埋め込みチャネル層12を形成する。以上の注
入工程は、周知のフォトリソグラフィ技術によって得ら
れる所望の形状のレジストマスクを用いて行われる。そ
して、分離領域及びチャネル領域が形成されたシリコン
基板10上に、ゲート絶縁膜となる酸化シリコン膜13
を、熱酸化によって膜厚100nmに形成する。さら
に、CVD法により、転送電極となる多結晶シリコン膜
14を膜厚400nm、層間絶縁膜となる酸化シリコン
膜15を膜厚200nmに順に形成する。1 to 4 are cross-sectional views for each step showing a method of manufacturing a solid-state image pickup device according to the present invention. Note that these figures show the same parts as in FIG. First, as shown in FIG. 1, P-type impurities such as boron ions are implanted into one surface of an N-type silicon substrate 10 to form a diffusion layer 11, and a high concentration of P as a separation region is formed in the diffusion layer 11. A plurality of mold regions (not shown) are formed in parallel. A buried channel layer 12 is formed by implanting N-type impurities such as phosphorus ions into the channel region sandwiched between these isolation regions. The above implantation process is performed using a resist mask having a desired shape obtained by a well-known photolithography technique. Then, the silicon oxide film 13 serving as a gate insulating film is formed on the silicon substrate 10 on which the isolation region and the channel region are formed.
To a thickness of 100 nm by thermal oxidation. Further, a polycrystalline silicon film 14 serving as a transfer electrode is formed in a thickness of 400 nm and a silicon oxide film 15 serving as an interlayer insulating film is formed in a thickness of 200 nm in this order by the CVD method.
【0010】次に、図2に示すように、所定の形状にパ
ターニングされたレジストマスク16を酸化シリコン膜
15上に形成し、このレジストマスク16に従ってエッ
チングすることにより1層目の転送電極17を形成す
る。この転送電極17は、拡散層11に設けられるチャ
ネル領域と交差する方向に延在し、且つそれぞれが一定
の間隔を置いて互いに平行となるように形成される。さ
らに、レジストマスク16を除去した後にRIE法にて
酸化シリコン膜13をエッチングし、シリコン基板10
の表面を露出させる。このエッチングの際には、転送電
極17上に残された酸化シリコン膜15が転送電極17
の保護膜となる。このように、レジストマスク16を除
去した後に酸化シリコン膜13を除去してシリコン基板
10の表面を露出させるようにすれば、レジストマスク
16の除去によって発生する不純物がシリコン基板10
の表面に付着するの防止できる。Next, as shown in FIG. 2, a resist mask 16 patterned into a predetermined shape is formed on the silicon oxide film 15, and the transfer mask 17 of the first layer is formed by etching according to the resist mask 16. Form. The transfer electrodes 17 extend in a direction intersecting the channel region provided in the diffusion layer 11 and are formed so as to be parallel to each other with a certain distance. Furthermore, after removing the resist mask 16, the silicon oxide film 13 is etched by the RIE method to remove the silicon substrate 10.
Expose the surface of. During this etching, the silicon oxide film 15 left on the transfer electrode 17 is removed.
It becomes a protective film of. Thus, if the silicon oxide film 13 is removed to expose the surface of the silicon substrate 10 after the resist mask 16 is removed, impurities generated by the removal of the resist mask 16 are removed.
Can be prevented from adhering to the surface.
【0011】続いて、転送電極17の側面及び転送電極
17の間隙部分に露出するシリコン基板10の表面を薄
く熱酸化し、ゲート絶縁膜となる酸化シリコン膜18を
新たに膜厚10nmに形成する。そこで、図3に示すよ
うに、CVD法による別の酸化シリコン膜19を酸化シ
リコン膜18を覆うようにして膜厚150nmに形成す
る。この酸化シリコン膜19の形成は、TEOS(Tetra
ethyl Orthosilicate)を用いた減圧CVD法が好まし
い。TEOSは、室温でアルコール状の液体で、加熱に
より分解され、反応式 Si(OC2H5)4 → SiO2+4C2H4+2H2O に従って酸化シリコンを成長させるもので、このTEO
Sを利用して成長される酸化シリコン膜は、段差被覆性
が良く層間絶縁膜に適している。Then, the side surface of the transfer electrode 17 and the surface of the silicon substrate 10 exposed in the gap portion of the transfer electrode 17 are thinly thermally oxidized to newly form a silicon oxide film 18 serving as a gate insulating film to a film thickness of 10 nm. . Therefore, as shown in FIG. 3, another silicon oxide film 19 is formed by CVD to have a film thickness of 150 nm so as to cover the silicon oxide film 18. This silicon oxide film 19 is formed by TEOS (Tetra
A low pressure CVD method using ethyl orthosilicate) is preferable. TEOS is an alcoholic liquid at room temperature, which is decomposed by heating to grow silicon oxide according to the reaction formula Si (OC 2 H 5 ) 4 → SiO 2 + 4C 2 H 4 + 2H 2 O.
The silicon oxide film grown using S has good step coverage and is suitable for an interlayer insulating film.
【0012】酸化シリコン膜19を形成した後、図4に
示すように酸化シリコン膜19上に転送電極となる多結
晶シリコン膜20をCVD法により膜厚400nmに形
成する。そして、この多結晶シリコン膜20の転送電極
17と重なる部分を周知のエッチング工程により除去
し、転送電極17の間隙部分を覆う2層目の転送電極2
1を形成する。この転送電極21は、1層目の転送電極
17と同様に、チャネル領域と交差する方向に延在し、
側辺部が隣り合う転送電極17と重なり合うように配置
される。さらに、これらの転送電極21上には、絶縁膜
を介してアルミニウム等の配線が各転送電極17、21
の端部に接続されるようにして形成され、情報電荷の蓄
積時及び転送時には、その配線から転送電極17、21
に所定の電位が供給される。After forming the silicon oxide film 19, as shown in FIG. 4, a polycrystalline silicon film 20 serving as a transfer electrode is formed on the silicon oxide film 19 to have a film thickness of 400 nm by the CVD method. Then, the portion of the polycrystalline silicon film 20 that overlaps the transfer electrode 17 is removed by a known etching process, and the second-layer transfer electrode 2 that covers the gap portion of the transfer electrode 17 is removed.
1 is formed. The transfer electrode 21 extends in the direction intersecting the channel region, like the transfer electrode 17 of the first layer,
The side portions are arranged so as to overlap the adjacent transfer electrodes 17. Further, on these transfer electrodes 21, wirings made of aluminum or the like are provided on the transfer electrodes 17, 21 via an insulating film.
Is formed so as to be connected to the end portions of the electrodes, and when the information charges are accumulated and transferred, the transfer electrodes 17 and 21 are transferred from the wirings.
A predetermined potential is supplied to.
【0013】ここで、2層目の転送電極21が、熱酸化
により形成される酸化シリコン膜18を介してシリコン
基板10上に配置されることから、2層目の転送電極2
1下の界面順位は、1層目の転送電極17下の界面順位
と近くなる。即ち、各転送電極17、21の下の部分で
シリコン基板10と接する酸化シリコン膜13、18が
共に熱酸化により形成されたものであるため、それぞれ
の部分でシリコン/酸化シリコン界面の界面順位が略等
しくなる。従って、CVD法にて形成された酸化シリコ
ン膜のみをゲート絶縁膜とする場合と比べて、チャネル
領域の界面準位が均一になり、転送効率の劣化が防止で
きる。Since the second-layer transfer electrode 21 is arranged on the silicon substrate 10 with the silicon oxide film 18 formed by thermal oxidation interposed therebetween, the second-layer transfer electrode 2 is formed.
The interface order under 1 is close to the interface order under the transfer electrode 17 of the first layer. That is, since the silicon oxide films 13 and 18 in contact with the silicon substrate 10 under the transfer electrodes 17 and 21 are both formed by thermal oxidation, the interface order of the silicon / silicon oxide interfaces is different in each part. It becomes almost equal. Therefore, as compared with the case where only the silicon oxide film formed by the CVD method is used as the gate insulating film, the interface state of the channel region becomes more uniform and the deterioration of transfer efficiency can be prevented.
【0014】なお、以上の実施例においては、N型のシ
リコン基板10にP型の拡散層11を形成した縦型オー
バーフロードレイン構造を例示したが、P型のシリコン
基板を用い、分離領域内にオーバーフロードレインを設
けた横型オーバーフロードレン構造でも同様に実施可能
である。In the above embodiments, the vertical overflow drain structure in which the P type diffusion layer 11 is formed on the N type silicon substrate 10 has been exemplified. However, a P type silicon substrate is used, and the vertical overflow drain structure is formed in the isolation region. A horizontal overflow drain structure provided with an overflow drain can be similarly implemented.
【0015】[0015]
【発明の効果】本発明によれば、1層目の転送電極の浮
き上がりを防止できるため、2層目の転送電極の形成の
際にエッチング残りが生じにくくなり、電流リークを防
止できると共に、転送電極の実効ゲート長の変動を防止
してそれぞれの電極で所望の特性を得ることができる。
また、1層目の転送電極下の界面順位と2層目の転送電
極下の界面順位とを略等しく設定できることから、各転
送電極で同等の特性を得ることができ、転送効率の劣化
を防止できる。According to the present invention, since the floating of the transfer electrode of the first layer can be prevented, etching residue is less likely to occur when the transfer electrode of the second layer is formed, current leakage can be prevented, and transfer can be prevented. It is possible to prevent variations in the effective gate length of the electrodes and obtain desired characteristics for each electrode.
Further, since the interface order under the transfer electrodes of the first layer and the interface order under the transfer electrodes of the second layer can be set to be substantially equal, the same characteristics can be obtained for each transfer electrode, and the deterioration of transfer efficiency can be prevented. it can.
【図1】本発明の固体撮像素子の第1の製造工程を示す
断面図である。FIG. 1 is a cross-sectional view showing a first manufacturing process of a solid-state imaging device of the present invention.
【図2】本発明の固体撮像素子の第2の製造工程を示す
断面図である。FIG. 2 is a cross-sectional view showing a second manufacturing process of the solid-state imaging device of the present invention.
【図3】本発明の固体撮像素子の第3の製造工程を示す
断面図である。FIG. 3 is a cross-sectional view showing a third manufacturing process of the solid-state imaging device of the present invention.
【図4】本発明の固体撮像素子の第4の製造工程を示す
断面図である。FIG. 4 is a cross-sectional view showing a fourth manufacturing process of the solid-state imaging device of the present invention.
【図5】従来の固体撮像素子の撮像部を示す平面図であ
る。FIG. 5 is a plan view showing an image pickup section of a conventional solid-state image pickup element.
【図6】図5のX−X線の断面図である。6 is a cross-sectional view taken along line XX of FIG.
1、10 シリコン基板 2、11 拡散層 3 分離領域 4 チャネル領域 5、12 埋め込みチャネル層 6、13、15、18、19 酸化シリコン膜 7、8、17、21 転送電極 14、20 多結晶シリコン膜 16 レジストマスク 1, 10 Silicon substrate 2, 11 Diffusion layer 3 Separation region 4 Channel region 5, 12 Buried channel layer 6, 13, 15, 18, 19 Silicon oxide film 7, 8, 17, 21 Transfer electrode 14, 20 Polycrystalline silicon film 16 resist mask
Claims (2)
けられた半導体基板上に、上記チャネル領域と交差する
複数の転送電極が多層に配置される固体撮像素子の製造
方法において、上記半導体基板上にゲート絶縁膜を介し
て第1の導電膜及び第1の絶縁膜を順に形成する工程
と、上記第1の絶縁膜上に上記半導体基板のチャネル領
域と交差する方向に延在する形状のレジストマスクを形
成し、このレジストマスクに覆われた領域を除いて上記
第1の導電膜及び上記第1の絶縁膜を除去することで第
1の転送電極を形成する工程と、上記レジストマスクを
除去した後、上記第1の導電膜及び上記第1の絶縁膜が
除去された領域に露出する上記ゲート絶縁膜を除去する
工程と、上記第1の転送電極を覆って上記半導体基板上
に第2の絶縁膜及び第2の導電膜を順に形成する工程
と、上記第2の導電膜を少なくとも上記第1の転送電極
の間隙部分を除いて除去することで第2の転送電極を形
成する工程と、を備えることを特徴とする固体撮像素子
の製造方法。1. A method of manufacturing a solid-state imaging device, wherein a plurality of transfer electrodes intersecting with the channel region are arranged in multiple layers on a semiconductor substrate provided with a channel region serving as a charge transfer path. A step of sequentially forming a first conductive film and a first insulating film via a gate insulating film, and a resist having a shape extending on the first insulating film in a direction intersecting the channel region of the semiconductor substrate. Forming a mask and removing the first conductive film and the first insulating film except the region covered by the resist mask; forming a first transfer electrode; and removing the resist mask. After that, a step of removing the gate insulating film exposed in the region where the first conductive film and the first insulating film are removed, and a second step on the semiconductor substrate covering the first transfer electrode. Insulation film and And a step of forming a second transfer electrode by removing the second conductive film except at least a gap portion of the first transfer electrode. A method of manufacturing a characteristic solid-state imaging device.
る上記半導体基板の表面を酸化した後、絶縁材料を積層
して上記第2の絶縁膜を得ることを特徴とする請求項1
記載の固体撮像素子の製造方法。2. The second insulating film is obtained by stacking an insulating material after oxidizing the surface of the semiconductor substrate exposed in the gap portion of the first transfer electrode.
A method for manufacturing the solid-state imaging device according to claim 1.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5083346A JP2877656B2 (en) | 1993-04-09 | 1993-04-09 | Method for manufacturing solid-state imaging device |
| US08/225,004 US5483090A (en) | 1993-04-09 | 1994-04-07 | Solid-state image pickup device and method for manufacturing such device |
| KR1019940007330A KR100196302B1 (en) | 1993-04-09 | 1994-04-08 | Multi-layered solid-state imaging device and manufacturing method with optimal film thickness |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5083346A JP2877656B2 (en) | 1993-04-09 | 1993-04-09 | Method for manufacturing solid-state imaging device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06295927A true JPH06295927A (en) | 1994-10-21 |
| JP2877656B2 JP2877656B2 (en) | 1999-03-31 |
Family
ID=13799885
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5083346A Expired - Lifetime JP2877656B2 (en) | 1993-04-09 | 1993-04-09 | Method for manufacturing solid-state imaging device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2877656B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9952621B2 (en) | 2006-12-04 | 2018-04-24 | Samsung Display Co., Ltd. | Display apparatus |
-
1993
- 1993-04-09 JP JP5083346A patent/JP2877656B2/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9952621B2 (en) | 2006-12-04 | 2018-04-24 | Samsung Display Co., Ltd. | Display apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2877656B2 (en) | 1999-03-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI861009B (en) | Solid-state imaging device | |
| JP4228887B2 (en) | Solid-state imaging device and manufacturing method thereof | |
| JP3225939B2 (en) | Solid-state imaging device and manufacturing method thereof | |
| JP3272941B2 (en) | Solid-state imaging device and method of manufacturing the same | |
| JP3737466B2 (en) | Solid-state imaging device and manufacturing method thereof | |
| JP2877656B2 (en) | Method for manufacturing solid-state imaging device | |
| JP3162440B2 (en) | Method for manufacturing solid-state imaging device | |
| JP4159306B2 (en) | Solid-state imaging device and manufacturing method thereof | |
| JP3036747B2 (en) | Method for manufacturing solid-state imaging device | |
| JP2919697B2 (en) | Method for manufacturing solid-state imaging device | |
| JP2000286409A (en) | Solid-state imaging device and method of manufacturing the same | |
| JP3493658B2 (en) | Solid-state imaging device and method of manufacturing the same | |
| WO2004059741A1 (en) | Solid-state imaging device, method for transferring charge in solid-state imaging device, and method for manufacturing solid-state imaging device | |
| JP3276906B2 (en) | Solid-state imaging device and method of manufacturing solid-state imaging device | |
| JP3081588B2 (en) | Method for manufacturing solid-state imaging device | |
| JP2007201319A (en) | Solid-state imaging device and manufacturing method thereof | |
| JPH09121045A (en) | Solid-state imaging device | |
| JP2005191400A (en) | Solid-state imaging device and manufacturing method of solid-state imaging device | |
| JP2867469B2 (en) | Charge transfer device and method of manufacturing the same | |
| JPH06296008A (en) | Manufacture of solid-state image pickup element | |
| JP4797302B2 (en) | Solid-state imaging device and manufacturing method thereof | |
| EP1766686A1 (en) | Solid state image pickup device and its manufacturing method | |
| JPH03125474A (en) | Solid state imaging device | |
| JPH07106543A (en) | Manufacture of solid-state image sensing device | |
| JPH06302800A (en) | Solid-state image sensing device |