JPH06301196A - Pattern transfer mask - Google Patents
Pattern transfer maskInfo
- Publication number
- JPH06301196A JPH06301196A JP8429193A JP8429193A JPH06301196A JP H06301196 A JPH06301196 A JP H06301196A JP 8429193 A JP8429193 A JP 8429193A JP 8429193 A JP8429193 A JP 8429193A JP H06301196 A JPH06301196 A JP H06301196A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- mask
- substrate
- resist
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体素子などの製造に
用いるパタン転写用マスクにおけるパタンの配置法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for arranging patterns in a pattern transfer mask used for manufacturing semiconductor devices and the like.
【0002】[0002]
【従来の技術】半導体素子の製造におけるリソグラフィ
ー工程では、パタンの位置合わせ精度の向上が大きな技
術課題である。半導体素子のチップサイズの大型化や、
合わせ余裕の縮小により、半導体素子製造工程におけ
る、ウェーハの伸縮が、合わせ精度を低下させる大きな
原因の1つになってきている。現在主に用いられている
縮小投影露光装置では1ショット20mm角程度の画角
でステップアンドリピート動作でウェーハ内を露光す
る。ウェーハに伸縮がある場合、ステップアンドリピー
トのステップ距離を伸縮量に合わせて調整し、さらに1
ショット内の伸縮補正は投影露光の縮小率を補正し対応
している。2. Description of the Related Art In a lithographic process in the manufacture of semiconductor devices, improvement of pattern alignment accuracy is a major technical issue. Increasing the chip size of semiconductor elements,
Due to the reduction of the alignment margin, the expansion and contraction of the wafer in the semiconductor element manufacturing process has become one of the major causes of the reduction in the alignment accuracy. In the reduction projection exposure apparatus which is mainly used at present, the inside of the wafer is exposed by a step-and-repeat operation with an angle of view of about 20 mm square per shot. If the wafer has expansion and contraction, adjust the step distance of step and repeat according to the expansion and contraction amount, and
Expansion / contraction correction within a shot is made by correcting the reduction ratio of projection exposure.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、X線シ
ンクロトロン放射光を光源とする等倍露光装置には、1
ショット内の伸縮補正機構が無く、高精度パタン合わせ
が必要な超LSIの製造への適用は困難であった。However, an equal-magnification exposure apparatus that uses X-ray synchrotron radiation as a light source is
Since there is no expansion / contraction correction mechanism within the shot, it was difficult to apply it to the manufacture of VLSIs that require highly precise pattern matching.
【0004】本発明の目的は、上記従来技術におけるX
線シンクロトロン放射光を光源とする等倍露光装置の様
な、1ショット内の伸縮補正機構を持たない装置を用い
たリソグラフィで問題となる、ウェーハ伸縮に起因する
合わせ精度低下を防止することにあり、超LSIの製造
への適用を可能にすることにある。The object of the present invention is to provide the X in the above prior art.
To prevent a decrease in alignment accuracy due to wafer expansion and contraction, which is a problem in lithography using an apparatus that does not have an expansion and contraction correction mechanism within one shot, such as an equal-magnification exposure apparatus that uses line synchrotron radiation as a light source. Yes, it is to enable the application to the manufacture of VLSI.
【0005】[0005]
【課題を解決するための手段】上記課題は、本発明では
素子製造工程におけるウェーハの伸縮量をあらかじめ予
測し、その伸縮量を考慮しマスクパタンを形成すること
により達成される。According to the present invention, the above object can be achieved by predicting the expansion / contraction amount of a wafer in the element manufacturing process in advance and forming a mask pattern in consideration of the expansion / contraction amount.
【0006】[0006]
【作用】素子製造工程でのウェーハの伸縮に合わせて、
各マスク内でパタンの位置補正を行うので、1ショット
内全面で高精度なパタン位置合わせが実現できる。[Function] According to the expansion and contraction of the wafer in the element manufacturing process,
Since the position of the pattern is corrected in each mask, highly accurate pattern alignment can be realized on the entire surface of one shot.
【0007】一例として図3(a)にSiO2の、
(b)にSi3N4の膜厚と被着面積を変えたときのウェ
ーハの伸縮量の変化を示す。ウェーハに被着した被膜の
膜厚および被着している面積に比例してウェーハの伸縮
量が変化する事がわかる。基本的には、素子を構成する
膜の応力は、その膜の厚さと面積に比例し変化すること
を利用して伸縮量を補正することが有効である。[0007] of SiO 2 in FIGS. 3 (a) as an example,
(B) shows changes in the amount of expansion and contraction of the wafer when the film thickness of Si 3 N 4 and the deposition area are changed. It can be seen that the amount of expansion and contraction of the wafer changes in proportion to the film thickness of the coating film deposited on the wafer and the area covered. Basically, it is effective to correct the amount of expansion and contraction by utilizing that the stress of the film forming the element changes in proportion to the thickness and area of the film.
【0008】[0008]
【実施例】以下、本発明の実施例を従来法と比較して説
明する。図2に従来法の実施例を示す。(a)(b)
(c)が第1のリソグラフィ工程。(d)(e)(f)
が第2のリソグラフィ工程を示す。図2(a)に第1の
マスクを示す。マスク基板1に遮光膜でパタンが形成さ
れている。パタン14の設計位置を点線Aで、パタン1
4’の設計位置を点線Bで示している。なお、パタン1
4と14’の距離は20mmとした。パタン転写を行う
基板を図2(b)に示す。Si基板3を酸素雰囲気中で
熱処理する通常の熱酸化によりSiO2膜4を1μmの
膜厚で形成した。このとき、Si基板3はSiO2の応
力により約8ppm拡大した。次に、この基板にレジス
トを塗布し、通常のパタン転写法により、マスクパタン
をレジストに転写し、レジストパタン15を形成した。
次に、図2(c)に示す様に、レジスト15をマスクと
しSiO2膜4をエッチングし、さらにレジストを除去
しSiO2パタン16を形成した。この状態でパタン以
外のSiO2膜は除去され、応力は解放される。このた
め、パタンの位置ずれが起こる。ここで、パタン14’
の設計位置を示す点線Bからのパタン16’の位置ずれ
17は約−0.16μmであった。次に図2(e)に示
す様に、全面にSi3N4膜10を約0.5μm形成し
た。この膜形成での応力によりSi基板3は約10pp
m縮小した。パタン16’はすでに−0.16μmの位
置ずれを持っており、さらにこの工程でのSi3N4膜の
形成により、−0.2μm位置ずれするためパタン1
6’の点線Bからのずれ量19は約−0.36μmとな
った。図2(d)に示す第2のマスクでレジストパタン
20を形成した。この時のマスク位置合わせは、SiO
2パタン16とマスクパタン18が整合するように行っ
た。その結果、SiO2パタン16とレジストパタン2
0は0.1μm以内の位置精度で整合できた。しかし、
レジストパタン20’はSiO2パタン16’に対しず
れて形成され、ずれ量22は約0.36μmとなった。
その後、レジストをマスクにSi3N4膜10をエッチン
グ除去し、パタン21を形成した。その結果、Si基板
3は応力から解放された。しかし、SiO2パタン1
6’とSi3N4パタン21’の位置ずれ量は変わらず、
良好な位置合わせが実現できなかった。このように、従
来法によれば、被加工膜の形成に起因する基板の変形が
パタンの位置合わせ低下に大きく影響する。なお、ここ
では被加工膜の加工後の残存比率が10%以下の場合を
示したが、加工後の残存比率が大きい場合、例えば裏面
を残して加工する場合など、加工膜の応力は、加工後も
残留する。したがって具体的なパタンの位置ずれ量はこ
の限りでは無い事は言うまでもない。EXAMPLES Examples of the present invention will be described below in comparison with conventional methods. FIG. 2 shows an example of the conventional method. (A) (b)
(C) is the first lithography process. (D) (e) (f)
Indicates the second lithography step. FIG. 2A shows the first mask. A pattern is formed on the mask substrate 1 with a light shielding film. Designated position of pattern 14 is dotted line A, and pattern 1
The design position of 4'is shown by a dotted line B. In addition, pattern 1
The distance between 4 and 14 'was 20 mm. A substrate for pattern transfer is shown in FIG. A SiO 2 film 4 having a film thickness of 1 μm was formed by ordinary thermal oxidation in which the Si substrate 3 was heat-treated in an oxygen atmosphere. At this time, the Si substrate 3 expanded by about 8 ppm due to the stress of SiO 2 . Next, a resist was applied to this substrate, and the mask pattern was transferred to the resist by a normal pattern transfer method to form a resist pattern 15.
Next, as shown in FIG. 2C, the SiO 2 film 4 was etched using the resist 15 as a mask, and the resist was removed to form a SiO 2 pattern 16. In this state, the SiO 2 film other than the pattern is removed and the stress is released. As a result, pattern displacement occurs. Here, the pattern 14 '
The positional deviation 17 of the pattern 16 ′ from the dotted line B indicating the design position of was about −0.16 μm. Next, as shown in FIG. 2E, a Si 3 N 4 film 10 having a thickness of about 0.5 μm was formed on the entire surface. The Si substrate 3 has a stress of about 10 pp due to the film formation.
m reduced. The pattern 16 ′ already has a positional deviation of −0.16 μm, and due to the formation of the Si 3 N 4 film in this step, the pattern 16 ′ has a positional deviation of −0.2 μm.
The deviation amount 19 from the dotted line B of 6 ′ was about −0.36 μm. A resist pattern 20 was formed using the second mask shown in FIG. The mask alignment at this time is SiO
It was performed so that the 2 pattern 16 and the mask pattern 18 were aligned. As a result, the SiO 2 pattern 16 and the resist pattern 2
0 was able to be matched with a positional accuracy within 0.1 μm. But,
The resist pattern 20 'was formed deviating from the SiO 2 pattern 16', and the deviation amount 22 was about 0.36 μm.
After that, the Si 3 N 4 film 10 was removed by etching using the resist as a mask to form a pattern 21. As a result, the Si substrate 3 was released from the stress. However, SiO 2 pattern 1
6 ′ and the Si 3 N 4 pattern 21 ′ have the same positional displacement amount,
Good alignment could not be achieved. As described above, according to the conventional method, the deformation of the substrate due to the formation of the film to be processed greatly affects the pattern alignment deterioration. Here, the case where the residual ratio after processing of the processed film is 10% or less is shown, but when the residual ratio after processing is large, for example, when processing is performed with the back surface left, the stress of the processed film is It remains afterwards. Therefore, it goes without saying that the specific positional displacement amount of the pattern is not limited to this.
【0009】本発明の実施例を図1に示す。(a)
(b)(c)が第1のリソグラフィ工程。(d)(e)
(f)が第2のリソグラフィ工程を示す。図1(a)が
第1のマスク。マスク基板1に遮光膜でパタンが形成さ
れている。パタン2の位置を点線Aで、パタン2’の設
計位置を点線Bで示している。なお、パタン2と2’の
距離は設計値で20mmであるが、この工程の加工後に
20mmになる様にあらかじめ縮小率を+8ppm補正
してパタンを配置した。例えば、パタン2’の点線Bか
らの距離は+0.16μmとした。パタン転写を行う基
板を図1(b)に示す。Si基板3を酸素雰囲気中で熱
処理する通常の熱酸化によりSiO2膜4を1μm形成
した。このとき、Si基板3はSiO2の応力により約
8ppm拡大した。この基板にレジストを塗布し、通常
のパタン転写法により、マスクパタンをレジストに転写
し、レジストパタン5を形成した。次に、図1(c)に
示すように、レジスト5をマスクとしSiO2膜4をエ
ッチングし、さらにレジストを除去しSiO2パタン7
を形成した。この状態ではパタン以外のSiO2膜は除
去されており、応力は解放されるため、8ppm縮小す
る。したがって図1(b)で8ppm拡大補正して転写
されたパタンは設計値に戻り、この時点でパタン7と
7’の距離は設計値の20mmとなった。An embodiment of the present invention is shown in FIG. (A)
(B) and (c) are the first lithography process. (D) (e)
(F) shows the second lithography process. FIG. 1A shows the first mask. A pattern is formed on the mask substrate 1 with a light shielding film. The position of the pattern 2 is shown by a dotted line A, and the design position of the pattern 2'is shown by a dotted line B. The distance between the patterns 2 and 2'is 20 mm as a design value, but the reduction ratio was previously corrected by +8 ppm so that the pattern was arranged so that the distance after processing in this step was 20 mm. For example, the distance of the pattern 2 ′ from the dotted line B is +0.16 μm. A substrate for pattern transfer is shown in FIG. A SiO 2 film 4 having a thickness of 1 μm was formed by ordinary thermal oxidation in which the Si substrate 3 was heat-treated in an oxygen atmosphere. At this time, the Si substrate 3 expanded by about 8 ppm due to the stress of SiO 2 . A resist was applied to this substrate, and the mask pattern was transferred to the resist by an ordinary pattern transfer method to form a resist pattern 5. Next, as shown in FIG. 1C, the SiO 2 film 4 is etched using the resist 5 as a mask, the resist is removed, and the SiO 2 pattern 7 is removed.
Was formed. In this state, the SiO 2 film other than the pattern has been removed, and the stress is released, so it is reduced by 8 ppm. Therefore, the pattern transferred by the 8 ppm enlargement correction in FIG. 1B returned to the design value, and at this time, the distance between the patterns 7 and 7 ′ became the design value of 20 mm.
【0010】図1(d)に第2のマスクを示す。パタン
8と8’の距離は設計値で20mmであるが、この工程
の加工後に20mmになる様にあらかじめ縮小率を−1
0ppm補正してパタンを配置した。たとえば、パタン
8’の設計位置点線Bからのずらし量9は−0.2μm
とした。図1(e)に示す様に、この工程では全面にS
i3N4膜10を約0.5μm形成した。この膜形成での
応力によりSi基板3は約10ppm縮小した。この基
板にレジストを塗布し通常の方法でレジストパタン11
を形成した。この時のマスク位置合わせは、SiO2パ
タン7とマスクパタン8が整合するように行った。その
結果、SiO2パタン7とレジストパタン11は0.1μ
m以内の位置精度で整合できた。また、SiO2パタン
7’とレジストパタン11’もほぼ0.1μm以内の良
好な位置精度で整合できた。その後、図1(f)に示す
様に、レジストをマスクにSi3N4膜10をエッチング
除去し、パタン12を形成した。その結果、Si基板3
は応力から解放され、基板の変形はほぼ無くなり、全て
のパタンが設計値に近い位置に配置された。SiO2パ
タン7’と設計位置を示す点線Bとの位置誤差13は
0.05μm以内であった。以上のように、マスクパタ
ン転写時の基板の変形量をあらかじめ予測し、その変形
量に合わせてマスク上のパタン位置を補正することによ
り基板全面で良好な位置合わせが実現できた。FIG. 1D shows the second mask. The distance between the patterns 8 and 8'is 20 mm in design value, but the reduction ratio is -1 in advance so that it will be 20 mm after processing in this process.
The pattern was arranged with 0 ppm correction. For example, the shift amount 9 of the pattern 8 ′ from the design position dotted line B is −0.2 μm.
And As shown in FIG. 1 (e), S is formed on the entire surface in this step.
The i 3 N 4 film 10 was formed to a thickness of about 0.5 μm. The Si substrate 3 contracted by about 10 ppm due to the stress in forming this film. A resist is applied to this substrate and a resist pattern 11 is formed by a usual method.
Was formed. The mask alignment at this time was performed so that the SiO 2 pattern 7 and the mask pattern 8 were aligned. As a result, the SiO 2 pattern 7 and the resist pattern 11 are 0.1 μm.
It was possible to match the position accuracy within m. Also, the SiO 2 pattern 7'and the resist pattern 11 'could be aligned with good positional accuracy within approximately 0.1 μm. After that, as shown in FIG. 1F, the Si 3 N 4 film 10 was removed by etching using a resist as a mask to form a pattern 12. As a result, the Si substrate 3
Was released from stress, the deformation of the substrate was almost eliminated, and all patterns were placed close to the design values. The positional error 13 between the SiO 2 pattern 7 ′ and the dotted line B indicating the design position was within 0.05 μm. As described above, by predicting the deformation amount of the substrate at the time of transferring the mask pattern in advance and correcting the pattern position on the mask according to the deformation amount, good alignment can be realized on the entire surface of the substrate.
【0011】本実施例では、右はじと左はじのパタンに
ついて説明したが、パタンの位置補正は全てのパタンに
ついて行った。又、位置補正の基準点は1ショットの中
心に設定するのが好ましい。実際のマスクには転写装置
にマスクを整合するためのマークパタンやパタン検出用
の窓パタンや反射パタンなどがあるが、これらのパタン
は実際には転写されないものであり、位置補正は不要で
あることは言うまでもない。又、被加工膜もSiO2と
Si3N4膜を用いたが、これに限らない。素子を構成す
る材料全てが多かれ少なかれ基板変形の原因となる。
又、1層膜に限らず、多層膜でも同様である。ここで用
いたマスクは通常の光学マスクであるが、これに限らな
い。本発明を特に必要とするリソグラフィ方式は、X線
等倍露光方式である。現在主に用いられている、紫外線
を光源とする縮小投影露光装置の場合、装置に縮小率補
正機能があるため実際には本発明の様なマスクでの補正
は不要である。しかし、シンクロトロン放射X線を光源
とする等倍露光方式や、プラズマX線源を用いる縮小投
影露光装置では、解像特性に影響を与えずに縮小倍率を
自在にコントロールすることは困難である。従って、本
発明の適用が有効である。又、マスク縮小倍率の補正
は、素子設計支援のためのプロセスシミュレータに縮小
率の変化を求める機能を持たせることにより、簡単に求
めることが可能である。又、各マスクへの縮小率補正の
導入には自動設計計算プログラムの利用が好ましい。特
に、ウェーハ全面均一な縮小率補正では要求精度を満足
しない場合は、局部的な位置補正を加えることが好まし
い。例えば、ウェーハ内或いはチップ内を複数のブロッ
クに分割し各ブロック内の応力及びブロック間の応力か
らウェーハの非直線的な位置歪の補正を行うことが有効
である。In the present embodiment, the patterns of the right and left edges have been described, but the position correction of the patterns is performed for all the patterns. The reference point for position correction is preferably set at the center of one shot. Actual masks include mark patterns for aligning the mask with the transfer device, window patterns for pattern detection, and reflection patterns, but these patterns are not actually transferred and position correction is not necessary. Needless to say. Further, although the SiO 2 and Si 3 N 4 films were used as the film to be processed, the present invention is not limited to this. All of the materials that make up the device cause more or less substrate deformation.
The same applies to a multilayer film as well as a single-layer film. The mask used here is an ordinary optical mask, but is not limited to this. A lithography method that particularly requires the present invention is an X-ray equal-magnification exposure method. In the case of a reduction projection exposure apparatus using ultraviolet rays as a light source, which is mainly used at present, since the apparatus has a reduction rate correction function, the correction by the mask as in the present invention is not actually necessary. However, it is difficult to freely control the reduction magnification without affecting the resolution characteristics in the equal-magnification exposure method using a synchrotron radiation X-ray as a light source or a reduction projection exposure apparatus using a plasma X-ray source. . Therefore, the application of the present invention is effective. Further, the correction of the mask reduction ratio can be easily obtained by providing the process simulator for supporting the element design with the function of obtaining the change of the reduction ratio. Further, it is preferable to use an automatic design calculation program for introducing the reduction rate correction into each mask. Particularly, if the required accuracy is not satisfied by the reduction rate correction that is uniform over the entire surface of the wafer, it is preferable to add local position correction. For example, it is effective to divide the inside of the wafer or the inside of a chip into a plurality of blocks and correct the non-linear positional distortion of the wafer from the stress in each block and the stress between the blocks.
【0012】[0012]
【発明の効果】本発明では、素子製造工程におけるウェ
ーハの伸縮量をあらかじめ予測し、その伸縮量を考慮し
マスクパタンを作成する。したがって、1ショット内の
伸縮補正機構を持たない装置を用いたリソグラフィで問
題となる、ウェーハ伸縮に起因する合わせ精度低下を防
止することができ、超LSIの製造が可能となる。According to the present invention, the amount of expansion and contraction of the wafer in the element manufacturing process is predicted in advance, and the mask pattern is created in consideration of the amount of expansion and contraction. Therefore, it is possible to prevent a decrease in alignment accuracy due to wafer expansion and contraction, which is a problem in lithography using an apparatus having no expansion and contraction correction mechanism within one shot, and it is possible to manufacture a VLSI.
【図1】本発明を説明するためのリソグラフィ工程を示
すパターンの断面図。FIG. 1 is a cross-sectional view of a pattern showing a lithographic process for explaining the present invention.
【図2】従来法を説明するためのリソグラフィ工程を示
すパターンの断面図。FIG. 2 is a sectional view of a pattern showing a lithography process for explaining a conventional method.
【図3】本発明を説明するための(a)SiO2膜厚、
(b)Si3N4膜に対するそれぞれの伸縮量を示すグラ
フ。FIG. 3 (a) SiO 2 film thickness for explaining the present invention,
(B) A graph showing the amount of expansion and contraction with respect to the Si 3 N 4 film.
【符号の説明】 1…マスク基板、3…Si基板、4…SiO2膜、10
…Si3N4膜、5,5’,11,11’,15,1
5’,20,20’…レジスト。[Explanation of Codes] 1 ... Mask substrate, 3 ... Si substrate, 4 ... SiO 2 film, 10
... Si 3 N 4 film, 5, 5 ', 11, 11', 15, 1
5 ', 20, 20' ... Resist.
Claims (4)
マスクであって、基板の伸縮量に対応してマスクのパタ
ン位置を補正したことを特徴とするパタン転写用マス
ク。1. A mask for pattern transfer, which is used when a mask pattern is transferred to a substrate, wherein the pattern position of the mask is corrected according to the amount of expansion and contraction of the substrate.
であって、半導体の製造工程における基板の伸縮量を予
測して、あらかじめマスク上のパタンの位置及び寸法の
双方或いは何れかに伸縮補正を加えたことを特徴とする
パタン転写用マスク。2. A pattern transfer mask used in the manufacture of semiconductors, wherein the expansion / contraction amount of a substrate in a semiconductor manufacturing process is predicted, and expansion / contraction correction is performed in advance for the position and / or the size of the pattern on the mask. A pattern transfer mask characterized by being added.
等倍或いは縮小露光装置用マスクであることを特徴とす
る請求項2記載のパタン転写用マスク。3. The pattern transfer mask according to claim 2, wherein the pattern transfer mask is a mask for an equal-magnification or reduction exposure apparatus using X-rays as a light source.
予測して、あらかじめマスク上のパタンの位置及び寸法
の双方或いは何れかにパタンに伸縮補正を加えたパタン
転写用マスクを用いることを特徴とするリソグラフィー
方法。4. A pattern transfer mask in which expansion / contraction of a substrate in a semiconductor manufacturing process is predicted and expansion / contraction of the pattern is corrected in advance in the position and / or size of the pattern on the mask. A lithographic method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8429193A JPH06301196A (en) | 1993-04-12 | 1993-04-12 | Pattern transfer mask |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8429193A JPH06301196A (en) | 1993-04-12 | 1993-04-12 | Pattern transfer mask |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06301196A true JPH06301196A (en) | 1994-10-28 |
Family
ID=13826372
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8429193A Pending JPH06301196A (en) | 1993-04-12 | 1993-04-12 | Pattern transfer mask |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06301196A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100477565B1 (en) * | 2000-03-24 | 2005-03-18 | 가부시끼가이샤 도시바 | A method for manufacturing the array substrate for flat panel display device and a method for manufacturing the flat panel display device |
| US7415318B2 (en) | 2002-10-11 | 2008-08-19 | Spansion Llc | Method and apparatus for manufacturing semiconductor device |
-
1993
- 1993-04-12 JP JP8429193A patent/JPH06301196A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100477565B1 (en) * | 2000-03-24 | 2005-03-18 | 가부시끼가이샤 도시바 | A method for manufacturing the array substrate for flat panel display device and a method for manufacturing the flat panel display device |
| US7415318B2 (en) | 2002-10-11 | 2008-08-19 | Spansion Llc | Method and apparatus for manufacturing semiconductor device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6096661A (en) | Method for depositing silicon dioxide using low temperatures | |
| US20070243491A1 (en) | Method of making a semiconductor with a high transmission CVD silicon nitride phase shift mask | |
| US6673524B2 (en) | Attenuating extreme ultraviolet (EUV) phase-shifting mask fabrication method | |
| JPH05289307A (en) | Reticle and reticle manufacturing method | |
| EP0095209A2 (en) | Method of forming a resist mask resistant to plasma etching | |
| US11215918B2 (en) | Method of critical dimension control by oxygen and nitrogen plasma treatment in EUV mask | |
| JPH075675A (en) | Mask and manufacturing method thereof | |
| US6455203B1 (en) | Mask structure and method of manufacturing the same | |
| US20020076624A1 (en) | Photomask and method for correcting feature size errors on the same | |
| US6381300B1 (en) | Exposure mask, exposure mask manufacturing method, and semiconductor device manufacturing method using exposure mask | |
| US5375157A (en) | X-ray mask structure and a production method thereof, an exposure method using the X-ray mask structure, and a device fabricated by using the X-ray mask structure | |
| JP2005241693A (en) | Halftone phase shift mask blank and method for manufacturing the same, halftone phase shift mask and method for manufacturing the same | |
| JPH06301196A (en) | Pattern transfer mask | |
| JP2000267257A (en) | Mask and exposure method using the same | |
| KR100211012B1 (en) | Lithographic mask structure and method of producing the same and manufacturing device | |
| US5798192A (en) | Structure of a mask for use in a lithography process of a semiconductor fabrication | |
| US6440614B1 (en) | Mask and method of manufacturing semiconductor device | |
| CN112925164A (en) | Photomask plate and forming method thereof | |
| US6645707B2 (en) | Device manufacturing method | |
| JP3529967B2 (en) | Manufacturing method of photomask blanks with alignment marks | |
| JP2821394B2 (en) | Method for manufacturing semiconductor device | |
| JP3151732B2 (en) | Defect correction method for phase shift photomask | |
| JP3419985B2 (en) | Pattern drawing method | |
| JPH06333804A (en) | X-ray exposure method and manufacture of x-ray mask | |
| JPH0423311A (en) | Pattern transcription method |