[go: up one dir, main page]

JPH062980A - Absorption heat pump device - Google Patents

Absorption heat pump device

Info

Publication number
JPH062980A
JPH062980A JP4156944A JP15694492A JPH062980A JP H062980 A JPH062980 A JP H062980A JP 4156944 A JP4156944 A JP 4156944A JP 15694492 A JP15694492 A JP 15694492A JP H062980 A JPH062980 A JP H062980A
Authority
JP
Japan
Prior art keywords
heat
absorption
air
refrigerant
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4156944A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamamoto
義明 山本
Shinji Komura
伸次 小村
Hisaaki Gyoten
久朗 行天
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4156944A priority Critical patent/JPH062980A/en
Publication of JPH062980A publication Critical patent/JPH062980A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/006Reversible sorption cycles

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】 【目的】 コンパクトで効率の高い吸収式ヒートポンプ
装置を提供すること。 【構成】 冷房時は、四方弁14及び三方弁15は実線
で示す流路になり、発生器13で発生した冷媒蒸気は対
空気用熱交換器16で凝縮し、対2次流体用熱交換器1
8で蒸発し、吸収液は三方弁15により対空気用吸収器
19に流入し、暖房時は、四方弁14及び三方弁15は
破線で示す流路になり、発生器13で発生した冷媒蒸気
は対2次流体用熱交換器18で凝縮し、対空気用熱交換
器16で蒸発し、吸収液は対2次流体用吸収器21に流
入する。
(57) [Summary] [Objective] To provide a compact and highly efficient absorption heat pump device. [Composition] During cooling, the four-way valve 14 and the three-way valve 15 have the flow paths shown by the solid lines, and the refrigerant vapor generated in the generator 13 is condensed in the air-to-air heat exchanger 16 and then to the secondary fluid heat exchange. Bowl 1
8 and the absorbed liquid flows into the air absorber 19 through the three-way valve 15. During heating, the four-way valve 14 and the three-way valve 15 become the flow paths shown by the broken line, and the refrigerant vapor generated by the generator 13 is generated. Is condensed in the heat exchanger 18 for the secondary fluid, evaporated in the heat exchanger 16 for the air, and the absorbing liquid flows into the absorber 21 for the secondary fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガスや太陽熱を熱
源として、低温熱源から熱を汲み上げることにより得ら
れる温熱および冷熱を利用する吸収式ヒートポンプ装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump device which uses hot and cold heat obtained by pumping heat from a low temperature heat source using city gas or solar heat as a heat source.

【0002】[0002]

【従来の技術】従来の吸収式ヒートポンプ装置の構成を
図2に示す。溶液ポンプ1により加圧された冷媒濃度の
高い濃溶液は、溶液熱交換器2で発生器3から流出して
くる冷媒濃度の低い希溶液の顕熱を受けて昇温し、その
後、発生器3で外部より加熱され冷媒蒸気を発生する。
冷媒蒸気は凝縮器4へ流出し、冷媒の少なくなった希溶
液は溶液熱交換器2へ流出する。前述したように希溶液
はその顕熱を濃溶液に与え降温し、吸収器5へ戻る。一
方、凝縮器4へ流入した冷媒蒸気は、そこで外部へ熱を
捨てて液化する。その後、膨張弁6で減圧され低温とな
って蒸発器7へ入り、外部より熱を受け蒸発し、吸収器
5へ戻る。吸収器5では希溶液に冷媒蒸気が吸収され、
その時発生する吸収熱は外部へ捨てられる。
2. Description of the Related Art The structure of a conventional absorption heat pump device is shown in FIG. The concentrated solution having a high refrigerant concentration, which is pressurized by the solution pump 1, is heated in the solution heat exchanger 2 by the sensible heat of the dilute solution having a low refrigerant concentration flowing out from the generator 3, and then the generator. At 3, it is heated from the outside and a refrigerant vapor is generated.
The refrigerant vapor flows out to the condenser 4, and the dilute solution depleted in the refrigerant flows out to the solution heat exchanger 2. As described above, the dilute solution gives its sensible heat to the concentrated solution to lower the temperature, and then returns to the absorber 5. On the other hand, the refrigerant vapor that has flowed into the condenser 4 radiates heat to the outside and is liquefied. After that, the pressure is reduced by the expansion valve 6 and the temperature becomes low to enter the evaporator 7, which receives heat from the outside to evaporate and returns to the absorber 5. In the absorber 5, the dilute solution absorbs the refrigerant vapor,
The absorbed heat generated at that time is discarded to the outside.

【0003】以上のような吸収式ヒートポンプで冷房ま
たは冷凍を行う場合は、蒸発器7の冷熱を利用し、暖房
または給湯に利用する場合は、凝縮器4および吸収器5
の温熱を利用する。この時、冷熱および温熱は、水やフ
ロン等の2次流体で利用場所まで運ばれる。たとえば、
暖房に利用する場合は、凝縮器4および吸収器5の温熱
により暖められた2次流体を室内機8に誘導し、室内空
気を暖める。また、蒸発器7の冷熱により低温となった
2次流体を室外に設置された熱交換器9に流入し、室外
空気より熱を回収する。一方冷房に利用する場合は、切
り替え器10により2次流体の流入場所を逆にし、低温
の2次流体を室内機8に誘導して室内空気を冷却し、凝
縮器5および吸収器2により暖められた2次流体を室外
の熱交換器9に流入させ、室外空気に熱を放熱する。
When cooling or freezing is performed by the absorption heat pump as described above, the cold heat of the evaporator 7 is used, and when it is used for heating or hot water supply, the condenser 4 and the absorber 5 are used.
Use the heat of. At this time, cold heat and warm heat are carried to a place of use by a secondary fluid such as water or chlorofluorocarbon. For example,
When used for heating, the secondary fluid warmed by the heat of the condenser 4 and the absorber 5 is guided to the indoor unit 8 to warm the indoor air. Further, the secondary fluid, which has become low temperature due to the cold heat of the evaporator 7, flows into the heat exchanger 9 installed outdoors, and heat is recovered from the outdoor air. On the other hand, when it is used for cooling, the switching device 10 reverses the inflow location of the secondary fluid, the low temperature secondary fluid is guided to the indoor unit 8 to cool the indoor air, and the condenser 5 and the absorber 2 heat it. The obtained secondary fluid is caused to flow into the outdoor heat exchanger 9 to radiate heat to the outdoor air.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
ような従来の吸収式ヒートポンプ装置では、2次流体を
利用しているため、 (1)2次流体と外気との温度差が小さく、大きな伝熱
面積が必要であり、熱交換器9が大きくなり装置全体の
コンパクト化が困難である。 (2)ヒートポンプの効率が低い。 (3)暖房時の低温側2次流体の温度が低いことから流
体の粘性が大きくなり、2次流体を輸送するポンプの能
力・消費電力が大きくなる。 等の課題がある。
However, in the conventional absorption heat pump device as described above, since the secondary fluid is used, (1) the temperature difference between the secondary fluid and the outside air is small, and a large transmission is achieved. A heat area is required, the heat exchanger 9 becomes large, and it is difficult to make the entire apparatus compact. (2) The efficiency of the heat pump is low. (3) Since the temperature of the secondary fluid on the low temperature side during heating is low, the viscosity of the fluid increases, and the capacity and power consumption of the pump for transporting the secondary fluid increase. There are issues such as.

【0005】本発明は、従来のこのような課題を考慮
し、コンパクトで効率の高い吸収式ヒートポンプ装置を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a compact and highly efficient absorption heat pump device.

【0006】[0006]

【課題を解決するための手段】本発明は、冷媒蒸気を発
生させる発生手段と、外気と冷媒との間で熱交換を行う
第1熱交換手段と、室内空気と冷媒との間で直接又は間
接に熱交換を行う第2熱交換手段と、吸収熱を外気に放
出する第1吸収手段と、吸収熱を室内空気に直接又は間
接に放出する第2吸収手段と、それら発生手段、第1熱
交換手段、第1吸収手段、第2熱交換手段及び第2吸収
手段に冷媒を通過させるための流路と、冷房を行う場
合、発生手段、第1熱交換手段、第2熱交換手段、第1
吸収手段、発生手段の順に冷媒が還流できるように流路
を切り換え、暖房を行う場合、発生手段、第2熱交換手
段、第1熱交換手段、第2吸収手段、発生手段の順に冷
媒が還流できるように流路を切り換える流路切り換え手
段とを備えた吸収式ヒートポンプ装置である。
According to the present invention, a generating means for generating a refrigerant vapor, a first heat exchanging means for exchanging heat between outside air and a refrigerant, and a direct or direct connection between indoor air and a refrigerant are provided. Second heat exchanging means for indirectly exchanging heat, first absorbing means for discharging absorbed heat to the outside air, second absorbing means for directly or indirectly discharging absorbed heat to indoor air, and their generating means, first A flow path for passing a refrigerant through the heat exchange means, the first absorption means, the second heat exchange means and the second absorption means, and when performing cooling, a generation means, a first heat exchange means, a second heat exchange means, First
When heating is performed by switching the flow paths so that the refrigerant can flow back in the order of the absorption means and the generation means, the refrigerant flows back in the order of the generation means, the second heat exchange means, the first heat exchange means, the second absorption means, and the generation means. It is an absorption heat pump device provided with a flow path switching means for switching a flow path so that the flow path can be switched.

【0007】[0007]

【作用】本発明は、発生手段が冷媒蒸気を発生させ、冷
房を行う場合、第1熱交換手段が凝縮された冷媒の熱を
外気に放出し、第2熱交換手段が冷媒を蒸発させて室内
空気の熱を直接又は間接に回収し、第1吸収手段が吸収
熱を外気に放出し、冷媒が発生手段に戻り、暖房を行う
場合、第2熱交換手段が凝縮された冷媒の熱を直接又は
間接に室内空気に放出し、第1熱交換手段が冷媒を蒸発
させて外気の熱を回収し、第2吸収手段が吸収熱を室内
空気に放出し、冷媒が発生手段に戻る。
In the present invention, when the generating means generates the refrigerant vapor to perform cooling, the first heat exchange means releases the heat of the condensed refrigerant to the outside air, and the second heat exchange means evaporates the refrigerant. When the heat of the indoor air is directly or indirectly recovered, the first absorption means releases the absorbed heat to the outside air, the refrigerant returns to the generation means, and when heating is performed, the second heat exchange means collects the heat of the condensed refrigerant. The heat is directly or indirectly released into the room air, the first heat exchange means evaporates the refrigerant to recover the heat of the outside air, the second absorption means releases the absorbed heat into the room air, and the refrigerant returns to the generation means.

【0008】[0008]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0009】図1は、本発明にかかる一実施例の吸収式
ヒートポンプ装置の構成図である。すなわち、吸収式ヒ
ートポンプ装置には、冷媒濃度の高い濃溶液を送り出す
溶液ポンプ11が設けられ、その溶液ポンプ11は冷媒
濃度の低い希溶液から熱を受ける溶液熱交換器12に接
続されている。溶液熱交換器12は濃溶液から冷媒蒸気
を発生させる発生手段である発生器13に接続され、発
生器13は冷媒蒸気の流路を切り換える四方弁14に接
続されている。四方弁14の出入口の一つは室外機を構
成する対空気用熱交換器16に接続され、他の一つは2
次流体と熱交換を行う対2次流体用熱交換器18に接続
され、又別の一つは希溶液との合流点が入口部に設けら
れた流路を切り換える三方弁15に接続されている。三
方弁15の出口の一方は室外機を構成する対空気用吸収
器19に接続され、他方は2次流体と熱交換を行う対2
次流体用吸収器21に接続されている。対空気用吸収器
19及び対2次流体用吸収器21は溶液ポンプ11に接
続されている。
FIG. 1 is a block diagram of an absorption heat pump device according to an embodiment of the present invention. That is, the absorption heat pump device is provided with a solution pump 11 that delivers a concentrated solution having a high refrigerant concentration, and the solution pump 11 is connected to a solution heat exchanger 12 that receives heat from a dilute solution having a low refrigerant concentration. The solution heat exchanger 12 is connected to a generator 13, which is a generating means for generating a refrigerant vapor from a concentrated solution, and the generator 13 is connected to a four-way valve 14 that switches the flow path of the refrigerant vapor. One of the inlets and outlets of the four-way valve 14 is connected to the heat exchanger 16 for air constituting the outdoor unit, and the other one is 2
It is connected to a heat exchanger 18 for secondary fluid that exchanges heat with the secondary fluid, and the other one is connected to a three-way valve 15 that switches the flow passage provided at the inlet at the confluence with the dilute solution. There is. One of the outlets of the three-way valve 15 is connected to an air absorber 19 that constitutes an outdoor unit, and the other one of the outlets performs heat exchange with a secondary fluid.
It is connected to the absorber 21 for the next fluid. The absorber 19 for air and the absorber 21 for secondary fluid are connected to the solution pump 11.

【0010】又、対空気用熱交換器16は膨張弁17に
接続され、その膨張弁17は対2次流体用吸収器21に
接続されている。対2次流体用熱交換器18及び対2次
流体用吸収器21と熱交換を行う2次流体は、室内空気
と熱交換を行う室内機20に流入される。
The heat exchanger 16 for the air is connected to the expansion valve 17, and the expansion valve 17 is connected to the absorber 21 for the secondary fluid. The secondary fluid that exchanges heat with the heat exchanger 18 for secondary fluid and the absorber 21 for secondary fluid flows into the indoor unit 20 that exchanges heat with indoor air.

【0011】次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be described.

【0012】まず、溶液ポンプ11により加圧された冷
媒濃度の高い濃溶液は、溶液熱交換器12で発生器13
から流出してくる冷媒濃度の低い希溶液の顕熱を受けて
昇温する。その後、発生器13で外部より加熱され冷媒
蒸気を発生する。次に発生した冷媒蒸気は四方弁14へ
流出し、冷媒の少なくなった希溶液は溶液熱交換器12
へ流出する。希溶液はその顕熱を溶液熱交換器12で濃
溶液に与え降温し三方弁15入口部の合流点へ向かう。
四方弁14および三方弁15は、冷房・暖房・デアイス
の各モードの切り換えを行う。以下各モードについて順
に説明する。
First, the concentrated solution having a high refrigerant concentration, which is pressurized by the solution pump 11, is generated in the solution heat exchanger 12 by the generator 13.
The temperature rises by receiving the sensible heat of the dilute solution having a low refrigerant concentration flowing out from the. After that, the generator 13 is heated from the outside to generate a refrigerant vapor. The refrigerant vapor generated next flows out to the four-way valve 14, and the dilute solution in which the refrigerant has run out is the solution heat exchanger 12.
Outflow to. The sensible heat of the dilute solution is given to the concentrated solution by the solution heat exchanger 12 and the temperature is lowered to the confluence of the inlet of the three-way valve 15.
The four-way valve 14 and the three-way valve 15 switch between cooling, heating, and deice modes. Hereinafter, each mode will be described in order.

【0013】冷房時には、四方弁14は実線で示す流路
に切り換えられる。したがって、発生器13を出た冷媒
蒸気は、室外空気と直接熱交換を行う対空気用熱交換器
16へ流入し、外部へ熱を捨てて凝縮する。その後、膨
張弁17で減圧され低温となって対2次流体用熱交換器
18へ入り、2次流体より熱を受け蒸発し、四方弁14
から三方弁15へ向かう。冷媒蒸気は三方弁15の入口
部で、溶液熱交換器12から流出してきた希溶液と気液
二相状態となる。冷房時の三方弁15内の流路は実線の
ように切り換えられており、気液二相流は、室外空気と
直接熱交換を行う対空気用吸収器19に流入する。対空
気用吸収器19では希溶液に冷媒蒸気が吸収され、その
時発生する吸収熱を外部の空気へ捨てる。したがって、
室外空気と熱交換を行う凝縮および吸収については、2
次流体を介さないことから室外空気との温度差が大きく
なり、熱交換に必要な伝熱面積を小さくすることができ
る。また、凝縮温度および凝縮温度を下げることも可能
となる。一方、対2次流体用熱交換器18で得られた冷
水は、室内機20に導かれ、室内の冷房に利用される。
During cooling, the four-way valve 14 is switched to the flow path shown by the solid line. Therefore, the refrigerant vapor that has exited the generator 13 flows into the air-to-air heat exchanger 16 that directly exchanges heat with the outdoor air, discards heat to the outside, and condenses. After that, the pressure is reduced by the expansion valve 17, the temperature becomes low, and the heat enters the heat exchanger 18 for the secondary fluid, receives the heat from the secondary fluid, and evaporates.
To the three-way valve 15. At the inlet of the three-way valve 15, the refrigerant vapor is in a gas-liquid two-phase state with the dilute solution flowing out from the solution heat exchanger 12. The flow path in the three-way valve 15 during cooling is switched as shown by the solid line, and the gas-liquid two-phase flow flows into the air-to-air absorber 19 that directly exchanges heat with the outdoor air. In the absorber 19 for air, the refrigerant vapor is absorbed by the dilute solution, and the heat of absorption generated at that time is discarded to the outside air. Therefore,
For condensation and absorption that exchange heat with outdoor air, see 2
Since the secondary fluid is not used, the temperature difference with the outdoor air is increased, and the heat transfer area required for heat exchange can be reduced. It is also possible to lower the condensation temperature and the condensation temperature. On the other hand, the cold water obtained in the heat exchanger for secondary fluid 18 is introduced to the indoor unit 20 and used for cooling the room.

【0014】なお、本実施例では、対空気用熱交換器1
6と対空気用吸収器19を一体化した構造で示してい
る。対空気用熱交換器16は室外空気の風上側に位置
し、対空気用吸収器19は一部のみ風上側で、大部分は
風下側に位置するようにしている。これは、凝縮温度は
一定であるが、吸収温度は変化し、吸収器の高温部は凝
縮温度と比較して充分高い温度となるからである。
In this embodiment, the heat exchanger 1 for air is used.
6 and the absorber 19 for air are shown as an integrated structure. The heat exchanger 16 for the air is located on the windward side of the outdoor air, and the absorber 19 for the air is located only on the windward side and most of it is on the leeward side. This is because the condensation temperature is constant, but the absorption temperature changes, and the high temperature part of the absorber has a temperature sufficiently higher than the condensation temperature.

【0015】暖房時には、四方弁14は破線で示す流路
に切り換えられる。したがって、発生器13を出た冷媒
蒸気は、対2次流体用熱交換器18へ流入し、2次流体
へ熱を捨てて凝縮する。その後、膨張弁17で減圧され
低温となって対空気用熱交換器16へ入り、室外空気よ
り熱を受け蒸発し、四方弁14から三方弁15へ向か
う。冷媒蒸気は三方弁15の入口部で希溶液と気液二相
状態となる。暖房時の三方弁15内の流路は破線のよう
に切り換えられており、気液二相流は、対2次流体用吸
収器21に流入する。したがって、室外空気との熱交換
となる蒸発については、2次流体を介さないことから室
外空気との温度差が大きくなるため、熱交換に必要な伝
熱面積を小さくすることができる。また、蒸発温度を上
げることも可能となる。一方、対2次流体用熱交換器1
8で凝縮熱および吸収熱により昇温した温水は、室内機
20に導かれ、室内の暖房に利用される。本実施例で
は、効率の低下を防ぐため、凝縮熱と吸収熱の双方の熱
が同時に2次流体に与えるられるように凝縮器と吸収器
を一体化した構成としている。
During heating, the four-way valve 14 is switched to the flow path indicated by the broken line. Therefore, the refrigerant vapor that has exited the generator 13 flows into the heat exchanger 18 for the secondary fluid, and the heat is discharged to the secondary fluid and condensed. After that, the pressure is reduced by the expansion valve 17, the temperature becomes low, and the heat enters the heat exchanger 16 for the air. The refrigerant vapor becomes a gas-liquid two-phase state with the dilute solution at the inlet of the three-way valve 15. The flow path in the three-way valve 15 during heating is switched as shown by the broken line, and the gas-liquid two-phase flow flows into the anti-secondary fluid absorber 21. Therefore, regarding evaporation, which is a heat exchange with the outdoor air, the temperature difference with the outdoor air is large because the secondary fluid is not involved, so that the heat transfer area required for the heat exchange can be reduced. It is also possible to raise the evaporation temperature. On the other hand, the heat exchanger for secondary fluid 1
The hot water heated by the condensation heat and the absorption heat in 8 is guided to the indoor unit 20 and used for heating the room. In this embodiment, in order to prevent a decrease in efficiency, the condenser and the absorber are integrated so that both the heat of condensation and the heat of absorption are simultaneously given to the secondary fluid.

【0016】なお、暖房時には対空気用吸収器19は機
能しないことになるが、本実施例のごとく対空気用熱交
換器16と一体化し、フィン部を共有化させる構造とす
ることにより、対空気用吸収器19のフィンも蒸発温度
近傍まで低下し、室外空気との伝熱面として機能するこ
とができる。
Although the air-to-air absorber 19 does not function during heating, as in this embodiment, the air-to-air heat exchanger 16 is integrated with the fins so that the fins are shared. The fins of the air absorber 19 are also lowered to near the evaporation temperature, and can function as a heat transfer surface with the outdoor air.

【0017】デアイスとは、暖房時において対空気用熱
交換器16に着霜した霜を除去するためのものである。
暖房時の四方弁14を切り換えずに破線で示す流路と
し、三方弁15を実線の流路に切り換える。したがっ
て、冷媒蒸気の流れは変化しないが、吸収溶液の放熱が
対空気用吸収器19で生じることになる。これにより、
対空気用熱交換器16の温度が上昇し、霜を溶かすこと
ができる。なお、デアイス時においても、対2次流体用
熱交換器18では凝縮熱により昇温した温水が得られ、
室内の暖房を確保することができる。
The deice is for removing the frost formed on the air heat exchanger 16 during heating.
Instead of switching the four-way valve 14 during heating, the flow path is indicated by the broken line, and the three-way valve 15 is switched to the flow path of the solid line. Therefore, although the flow of the refrigerant vapor does not change, heat radiation of the absorbing solution occurs in the air-absorbing absorber 19. This allows
The temperature of the heat exchanger 16 for air rises, and frost can be melted. Even at the time of de-ice, the heat exchanger 18 for secondary fluid can obtain hot water heated by the heat of condensation.
The room can be heated.

【0018】以上のように本発明によって、対空気用熱
交換器を小さくすることができ装置全体のコンパクト化
が可能となり、さらに、冷房時の凝縮温度・吸収温度の
低下および暖房時の蒸発温度の上昇が可能となりヒート
ポンプの効率が向上する。また、2次流体を輸送するポ
ンプの消費電力が抑えられることにより、コンパクトで
効率が高い吸収式ヒートポンプ装置が提供される。
As described above, according to the present invention, the heat exchanger for air can be downsized and the entire apparatus can be made compact, and further, the condensation temperature / absorption temperature during cooling and the evaporation temperature during heating can be reduced. The heat pump efficiency can be improved. Further, since the power consumption of the pump that transports the secondary fluid is suppressed, a compact and highly efficient absorption heat pump device is provided.

【0019】なお、上記実施例では、第1熱交換手段で
ある対空気用熱交換器16と第1吸収手段である対空気
用吸収器19とを一体構成としたが、これに代えて、そ
れぞれ別に構成してもよい。
In the above embodiment, the heat exchanger 16 for air which is the first heat exchanging means and the absorber 19 for air which is the first absorbing means are integrally formed. However, instead of this, They may be configured separately.

【0020】また、上記実施例では、第2熱交換手段で
ある対2次流体用熱交換器18と第2吸収手段である対
2次流体用吸収器21とを一体構成としたが、これに代
えて、それぞれ別に構成してもよい。
Further, in the above embodiment, the heat exchanger 18 for the secondary fluid which is the second heat exchange means and the absorber 21 for the secondary fluid which is the second absorption means are integrally formed. Alternatively, each may be configured separately.

【0021】また、上記実施例では、流路切り換え手段
に四方弁14及び三方弁15を用いたが、これに限ら
ず、冷媒の流路を上述のように切り換えできれば他の方
法で切り換えてもよい。
Further, in the above embodiment, the four-way valve 14 and the three-way valve 15 are used as the flow passage switching means, but the present invention is not limited to this, and the flow passage of the refrigerant may be changed by another method as described above. Good.

【0022】また、上記実施例では、室内空気に対する
熱交換を第2流体を介して間接的に行う構成としたが、
これに限らず、冷媒によって直接熱交換する構成として
もよい。
In the above embodiment, the heat exchange with the room air is indirectly performed via the second fluid.
The configuration is not limited to this, and the heat may be directly exchanged with the refrigerant.

【0023】[0023]

【発明の効果】以上述べたところから明らかなように本
発明は、冷媒蒸気を発生させる発生手段と、外気と冷媒
との間で熱交換を行う第1熱交換手段と、室内空気と冷
媒との間で直接又は間接に熱交換を行う第2熱交換手段
と、吸収熱を外気に放出する第1吸収手段と、吸収熱を
室内空気に直接又は間接に放出する第2吸収手段と、そ
れら発生手段、第1熱交換手段、第1吸収手段、第2熱
交換手段及び第2吸収手段に冷媒を通過させるための流
路と、冷房を行う場合、発生手段、第1熱交換手段、第
2熱交換手段、第1吸収手段、発生手段の順に冷媒が還
流できるように流路を切り換え、暖房を行う場合、発生
手段、第2熱交換手段、第1熱交換手段、第2吸収手
段、発生手段の順に冷媒が還流できるように流路を切り
換える流路切り換え手段とを備えているので、コンパク
トで効率が高くなるという長所を有する。
As is apparent from the above description, the present invention provides the generating means for generating the refrigerant vapor, the first heat exchanging means for exchanging heat between the outside air and the refrigerant, the indoor air and the refrigerant. Second heat exchanging means for directly or indirectly exchanging heat between them, a first absorbing means for releasing absorbed heat to the outside air, a second absorbing means for directly or indirectly releasing absorbed heat to indoor air, and A flow path for passing a refrigerant through the generating means, the first heat exchanging means, the first absorbing means, the second heat exchanging means, and the second absorbing means, and when performing cooling, the generating means, the first heat exchanging means, the first heat exchanging means, When heating is performed by switching the flow paths so that the refrigerant can flow back in the order of the two heat exchange means, the first absorption means, and the generation means, the generation means, the second heat exchange means, the first heat exchange means, the second absorption means, Flow path switching that switches the flow paths so that the refrigerant can flow back in the order of the generation means Since a stage, it has an advantage that the efficiency is high in compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる一実施例の吸収式ヒートポンプ
装置の構成図である。
FIG. 1 is a configuration diagram of an absorption heat pump device according to an embodiment of the present invention.

【図2】従来の吸収式ヒートポンプ装置の構成図であ
る。
FIG. 2 is a configuration diagram of a conventional absorption heat pump device.

【符号の説明】[Explanation of symbols]

13 発生器 14 四方弁 15 三方弁 16 対空気用熱交換器 18 対2次流体用熱交換器 19 対空気用吸収器 21 対2次流体用吸収器 13 Generator 14 Four-way valve 15 Three-way valve 16 Heat exchanger for air 18 Heat exchanger for secondary fluid 19 Absorber for air 21 Absorber for secondary fluid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中桐 康司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nakagiri 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒蒸気を発生させる発生手段と、外気
と前記冷媒との間で熱交換を行う第1熱交換手段と、室
内空気と前記冷媒との間で直接又は間接に熱交換を行う
第2熱交換手段と、吸収熱を外気に放出する第1吸収手
段と、前記吸収熱を前記室内空気に直接又は間接に放出
する第2吸収手段と、それら発生手段、第1熱交換手
段、第1吸収手段、第2熱交換手段及び第2吸収手段に
前記冷媒を通過させるための流路と、冷房を行う場合、
前記発生手段、前記第1熱交換手段、前記第2熱交換手
段、前記第1吸収手段、前記発生手段の順に前記冷媒が
還流できるように前記流路を切り換え、暖房を行う場
合、前記発生手段、前記第2熱交換手段、前記第1熱交
換手段、前記第2吸収手段、前記発生手段の順に前記冷
媒が還流できるように前記流路を切り換える流路切り換
え手段とを備えたことを特徴とする吸収式ヒートポンプ
装置。
1. A generating means for generating a refrigerant vapor, a first heat exchanging means for exchanging heat between the outside air and the refrigerant, and a direct or indirect heat exchanging between the room air and the refrigerant. Second heat exchanging means, first absorbing means for releasing absorbed heat to the outside air, second absorbing means for directly or indirectly releasing the absorbed heat to the indoor air, their generating means, first heat exchanging means, When performing cooling with a flow path for passing the refrigerant through the first absorption means, the second heat exchange means, and the second absorption means,
When heating is performed by switching the flow paths so that the refrigerant can flow back in the order of the generation means, the first heat exchange means, the second heat exchange means, the first absorption means, and the generation means, the generation means A second heat exchange means, a first heat exchange means, a second absorption means, and a generation means, and a flow path switching means for switching the flow paths so that the refrigerant can flow back in that order. Absorption heat pump device.
【請求項2】 流路切り換え手段は、前記発生手段から
流出する前記冷媒蒸気の流路を切り換える四方弁と、前
記冷媒が吸収された吸収溶液の流入先を前記第1吸収手
段又は第2吸収手段に切り換える三方弁とを有すること
を特徴とする請求項1記載の吸収式ヒートポンプ装置。
2. The flow path switching means includes a four-way valve for switching the flow path of the refrigerant vapor flowing out from the generating means, and an inflow destination of the absorbing solution in which the refrigerant is absorbed, as the first absorbing means or the second absorbing means. The absorption heat pump device according to claim 1, further comprising a three-way valve for switching to the means.
【請求項3】 更に、前記暖房を行う場合、前記流路切
り換え手段は、前記第2吸収手段を前記第1吸収手段に
切り換えることを特徴とする請求項1記載の吸収式ヒー
トポンプ装置。
3. The absorption heat pump device according to claim 1, wherein, when the heating is performed, the flow path switching means switches the second absorption means to the first absorption means.
【請求項4】 第1熱交換手段と前記第1吸収手段とを
一体構成としたことを特徴とする請求項1又は2記載の
吸収式ヒートポンプ装置。
4. The absorption heat pump device according to claim 1, wherein the first heat exchange means and the first absorption means are integrally configured.
【請求項5】 第2熱交換手段と前記第2吸収手段とを
一体構成としたことを特徴とする請求項1又は2記載の
吸収式ヒートポンプ装置。
5. The absorption heat pump device according to claim 1, wherein the second heat exchange means and the second absorption means are integrally configured.
JP4156944A 1992-06-16 1992-06-16 Absorption heat pump device Pending JPH062980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156944A JPH062980A (en) 1992-06-16 1992-06-16 Absorption heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156944A JPH062980A (en) 1992-06-16 1992-06-16 Absorption heat pump device

Publications (1)

Publication Number Publication Date
JPH062980A true JPH062980A (en) 1994-01-11

Family

ID=15638761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156944A Pending JPH062980A (en) 1992-06-16 1992-06-16 Absorption heat pump device

Country Status (1)

Country Link
JP (1) JPH062980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633769A (en) * 1994-05-11 1997-05-27 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic disc drive device
EP0853220A2 (en) 1997-01-10 1998-07-15 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
US5901567A (en) * 1996-12-18 1999-05-11 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
US6748755B2 (en) 2000-03-09 2004-06-15 Fujitsu Limited Refrigeration system utilizing incomplete evaporation of refrigerant in evaporator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633769A (en) * 1994-05-11 1997-05-27 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic disc drive device
US5901567A (en) * 1996-12-18 1999-05-11 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
EP0853220A2 (en) 1997-01-10 1998-07-15 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
US5941089A (en) * 1997-01-10 1999-08-24 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
US6748755B2 (en) 2000-03-09 2004-06-15 Fujitsu Limited Refrigeration system utilizing incomplete evaporation of refrigerant in evaporator
US7007506B2 (en) 2000-03-09 2006-03-07 Fujitsu Limited Refrigeration system utilizing incomplete evaporation of refrigerant in evaporator

Similar Documents

Publication Publication Date Title
JP4953433B2 (en) Absorption heat pump system
JP2001289465A (en) Air conditioner
JP2000179970A (en) Air conditioning system
JP3140333B2 (en) Heat pump equipment
CN108151351A (en) A kind of integrated water cooling and the Multifucntional outdoor unit of air-cooled heat exchange
CN111750418A (en) Heat pipe type photovoltaic photovoltaic module-heat pump-phase change material coupling system and method
KR20100037445A (en) Air-conditioning system
JP4184197B2 (en) Hybrid absorption heat pump system
JP2000018762A (en) Absorption refrigeration equipment
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
JPH062980A (en) Absorption heat pump device
JPH10300265A (en) Refrigerating equipment
JPH03294754A (en) Air conditioner
JP2938762B2 (en) Heat pump equipment
JP2678211B2 (en) Heat storage type cold / heat generator
JP3502155B2 (en) Thermal storage type air conditioner
JP3577891B2 (en) Refrigeration equipment
CN222438219U (en) Combined heat generation unit with heat source tower
CN114396739B (en) A solar energy-assisted absorption compression coupled cooling and heating dual supply system
JPH0222611Y2 (en)
JP4639708B2 (en) Air conditioner
JP3466866B2 (en) Absorption air conditioner
KR20020068807A (en) Heat pump system
JP4282818B2 (en) Combined cooling system and combined cooling method
JPS5935755A (en) Heat pump type hot-water supply apparatus