[go: up one dir, main page]

JPH06297618A - Heat-shrinkable foam cushioning material - Google Patents

Heat-shrinkable foam cushioning material

Info

Publication number
JPH06297618A
JPH06297618A JP5113746A JP11374693A JPH06297618A JP H06297618 A JPH06297618 A JP H06297618A JP 5113746 A JP5113746 A JP 5113746A JP 11374693 A JP11374693 A JP 11374693A JP H06297618 A JPH06297618 A JP H06297618A
Authority
JP
Japan
Prior art keywords
heat
film
shrinkable
cushioning material
bubble cushioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5113746A
Other languages
Japanese (ja)
Inventor
Hajime Kawakami
肇 川上
Hidehiro Akitani
秀昊 秋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawakami Sangyo KK
Original Assignee
Kawakami Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawakami Sangyo KK filed Critical Kawakami Sangyo KK
Priority to JP5113746A priority Critical patent/JPH06297618A/en
Publication of JPH06297618A publication Critical patent/JPH06297618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Buffer Packaging (AREA)

Abstract

PURPOSE:To provide a heat-shrinkable foam cushioning material with wider temp. condition and improved shrinking force over conventional products while heat seal strength is kept by laminating integrally a foam cushioning material and a heat-shrinkable film or a heat-shrinkable composite film. CONSTITUTION:Either a heat-shrinkable film 6 produced by performing film forming, crosslinking and drawing of an ethylene resin film of an ethylene copolymer resin such as EVA(ethylene-vinyl acetate copolymer resin) with large crosslinking effect and EEA(ethylene-ethyl acrylate copolymer resin) and an ethylene resin, or a heat-shrinkable composite film produced by laminating the heat-shrinkable film 6 and another film is integrally laminated with a non- crosslinked foam cushioning material 10 with soft cushioning properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、緩衝包装材、特に緊密
な包装を必要とする場合の緩衝包装材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cushioning wrapping material, and particularly to a cushioning wrapping material when tight packing is required.

【0002】[0002]

【従来の技術】気泡緩衝材に架橋樹脂製フイルムを貼合
して熱収縮性を付与する技術は、試みられたことがな
い。気泡緩衝材自体に熱収縮性を付与した熱収縮性緩衝
材としては、実公平4−6894号公報が知られてい
る。
2. Description of the Related Art There has never been attempted a technique in which a film made of a crosslinked resin is attached to a bubble cushioning material to impart heat shrinkability. Japanese Utility Model Publication No. 4-6894 is known as a heat-shrinkable cushioning material in which heat-shrinkability is imparted to the bubble cushioning material itself.

【0003】実公平4−6894号公報記載は、その具
体的な製造方法として、気泡緩衝材の成形、電子線照射
による架橋、延伸という工程を例示している。キヤツプ
フイルムにバツクフイルムを熱融着して気泡緩衝材成形
後架橋するので、上記両フイルムとも架橋される。被包
装物を例えば、2方シール、3方シール、4方シールな
どの方法でヒートシール包装した後、収縮トンネルで加
熱収縮させるが、ヒートシール強度が上げられないとい
う問題点があつた。また、一般に架橋した樹脂は架橋前
に比して収縮温度が上昇する傾向にある。従って被包装
物に直接接触している気泡緩衝材の部分まで収縮させよ
うとすると、被包装物表面も高温に曝されることになる
という問題点もあった。また成形後に延伸するので、例
示されている円柱状の凸状突起(底面積=0.8平方セ
ンチメートルすなわち直径=約10mmで高さ=4m
m)は、これを4倍に一軸延伸すると、円柱状の形状が
大幅に変形する。つまり、円柱状をした気密室の高さ=
約1mmと低くなり、延伸方向の直径は楕円に変形して
又膜厚は薄くなる。薄くなつたフイルムでは気密室の気
密性も維持できないため、緩衝性が実質上なくなつてし
まい実用に供することはできなかった。
Japanese Utility Model Publication No. 4-6894 exemplifies, as a specific manufacturing method thereof, steps of molding a bubble cushioning material, crosslinking by electron beam irradiation, and stretching. Since the backing film is heat-sealed to the cap film and the bubble cushioning material is molded and then cross-linked, both films are cross-linked. After heat-sealing and packaging the object to be packaged by, for example, a two-sided seal, a three-sided seal, a four-sided seal, etc., the shrinkage tunnel causes heat shrinkage, but the heat seal strength cannot be increased. In general, a crosslinked resin tends to have a higher shrinkage temperature than that before crosslinking. Therefore, there is a problem in that the surface of the object to be packaged is also exposed to a high temperature when it is attempted to shrink the portion of the bubble cushioning material that is in direct contact with the object to be packaged. Further, since it is stretched after molding, the illustrated columnar convex protrusion (bottom area = 0.8 square centimeter, that is, diameter = about 10 mm and height = 4 m
In m), when it is uniaxially stretched 4 times, the cylindrical shape is significantly deformed. In other words, the height of the cylindrical airtight chamber =
It becomes as low as about 1 mm, the diameter in the stretching direction is transformed into an ellipse, and the film thickness becomes thin. Since the airtightness of the airtight chamber cannot be maintained with the thin film, the cushioning property is practically lost and it cannot be put to practical use.

【0004】[0004]

【発明が解決しようとする課題】ヒートシール強度を維
持しつつ、従来品よりも温度条件幅が広く、かつ収縮力
の強化された熱収縮性気泡緩衝材を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat-shrinkable bubble cushioning material having a wider range of temperature conditions and a stronger shrinkage force than conventional products while maintaining heat-sealing strength.

【0005】[0005]

【課題を解決するための手段】図1〜図6を用いて本発
明を説明するが、本発明はこれに限定されるものではな
い。
The present invention will be described with reference to FIGS. 1 to 6, but the present invention is not limited thereto.

【0006】[0006]

【図1】[Figure 1]

【0007】図1Aは、熱収縮性気泡緩衝材の第1の実
施例を示す断面図であり、図1Bは、熱収縮性気泡緩衝
材の第1の実施例を示す斜視図であつて、1は熱収縮性
気泡緩衝材、2はキヤツプフイルム、3はバツクフイル
ム、5は気泡室、6は熱収縮性フイルム、10は気泡緩
衝材である。
FIG. 1A is a sectional view showing a first embodiment of the heat-shrinkable bubble cushioning material, and FIG. 1B is a perspective view showing the first embodiment of the heat-shrinkable bubble cushioning material. Reference numeral 1 is a heat-shrinkable bubble buffer material, 2 is a cap film, 3 is a back film, 5 is a bubble chamber, 6 is a heat-shrinkable film, and 10 is a bubble buffer material.

【0008】図1において、キヤツプフイルム2、バツ
クフイルム3の素材に無架橋樹脂を用いる。無架橋樹脂
としては、後で説明する熱収縮性フイルム6の素材との
関係上、また加工性、価格などの点からポリオレフイン
樹脂、特にエチレン系樹脂が好ましい。
In FIG. 1, a non-crosslinking resin is used as a material for the cap film 2 and the back film 3. As the non-crosslinking resin, a polyolefin resin, particularly an ethylene resin is preferable in view of the material of the heat-shrinkable film 6, which will be described later, and in view of processability and cost.

【0009】図1に示す熱収縮性フイルム6の素材とし
ては、架橋した熱可塑性合成樹脂を用いる。該熱可塑性
合成樹脂としてはポリエチレン樹脂、ポリプロピレン樹
脂、ポリ塩化ビニルなどの何れを用いることもできる
が、押出しラミネーシヨン法の場合の熱融着強度を高め
るため、バツクフイルム3、ライナーフイルム4と同じ
エチレン系樹脂が特に好ましい。エチレン系樹脂にはエ
チレン共重合樹脂、ポリエチレン樹脂などが含まれる。
エチレン共重合樹脂としては、エチレン・酢酸ビニル共
重合樹脂(EVA)やエチレン・アクリル酸エチル共重
合樹脂(EEA)などがあげられる。ポリエチレン樹脂
としては、直鎖状低密度ポリエチレ(LLDPE)、低
密度ポリエチレン(LDPE)、高密度ポリエチレン
(HDPE)などを用いることができる。
As a material for the heat-shrinkable film 6 shown in FIG. 1, a crosslinked thermoplastic synthetic resin is used. As the thermoplastic synthetic resin, any of polyethylene resin, polypropylene resin, polyvinyl chloride and the like can be used, but the same as the back film 3 and the liner film 4 in order to increase the heat fusion strength in the case of the extrusion lamination method. Ethylene resins are especially preferred. Ethylene-based resins include ethylene copolymer resins and polyethylene resins.
Examples of the ethylene copolymer resin include ethylene / vinyl acetate copolymer resin (EVA) and ethylene / ethyl acrylate copolymer resin (EEA). As the polyethylene resin, linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and the like can be used.

【0010】キヤツプフイルム2とバツクフイルム3と
を貼合して、図1に示す形状の気泡緩衝材10を製造す
る。キヤツプフイルム2は、平坦なフイルムを成形可能
な温度まで加熱後、例えば成形ロールを用いてキヤツプ
形状(図1Bに例示す)に真空成形し、加熱しておいた
バツクフイルム3と、加熱、加圧下で貼合する。同様
に、熱収縮性フイルム6とバツクフイルム3とを貼合し
て、図1に示す熱収縮性気泡緩衝材1を製造する。熱収
縮性フイルム6とバツクフイルム3の貼合方法として
は、押出しラミネーシヨン法、接着剤ラミネーシヨン法
等がある。押出しラミネーシヨン法は、上記キヤツプフ
イルム2とバツクフイルム3を貼合する時に、加熱状態
のバツクフイルム3に、熱収縮性フイルム6を加圧して
貼合する方法である。接着剤ラミネーシヨン法は、熱収
縮性フイルム6とバツクフイルム3を、接着剤(図示せ
ず)を介して、接着剤によつて貼合する方法である。こ
こで接着剤とは、一般的にいう接着剤の他、粘着剤、上
記2枚のフイルム6、3の両者に親和性を有する熱可塑
性樹脂等が用いられる。
The cap film 2 and the back film 3 are attached to each other to manufacture the bubble cushioning material 10 having the shape shown in FIG. The cap film 2 is heated to a temperature at which a flat film can be molded, and then vacuum-molded into a cap shape (as shown in FIG. 1B) using, for example, a molding roll, and the heated back film 3 is heated and heated. Laminate under pressure. Similarly, the heat-shrinkable film 6 and the back film 3 are bonded together to manufacture the heat-shrinkable bubble cushioning material 1 shown in FIG. As a method for laminating the heat-shrinkable film 6 and the back film 3, there are an extrusion lamination method, an adhesive lamination method and the like. The extrusion lamination method is a method in which, when the cap film 2 and the back film 3 are laminated, the heat-shrinkable film 6 is adhered to the back film 3 in a heated state. The adhesive lamination method is a method in which the heat-shrinkable film 6 and the backing film 3 are bonded together with an adhesive (not shown). Here, as the adhesive agent, in addition to the adhesive agent generally referred to, an adhesive agent, a thermoplastic resin having an affinity for both of the two films 6 and 3, and the like are used.

【0011】熱収縮性フイルム6をライナーフイルム4
と貼合する場合を図6に例示した。ただし、バツクフイ
ルム3(図1等)と違って、ライナーフイルム4はない
場合も可能で、熱収縮性フイルム6をキヤツプフイルム
2の頂部(図6において、ライナーフイルム4と貼合し
ている部分)に直接貼合してもよい。上記熱収縮性フイ
ルム6と、ライナーフイルム4またはキヤツプフイルム
2の頂部に直接貼合するには、接着剤ラミネーシヨン法
を用いるのが好ましい。押出しラミネーシヨン法の場合
はライナーフイルム4の厚さを熱収縮性フイルム6、7
の厚さ以下にするのが好ましい。
The heat-shrinkable film 6 is attached to the liner film 4
The case of bonding with is illustrated in FIG. However, unlike the backing film 3 (FIG. 1 etc.), the liner film 4 may be omitted, and the heat-shrinkable film 6 is attached to the top of the capping film 2 (in FIG. 6, the portion where the liner film 4 is attached). ) May be directly attached. To directly bond the heat-shrinkable film 6 and the top of the liner film 4 or the cap film 2 to each other, it is preferable to use an adhesive lamination method. In the case of the extrusion lamination method, the thickness of the liner film 4 is set to the heat shrinkable film 6, 7
The thickness is preferably less than or equal to.

【0012】上記架橋フイルムは、ゲル分率=50〜9
5%の範囲で架橋される。架橋によつて、熱融着下限温
度と収縮開始温度の差で示される加工温度範囲が広くな
るので、押出しラミネーシヨン法の場合貼合時の収縮が
小さくてすむ。ゲル分率が50%未満では、熱収縮率が
不足する。ゲル分率が95%を越えると、透明性や外観
等が著しく劣化する。
The crosslinked film has a gel fraction of 50 to 9
It is crosslinked in the range of 5%. Since the cross-linking widens the processing temperature range indicated by the difference between the lower temperature limit for heat fusion and the shrinkage initiation temperature, the extrusion lamination method requires less shrinkage during bonding. When the gel fraction is less than 50%, the heat shrinkage rate is insufficient. If the gel fraction exceeds 95%, the transparency, appearance, etc. will deteriorate significantly.

【0013】[0013]

【図2】[Fig. 2]

【0014】図2Aは、熱収縮性気泡緩衝材の第2の実
施例を示す断面図であり、図2Bは、熱収縮性気泡緩衝
材の第2の実施例を示す斜視図であつて、1〜3、5、
6、10は図1と同様である。また、4はライナーフイ
ルムである。
FIG. 2A is a sectional view showing a second embodiment of the heat-shrinkable bubble cushioning material, and FIG. 2B is a perspective view showing a second embodiment of the heat-shrinkable bubble cushioning material. 1-3, 5,
6 and 10 are the same as in FIG. Further, 4 is a liner film.

【0015】キヤツプフイルム2、バツクフイルム3
と、2枚のフイルムで構成する、図1に示す気泡緩衝材
10を2層気泡緩衝材10という。これに対して、キヤ
ツプフイルム2、バツクフイルム3、ライナーフイルム
4と、3枚のフイルムで構成する、図2に示す気泡緩衝
材10を3層気泡緩衝材10という。
Cap film 2 and back film 3
The bubble cushioning material 10 shown in FIG. 1, which is composed of two films, is called a two-layer bubble cushioning material 10. On the other hand, the bubble cushioning material 10 shown in FIG. 2, which is composed of a cap film 2, a backing film 3, a liner film 4 and three films, is called a three-layer bubble cushioning material 10.

【0016】[0016]

【図3】[Figure 3]

【0017】図3は、熱収縮性気泡緩衝材の第3の実施
例を示す断面図であつて、1〜3、5、6、10は図1
と同様、4は図2と同様である。
FIG. 3 is a cross-sectional view showing a third embodiment of the heat-shrinkable bubble cushioning material, wherein 1-3, 5, 6, 10 are shown in FIG.
4 is the same as in FIG.

【0018】図3に示す気泡緩衝材10は、2層気泡緩
衝材10(図1)と3層気泡緩衝材10(図2)を重ね
合わせ、気泡室5が2重になつた構成である。前記の2
層気泡緩衝材10、3層気泡緩衝材10に対して、図3
に示す気泡緩衝材10の構成を5層気泡緩衝材と称す
る。
The bubble cushioning material 10 shown in FIG. 3 has a structure in which the two-layer bubble cushioning material 10 (FIG. 1) and the three-layer bubble cushioning material 10 (FIG. 2) are overlapped, and the bubble chamber 5 is doubled. . 2 above
For the three-layer bubble cushioning material 10 and the three-layer bubble cushioning material 10, FIG.
The structure of the bubble cushioning material 10 shown in is referred to as a five-layer bubble cushioning material.

【0019】[0019]

【図4】[Figure 4]

【0020】図4は、熱収縮性気泡緩衝材の第4の実施
例を示す断面図であつて、1〜3、5、10は図1と同
様である。また、7は熱収縮性複合フイルム、8は架橋
部分、9は無架橋部分である。
FIG. 4 is a cross-sectional view showing a fourth embodiment of the heat-shrinkable air bubble cushioning material, and 1 to 5, 5 and 10 are the same as those in FIG. Further, 7 is a heat-shrinkable composite film, 8 is a crosslinked portion, and 9 is a non-crosslinked portion.

【0021】図4の熱収縮性気泡緩衝材1は、図1の熱
収縮性気泡緩衝材1とほぼ同一構造をしている。図1は
2層気泡緩衝材10に熱収縮性フイルム6を貼合した熱
収縮性気泡緩衝材1であり、一方図4は、同じ2層気泡
緩衝材10に熱収縮性複合フイルム7を貼合した熱収縮
性気泡緩衝材1である。該熱収縮性複合フイルム7は、
架橋部分8と無架橋部分9とを一体的に貼合した多層フ
イルムである。気泡緩衝材10と貼合する時は、例え
ば、熱収縮性複合フイルム7の無架橋部分9面と、気泡
緩衝材10のバツクフイルム3面とを貼合するのが、相
互の親和性からみて好ましい。
The heat-shrinkable bubble cushioning material 1 of FIG. 4 has substantially the same structure as the heat-shrinkable bubble cushioning material 1 of FIG. 1 shows a heat-shrinkable bubble cushioning material 1 in which a heat-shrinkable film 6 is attached to a two-layer bubble cushioning material 10, while FIG. 4 shows a heat-shrinkable composite film 7 attached to the same two-layer bubble cushioning material 10. The combined heat-shrinkable bubble cushioning material 1. The heat-shrinkable composite film 7 is
This is a multilayer film in which a crosslinked portion 8 and a non-crosslinked portion 9 are integrally laminated. When laminating with the bubble cushioning material 10, for example, the non-cross-linking portion 9 surface of the heat-shrinkable composite film 7 and the back film 3 surface of the bubble cushioning material 10 are laminated together in view of mutual affinity. preferable.

【0022】[0022]

【図5】[Figure 5]

【0023】図5は、熱収縮性気泡緩衝材の第5の実施
例を示す断面図であつて、1〜3、5、10は図1と同
様、4は図2と同様、7〜9は図4と同様である。
FIG. 5 is a sectional view showing a fifth embodiment of the heat-shrinkable air bubble cushioning material, wherein 1 to 5, 5 and 10 are the same as in FIG. 1, 4 is the same as in FIG. Is similar to FIG.

【0024】[0024]

【図6】[Figure 6]

【0025】図6は、熱収縮性気泡緩衝材の第6の実施
例を示す断面図であつて、1〜3、5、6、10は図1
と同様、4は図2と同様である。
FIG. 6 is a cross-sectional view showing a sixth embodiment of the heat-shrinkable air bubble cushioning material, wherein 1-3, 5, 6, 10 are shown in FIG.
4 is the same as in FIG.

【0026】[0026]

【実施例1】キヤツプフイルム2、バツクフイルム3、
熱収縮性フイルム6を押出しラミネーシヨン法で貼合し
て、図1に示す熱収縮性気泡緩衝材1を製造した。厚み
は、キヤツプフイルム2が60μm、バツクフイルム3
が30μm、熱収縮性フイルム6が20μmであつた。
直鎖状低密度ポリエチレンの架橋物単体を熱収縮性フイ
ルム6として用いた。試験法としては一般的なグリセリ
ン浴による収縮測定法を用いた。約125〜130℃で
加熱したところ、約34%熱収縮した。
Embodiment 1 A cap film 2, a back film 3,
The heat-shrinkable film 6 was extruded and laminated by a lamination method to manufacture the heat-shrinkable bubble cushioning material 1 shown in FIG. The thickness of the cap film 2 is 60 μm, and that of the back film 3
Was 30 μm and the heat-shrinkable film 6 was 20 μm.
A linear low-density polyethylene cross-linked product alone was used as the heat-shrinkable film 6. As the test method, a general contraction measurement method using a glycerin bath was used. When it was heated at about 125 to 130 ° C, it shrank by about 34%.

【0027】[0027]

【実施例2】気泡緩衝材10のバツクフイルム3側に接
着剤ラミネーシヨン法で熱収縮性複合フイルム7を貼合
して、図4に示す熱収縮性気泡緩衝材1を製造した。厚
みは、キヤツプフイルム2が60μm、バツクフイルム
3が30μm、熱収縮性複合フイルム7が25μmであ
つた。熱収縮性複合フイルム7の厚みの内訳は、架橋部
分8が15μm、無架橋部分9が10μmであつた。熱
収縮性複合フイルム7としては、架橋部分8も無架橋部
分9も、エチレン・酢酸ビニル共重合樹脂を用いた。グ
リセリン浴約125〜130℃で加熱したところ、約3
1%熱収縮した。
Example 2 A heat-shrinkable composite buffer film 1 shown in FIG. 4 was manufactured by bonding a heat-shrinkable composite film 7 to the back film 3 side of the air bubble buffer material 10 by an adhesive lamination method. The cap film 2 had a thickness of 60 μm, the back film 3 had a thickness of 30 μm, and the heat-shrinkable composite film 7 had a thickness of 25 μm. The breakdown of the thickness of the heat-shrinkable composite film 7 was 15 μm in the crosslinked portion 8 and 10 μm in the non-crosslinked portion 9. As the heat-shrinkable composite film 7, both the crosslinked portion 8 and the non-crosslinked portion 9 were made of ethylene / vinyl acetate copolymer resin. Glycerin bath heated at about 125-130 ℃, about 3
It contracted by 1%.

【0028】[0028]

【作用】先ず、熱収縮性フイルム6、熱収縮性複合フイ
ルム7の素材である架橋部分8について説明しておく。
鎖状高分子、例えば高圧法ポリエチレンは熱可塑性樹脂
であるが、これに電子線を照射する等の手段により、鎖
状高分子の分子間が共有結合で結ばれ、いわゆる架橋す
る。架橋すると不溶性になり、耐熱性、機械的強度が向
上する。不溶性の程度はゲル分率で示され、ゲル分率が
高いのは、共有結合数の多いことを意味する。上記鎖状
高分子のポリエチレン系樹脂は、ゲル分率が50〜95
%と大幅に架橋できる。架橋した鎖状高分子を延伸する
と分子は変形して伸び、加熱して軟化すると元の状態に
戻ろうとするゴム状弾性のような性質を示すようにな
る。未架橋の鎖状高分子を延伸すると、折り畳まれた構
造の結晶が伸び、抗張力は向上するが、加熱して軟化さ
せても、架橋鎖状高分子がゴム状弾性を示して収縮する
のと異なつて、収縮力も収縮率も小さい。熱収縮性フイ
ルム6とバツクフイルム3を貼合する押出しラミネーシ
ヨン時に於いて、軟化すれば熱収縮性フイルム6も収縮
するが、融点近くまで加熱しなければバツクフイルム3
と融着しない。従って、熱収縮性フイルム6のバツクフ
イルム3側は融着可能温度まで加熱し、反対側はチルロ
ール等で充分に冷却して貼合する。こうすると、熱収縮
性フイルム6は一方の面は過冷却だがバツクフイルム3
と融着し、かつ収縮はしにくい。しかし、架橋により不
溶性部分が多いから、完全な融着ではなく不充分な融着
であるが実用上差し支えない範囲には融着する。従って
熱融着下限温度と熱収縮開始温度の幅が広くなる。シユ
リンク包装時は耐熱性が向上する。又不溶性があるか
ら、気泡緩衝材10を構成するキヤツプフイルム2、バ
ツクフイルム3、ライナーフイルム4が加熱によつて可
塑化するのと異なり、炭化するような不必要に高温にで
もしない限り可塑化はしなくてゴム弾性状を示すだけで
ある。従って気泡室5が潰れないまでの高温まで温度範
囲を広く取っても差し支えないし、前述の如く収縮がゴ
ム弾性的性質を示しての収縮につき、収縮率が大きく、
又収縮力も大きくなる。ヒートシール強度については、
不溶性部分が多い分、シール強度、即ち融着強度は向上
しない。
The function of the heat-shrinkable film 6 and the heat-shrinkable composite film 7 will be described first.
A chain polymer, for example, high-pressure polyethylene is a thermoplastic resin, and the molecules of the chain polymer are covalently bonded to each other by means of irradiating it with an electron beam or the like, so-called cross-linking. When crosslinked, it becomes insoluble and heat resistance and mechanical strength are improved. The degree of insolubility is indicated by a gel fraction, and a high gel fraction means a large number of covalent bonds. The chain polymer polyethylene resin has a gel fraction of 50 to 95.
% Can be significantly crosslinked. When the crosslinked chain polymer is stretched, the molecule is deformed and elongated, and when it is softened by heating, it exhibits a property like rubber-like elasticity that tends to return to its original state. Stretching the uncrosslinked chain polymer extends the crystals of the folded structure and improves the tensile strength, but even if it is softened by heating, the crosslinked chain polymer exhibits rubber-like elasticity and shrinks. Differently, the contraction force and contraction rate are small. At the time of extrusion lamination in which the heat shrinkable film 6 and the back film 3 are bonded together, the heat shrinkable film 6 shrinks if it is softened, but the back film 3 is heated unless it is heated to near the melting point.
And does not fuse. Therefore, the back film 3 side of the heat-shrinkable film 6 is heated to a temperature at which it can be fused, and the other side is sufficiently cooled with a chill roll or the like for bonding. In this way, the heat-shrinkable film 6 is supercooled on one side, but the back film 3
It is fused and does not easily shrink. However, since there are many insoluble portions due to cross-linking, the fusion is not complete fusion but insufficient fusion, but fusion occurs to the extent that there is no practical problem. Therefore, the range between the heat fusion lower limit temperature and the heat shrinkage start temperature becomes wider. Heat resistance is improved during shrink wrapping. Further, since it is insoluble, unlike the cap film 2, the back film 3 and the liner film 4 which compose the bubble cushioning material 10 by heating, they are plasticized unless they are heated to an unnecessarily high temperature such as carbonization. It is not elastic and only shows rubber elasticity. Therefore, there is no problem even if a wide temperature range is taken up to a high temperature until the bubble chamber 5 does not collapse, and as described above, the contraction shows a rubber elastic property and the contraction rate is large.
In addition, the contraction force also increases. For heat seal strength,
Since there are many insoluble portions, the sealing strength, that is, the fusion strength, is not improved.

【0029】図1〜図5に示す熱収縮性気泡緩衝材1で
包装する場合、熱収縮性フイルム6もしくは熱収縮性複
合フイルム7はバツクフイルム3側にあるから、キヤツ
プフイルム2(図2、図5はライナーフイルム4)面を
被包装物と接して包装する。キヤツプフイルム2とバツ
クフイルム3で構成する気泡緩衝材10(図1、図
4)、および、キヤツプフイルム2、バツクフイルム
3、ライナーフイルム4で構成する気泡緩衝材10(図
2、図3、図5)は、架橋されておらず、延伸工程を設
けての積極的な延伸も施されていないので、熱収縮性フ
イルム6や熱収縮性複合フイルム7に比して熱収縮しに
くい。熱収縮性気泡緩衝材1で被包装物を包装し、熱収
縮性フイルム6または熱収縮性複合フイルム7を外側に
してヒートシールし、シユリンクトンネルで加熱収縮さ
せると、熱収縮性フイルム6または熱収縮性複合フイル
ム7のみ収縮し、キヤツプフイルム2、バツクフイルム
3、ライナーフイルム4で構成する気泡緩衝材10部分
は殆ど熱収縮しない。その結果、熱収縮性フイルム6も
しくは熱収縮性複合フイルム7の熱収縮に連動して、バ
ツクフイルム3は皺の寄った形となるが、キヤツプフイ
ルム2は僅かに機械的な変形をするに過ぎず、ライナー
フイルム4の変形は、キヤツプフイルム2のそれよりも
更に小さい。気泡室5もやや傾斜した形状になるが、本
質的な気泡室5の形状に変化はない。この作用は図1〜
図5に示す熱収縮性気泡緩衝材1だけでなく、図6に示
す熱収縮性気泡緩衝材1についても同様である。図6に
示す熱収縮性気泡緩衝材1で包装する場合、バツクフイ
ルム3面を被包装物と接して包装する。熱収縮性フイル
ム6または熱収縮性複合フイルム7をライナーフイルム
4側に貼合(図6に例示)すると、バツクフイルム3側
に貼合(図1〜5に例示)した場合よりも、熱変形が大
きくなる。包装時、熱収縮性気泡緩衝材1の外面にある
熱収縮性フイルム6または熱収縮性複合フイルム7は、
上述の如く熱収縮する。該熱収縮の結果、熱収縮性フイ
ルム6または熱収縮性複合フイルム7はフイルム厚みを
増し、外部からの衝撃を緩和し易くなる。
In the case of packaging with the heat-shrinkable bubble cushioning material 1 shown in FIGS. 1 to 5, the heat-shrinkable film 6 or the heat-shrinkable composite film 7 is on the back film 3 side, and therefore the cap film 2 (FIG. 2, In FIG. 5, the liner film 4) surface is in contact with the object to be packaged. An air bubble cushioning material 10 composed of the cap film 2 and the backing film 3 (FIGS. 1 and 4), and a bubble cushioning material 10 composed of the cap film 2, the backing film 3 and the liner film 4 (FIGS. 2, 3 and 4). In 5), since it is not crosslinked and is not subjected to a positive stretching by providing a stretching step, it is less likely to undergo heat shrinkage than the heat-shrinkable film 6 or the heat-shrinkable composite film 7. The object to be packaged is wrapped with the heat-shrinkable air bubble cushioning material 1, heat-sealed with the heat-shrinkable film 6 or the heat-shrinkable composite film 7 on the outside, and heat-shrinked in the shrink tunnel, whereby the heat-shrinkable film 6 or Only the heat-shrinkable composite film 7 shrinks, and the portion of the bubble cushioning material 10 composed of the cap film 2, the back film 3 and the liner film 4 hardly shrinks. As a result, the back film 3 has a wrinkled shape in association with the heat shrinkage of the heat shrinkable film 6 or the heat shrinkable composite film 7, but the cap film 2 is only slightly mechanically deformed. However, the deformation of the liner film 4 is smaller than that of the cap film 2. The bubble chamber 5 also has a slightly inclined shape, but the essential shape of the bubble chamber 5 does not change. This action is
The same applies to the heat-shrinkable bubble cushioning material 1 shown in FIG. 6 as well as the heat-shrinkable bubble cushioning material 1 shown in FIG. In the case of packaging with the heat-shrinkable air bubble cushioning material 1 shown in FIG. 6, the back film 3 is in contact with the object to be packaged. When the heat-shrinkable film 6 or the heat-shrinkable composite film 7 is pasted on the liner film 4 side (exemplified in FIG. 6), it is deformed by heat more than when it is pasted on the back film 3 side (illustrated in FIGS. 1 to 5). Grows larger. At the time of packaging, the heat-shrinkable film 6 or the heat-shrinkable composite film 7 on the outer surface of the heat-shrinkable bubble cushioning material 1 is
Heat shrinks as described above. As a result of the heat shrinkage, the heat-shrinkable film 6 or the heat-shrinkable composite film 7 increases the thickness of the film, making it easier to absorb the impact from the outside.

【0030】熱収縮性フイルム6もしくは熱収縮性複合
フイルム7をライナーフイルム4側に貼合(図6に例
示)すると、バツクフイルム3側に貼合(図1〜5に例
示)した場合とは違った特性を有する。図1において、
包装後熱収縮性フイルム6が加熱収縮されても、バツク
フイルム3やキヤツプフイルム2等の収縮変形は、熱収
縮性フイルム6単独の時のように大きくはない。一方、
図6のようにライナーフイルム4側に熱収縮性フイルム
6を設けると、該熱収縮性フイルム6の収縮変形に抵抗
するのは、キヤツプフイルム2の頂部だけであるから、
肉厚でかつバツクフイルム3の全面積で抵抗する図1の
場合に較べて、熱収縮性フイルム6の収縮に応じてキヤ
ツプフイルム2以下の収縮は大きい。この現象は、図6
のようにライナーフイルム4が設けられていても、キヤ
ツプフイルム2の頂部に対応してライナーフイルム4の
肉厚が薄ければ、熱収縮性フイルム6の収縮変形に同伴
してキヤツプフイルム2以下の気泡緩衝材10が収縮変
形しやすい、という原理に変わりはない。
When the heat-shrinkable film 6 or the heat-shrinkable composite film 7 is pasted on the liner film 4 side (illustrated in FIG. 6), it is pasted on the back film 3 side (illustrated in FIGS. 1 to 5). It has different characteristics. In FIG.
Even if the heat-shrinkable film 6 is heat-shrinked after packaging, the shrinkage deformation of the back film 3 and the cap film 2 is not so large as in the case of the heat-shrinkable film 6 alone. on the other hand,
When the heat-shrinkable film 6 is provided on the liner film 4 side as shown in FIG. 6, only the top portion of the cap film 2 resists the shrinkage deformation of the heat-shrinkable film 6.
Compared to the case of FIG. 1 which is thick and resists over the entire area of the backing film 3, the shrinkage of the cap film 2 and below is large in accordance with the shrinkage of the heat-shrinkable film 6. This phenomenon is shown in FIG.
Even if the liner film 4 is provided as described above, if the thickness of the liner film 4 corresponding to the top of the cap film 2 is thin, the heat-shrinkable film 6 accompanies the contraction deformation of the cap film 2 or less. There is no change in the principle that the bubble cushioning material 10 easily contracts and deforms.

【0031】[0031]

【発明の効果】本発明に用いる熱収縮性フイルム6、熱
収縮性複合フイルム7は何れも、ゲル分率が50〜95
%の架橋部分8を延伸したフイルムであり、ゴム状弾性
を示して収縮力も収縮率も大きく、収縮力も収縮率も低
い無架橋部分9素材の熱収縮性フイルム6、7よりも優
れている。作用の欄で説明したように、押出しラミネー
シヨン工程では、低い温度でも融着でき、しかも高温ま
で収縮しにくい。つまり、融着温度は低く収縮下限温度
は高くと、押出しラミネーシヨンが行える温度範囲を広
くとることができる。同様に、緊密な包装を行うのに必
要な収縮開始温度は低く、高温のために気泡室5が潰れ
る下限温度は高くなるので、熱収縮包装時の温度範囲も
広くなり、包装作業が容易になる。熱収縮性フイルム
6、熱収縮性複合フイルム7をライナーフイルム4側に
設けると、熱収縮時の熱収縮性気泡緩衝材1全体の変形
は大きい。
The heat-shrinkable film 6 and the heat-shrinkable composite film 7 used in the present invention each have a gel fraction of 50 to 95.
% Of the cross-linked portion 8 is stretched, and is superior to the heat-shrinkable films 6 and 7 of the non-cross-linked portion 9 material which exhibits rubber-like elasticity and has a large shrinkage force and a large shrinkage ratio and a low shrinking force and a shrinkage ratio. As described in the section of action, in the extrusion lamination step, fusion can be performed even at a low temperature, and further, shrinking to a high temperature is difficult. That is, when the fusion temperature is low and the shrinkage lower limit temperature is high, the temperature range in which extrusion lamination can be performed can be widened. Similarly, the shrinking start temperature required for tight packing is low, and the lower limit temperature at which the bubble chamber 5 is crushed due to the high temperature is high, so that the temperature range during heat shrink wrapping is wide and the wrapping operation is easy. Become. When the heat-shrinkable film 6 and the heat-shrinkable composite film 7 are provided on the liner film 4 side, the heat-shrinkable bubble cushioning material 1 is largely deformed during heat shrinkage.

【図面の簡単な説明】[Brief description of drawings]

【図1】A 熱収縮性気泡緩衝材の第1の実施例を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a first embodiment of a heat-shrinkable air bubble cushioning material.

【図1】B 熱収縮性気泡緩衝材の第1の実施例を示す斜視図であ
る。
FIG. 1 is a perspective view showing a first embodiment of a B heat-shrinkable bubble cushioning material.

【図2】A 熱収縮性気泡緩衝材の第2の実施例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a second embodiment of the heat-shrinkable air bubble cushioning material.

【図2】B 熱収縮性気泡緩衝材の第2の実施例を示す斜視図であ
る。
FIG. 2 is a perspective view showing a second embodiment of the B-heat-shrinkable bubble cushioning material.

【図3】熱収縮性気泡緩衝材の第3の実施例を示す断面
図である。
FIG. 3 is a cross-sectional view showing a third embodiment of the heat-shrinkable bubble cushioning material.

【図4】熱収縮性気泡緩衝材の第4の実施例を示す断面
図である。
FIG. 4 is a sectional view showing a fourth embodiment of the heat-shrinkable bubble cushioning material.

【図5】熱収縮性気泡緩衝材の第5の実施例を示す断面
図である。
FIG. 5 is a sectional view showing a fifth embodiment of the heat-shrinkable bubble cushioning material.

【図6】熱収縮性気泡緩衝材の第6の実施例を示す断面
図である。
FIG. 6 is a cross-sectional view showing a sixth embodiment of the heat-shrinkable bubble cushioning material.

【符号の説明】[Explanation of symbols]

1 熱収縮性気泡緩衝材 2 キヤツプフイルム 3 バツクフイルム 4 ライナーフイルム 5 気泡室 6 熱収縮性フイルム 7 熱収縮性複合フイルム 8 架橋部分 9 無架橋部分 10 気泡緩衝材 1 heat-shrinkable air bubble cushioning material 2 cap film 3 backing film 4 liner film 5 air bubble chamber 6 heat shrinkable film 7 heat shrinkable composite film 8 crosslinked portion 9 non-crosslinked portion 10 air bubble buffering material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月14日[Submission date] February 14, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは熱収縮性気泡緩衝材の第1の実施例を示す
断面図である。Bは熱収縮性気泡緩衝材の第1の実施例
を示す斜視図である。
FIG. 1A is a cross-sectional view showing a first embodiment of a heat-shrinkable bubble cushioning material. 3B is a perspective view showing a first embodiment of the heat-shrinkable bubble cushioning material. FIG.

【図2】Aは熱収縮性気泡緩衝材の第2の実施例を示す
断面図である。Bは熱収縮性気泡緩衝材の第2の実施例
を示す斜視図である。
FIG. 2A is a sectional view showing a second embodiment of the heat-shrinkable bubble cushioning material. B is a perspective view showing a second embodiment of the heat-shrinkable air bubble cushioning material.

【図3】熱収縮性気泡緩衝材の第3の実施例を示す断面
図である。
FIG. 3 is a cross-sectional view showing a third embodiment of the heat-shrinkable bubble cushioning material.

【図4】熱収縮性気泡緩衝材の第4の実施例を示す断面
図である。
FIG. 4 is a sectional view showing a fourth embodiment of the heat-shrinkable bubble cushioning material.

【図5】熱収縮性気泡緩衝材の第5の実施例を示す断面
図である。
FIG. 5 is a sectional view showing a fifth embodiment of the heat-shrinkable bubble cushioning material.

【図6】熱収縮性気泡緩衝材の第6の実施例を示す断面
図である。
FIG. 6 is a cross-sectional view showing a sixth embodiment of the heat-shrinkable bubble cushioning material.

【符号の説明】 1 熱収縮性気泡緩衝材 2 キヤツプフイルム 3 バツクフイルム 4 ライナーフイルム 5 気泡室 6 熱収縮性フイルム 7 熱収縮性複合フイルム 8 架橋部分 9 無架橋部分 10 気泡緩衝材[Explanation of reference numerals] 1 heat-shrinkable air bubble cushioning material 2 cap film 3 backing film 4 liner film 5 air bubble chamber 6 heat shrinkable film 7 heat shrinkable composite film 8 crosslinked portion 9 non-crosslinked portion 10 air bubble cushioning material

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図6】 [Figure 6]

【図2】 [Fig. 2]

【図5】 [Figure 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無架橋樹脂を素材とする気泡緩衝材の一
方の面に、架橋フイルムである熱収縮性フイルムを貼合
したことを特徴とする熱収縮性気泡緩衝材。
1. A heat-shrinkable bubble-cushioning material comprising a heat-shrinkable film, which is a cross-linked film, attached to one surface of a bubble-cushioning material made of a non-crosslinked resin.
【請求項2】 ポリエチレン樹脂、エチレン・酢酸ビニ
ル共重合樹脂、エチレン・アクリル酸エチル共重合樹脂
またはこれら樹脂の混合物のうちの何れかであるエチレ
ン系樹脂を素材とした、ゲル分率が50〜95%の範囲
にある架橋フイルムを熱収縮性フイルムとして用いる請
求項1記載の熱収縮性気泡緩衝材。
2. A gel fraction made of an ethylene resin, which is one of a polyethylene resin, an ethylene / vinyl acetate copolymer resin, an ethylene / ethyl acrylate copolymer resin, or a mixture of these resins, as a raw material. The heat-shrinkable bubble cushioning material according to claim 1, wherein a crosslinked film in the range of 95% is used as the heat-shrinkable film.
JP5113746A 1993-04-15 1993-04-15 Heat-shrinkable foam cushioning material Pending JPH06297618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113746A JPH06297618A (en) 1993-04-15 1993-04-15 Heat-shrinkable foam cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113746A JPH06297618A (en) 1993-04-15 1993-04-15 Heat-shrinkable foam cushioning material

Publications (1)

Publication Number Publication Date
JPH06297618A true JPH06297618A (en) 1994-10-25

Family

ID=14620079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113746A Pending JPH06297618A (en) 1993-04-15 1993-04-15 Heat-shrinkable foam cushioning material

Country Status (1)

Country Link
JP (1) JPH06297618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112404A (en) * 2011-11-30 2013-06-10 Kawakami Sangyo Co Ltd Laminate bubble cushion sheet, method of manufacturing the same, and drawstring pouch formed from the same
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength
CN115214159A (en) * 2021-04-19 2022-10-21 嘉善安迅织造有限公司 Method for manufacturing multilayer buffer structure
CN117507519A (en) * 2023-11-16 2024-02-06 苏州大喜包装科技有限公司 A bubble film with efficient buffering and protection effect and its processing technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength
US10301447B2 (en) 2009-07-14 2019-05-28 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength
JP2013112404A (en) * 2011-11-30 2013-06-10 Kawakami Sangyo Co Ltd Laminate bubble cushion sheet, method of manufacturing the same, and drawstring pouch formed from the same
CN115214159A (en) * 2021-04-19 2022-10-21 嘉善安迅织造有限公司 Method for manufacturing multilayer buffer structure
CN117507519A (en) * 2023-11-16 2024-02-06 苏州大喜包装科技有限公司 A bubble film with efficient buffering and protection effect and its processing technology

Similar Documents

Publication Publication Date Title
EP0084827B1 (en) Method for the manufacture of a deep-drawn object
KR890003422B1 (en) Oriented polymeric films
FI65273C (en) VAERMEKRYMPBAR FOERPACKNINGSFILM
EP0449339B1 (en) Multiple layer polymeric films, process for making them and packages made from them
US3620898A (en) Heat shrinkable cushioning material
JPS633900B2 (en)
KR850004777A (en) Stretched polymer film
JP3104885B2 (en) Heat shrinkable laminated film
EP1410902B1 (en) Multi-layer, heat-shrinking film that acts as an oxygen and water vapour barrier and exhibits low curling
US4318763A (en) Sealing cross-linked thermoplastic materials
USRE28554E (en) Flexible wrapping material
JPH06500963A (en) Heat-shrinkable multilayer polymer film containing recycled polymers
JPH06297618A (en) Heat-shrinkable foam cushioning material
CN109398910B (en) Mask bag material, production process and mask packaging bag
US20060159941A1 (en) Multilayer shrink film
JPS60171149A (en) Polyester composite film
GB2098542A (en) Heat sealable polypropylene films
JP3188175B2 (en) Packaging film and shrink package using the same
WO2003082699A1 (en) Cushioning material and method of manufacturing the cushioning material
US5250332A (en) Heat-shrinkable envelope having low-tearing susceptibility
JP3498759B2 (en) Method for producing heat-shrinkable multilayer film
JPH07232764A (en) Cushioning material
AU643150B2 (en) A heat-shrinkable composite foil
JPS5912189Y2 (en) Multi-layer heat-shrinkable article
JPH0647808A (en) Manufacture of elastic composite body