[go: up one dir, main page]

JPH06302330A - Solid electrolyte type electrolytic cell - Google Patents

Solid electrolyte type electrolytic cell

Info

Publication number
JPH06302330A
JPH06302330A JP5091253A JP9125393A JPH06302330A JP H06302330 A JPH06302330 A JP H06302330A JP 5091253 A JP5091253 A JP 5091253A JP 9125393 A JP9125393 A JP 9125393A JP H06302330 A JPH06302330 A JP H06302330A
Authority
JP
Japan
Prior art keywords
solid electrolyte
particle layer
cell
electrode
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5091253A
Other languages
Japanese (ja)
Inventor
Koji Ikeda
浩二 池田
Osao Kudome
長生 久留
Katsumi Nagata
勝巳 永田
Junichi Kanzaki
潤一 神前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5091253A priority Critical patent/JPH06302330A/en
Publication of JPH06302330A publication Critical patent/JPH06302330A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To enhance performance by stacking a fuel electrode, a solid electrolyte, and an air electrode in order, and by making each particle size of the air and fuel electrode materials gradually finer toward the interface with different materials. CONSTITUTION:A fuel electrode 2 in which particle size of the material is gradually changed in the order of a fine particle layer 2a', a coarse particle layer 2b, and a fine particle layer 2a is formed in the form of film on a base pipe 1, then a dense, gas-tight solid electrolyte film 3 is formed thereon. An air electrode 4 in which particle size of the material is changed in the order of a fine particle layer 4a and a coarse particle layer 4b is formed in the form of film on the other side of the electrolyte 3 to constitute a cell. Three-phase interface between the fuel electrode 2 and the electrolyte 3 is increased by the fine particle layer 2a, and the resistance caused by the reaction on the fuel electrode 2 side is reduced and accordingly the cell performance is enhanced. Three-phase interface between the air electrode 4 and the electrolyte 3 is increased by the fine particle layer 4a, and the resistance caused by the reaction of oxygen ion on the air electrode 4 side is reduced and accordingly the cell performance is enhanced. A high performance cell is obtained, cell voltage is raised, and fuel utility is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は円筒型固体電解質燃料電
池(SOFC)や高温水蒸気電解セル(SOSE)にお
けるような固体電解質型電解セルに関する。
FIELD OF THE INVENTION The present invention relates to a solid electrolyte type electrolytic cell such as a cylindrical solid oxide fuel cell (SOFC) or a high temperature steam electrolytic cell (SOSE).

【0002】[0002]

【従来の技術】従来の固体電解質型電解セルの一例とし
て、従来の円筒型SOFCの構成(断面)図を図4に示
し、これによって従来技術を説明する。SOFCは基体
管1、燃料極2、固体電解質3、空気極4を積層したも
のからなり、これをインタコネクタ5により接続して、
構成されている。燃料極2側に水素や一酸化炭素などの
燃焼を供給し、空気極4側に酸素を含んだ空気を供給す
ると、作動温度900〜1,000℃にて酸素イオンが
固体電解質3中を移動して電気が取り出せる装置であ
る。図4中、6は電流の流れを示す。
2. Description of the Related Art As an example of a conventional solid electrolyte type electrolytic cell, a configuration (cross-section) of a conventional cylindrical SOFC is shown in FIG. 4, and the conventional technique will be described. The SOFC comprises a stack of a base tube 1, a fuel electrode 2, a solid electrolyte 3 and an air electrode 4, which are connected by an interconnector 5,
It is configured. When combustion such as hydrogen or carbon monoxide is supplied to the fuel electrode 2 side and air containing oxygen is supplied to the air electrode 4 side, oxygen ions move in the solid electrolyte 3 at an operating temperature of 900 to 1,000 ° C. It is a device that can generate electricity. In FIG. 4, 6 shows the flow of electric current.

【0003】また、図5に従来の円筒型SOFCの断面
組織の模式図を示すが、基体管1はポーラスなセラミッ
クスチューブであり、Y2 3 ,CaO,MgOなどを
ドープしたジルコニアあるいはAl2 3 などが使用さ
れている。固体電解質3はY 2 3 で安定化されたジル
コニア(YSZ)などが使われ、緻密でガスタイトな膜
であるのに対して、燃料極2、空気極4は比較的粒径の
大きいセラミックス粉が使われ多孔質な膜である。燃料
極としてはNiO/YSZ(YSZの代わりとしてはC
eOx ,CeOx −SmOy ,PrOx など)、NiO
などが使用され、空気極にはLaCoO3 ,La1-x
x MnO3 ,LaMnO3 などのようなABO3 のペ
ロブスカイト型酸化物が使われている。
Further, FIG. 5 shows a cross section of a conventional cylindrical SOFC.
A schematic diagram of the structure is shown, but the base tube 1 is a porous ceramic
It's a tube and Y2O3, CaO, MgO, etc.
Doped zirconia or Al2O3Used by
Has been. Solid electrolyte 3 is Y 2O3Stabilized with Jill
Dense and gas-tight film using Konia (YSZ)
On the other hand, the fuel electrode 2 and the air electrode 4 have a relatively small particle size.
It is a porous film that uses large ceramic powder. fuel
NiO / YSZ as the pole (C as an alternative to YSZ
eOx, CeOx-SmOy, PrOxEtc.), NiO
Etc. are used, and LaCoO is used for the air electrode.3, La1-xS
rxMnO3, LaMnO3ABO such as3The bae
Robskite type oxide is used.

【0004】[0004]

【発明が解決しようとする課題】図6と図7にそれぞれ
燃料極側、空気極側の反応の状況、機構をガス(分
子)、イオン及び電子の移動で示した。
FIGS. 6 and 7 show the state of reaction and the mechanism of the reaction on the fuel electrode side and the air electrode side, respectively, by the movement of gas (molecule), ion and electron.

【0005】燃料極側の反応としては図6の(a),
(b)のように模式的に表わされる。 〇 図6(a):H2 分子が燃料極のNi粒子表面でH
+ イオンに活性化され、Ni粒子表面を3相界面へ移動
して、固体電解質を通って空気極側から移動してきたO
2-イオンと燃料極(Ni粒子)、固体電解質、気相の3
相界面で反応してH2 O分子を生成する。このとき、e
- (電子)の移動があるので発生したe-は燃料極(N
i)中を移動していく。 〇 図6(b):この場合はH2 分子が上記の3相界面
でH+ イオンに活性化され、固体電解質表面を移動しな
がら、O2-イオンと反応しH2 O分子を生成する。発生
したe- は固体電解質表層から燃料極へ移動し、この電
極中を移動していく。 図6(a)と図6(b)では若干、現象(3相界面の役
割)が異なるが、反応としては同じである。
The reaction on the fuel electrode side is shown in FIG.
It is schematically represented as (b). 〇 Figure 6 (a): H 2 molecules are H on the Ni particle surface of the fuel electrode.
O activated by + ions, moved to the three-phase interface on the Ni particle surface, and moved from the air electrode side through the solid electrolyte.
2- ion and fuel electrode (Ni particles), solid electrolyte, gas phase 3
It reacts at the phase interface to produce H 2 O molecules. At this time, e
- e movement that occurred because of the (electronic) - fuel electrode (N
i) Move inside. ○ FIG. 6 (b): In this case, H 2 molecules are activated by H + ions at the above-mentioned three-phase interface, and while moving on the solid electrolyte surface, react with O 2− ions to generate H 2 O molecules. . The generated e moves from the surface layer of the solid electrolyte to the fuel electrode and moves in this electrode. Although the phenomenon (role of the three-phase interface) is slightly different between FIG. 6A and FIG. 6B, the reaction is the same.

【0006】空気極側の反応としては図7の(a),
(b)のように模式的に表わされる。 〇 図7(a):空気中のO2 分子が空気極のペロブス
カイト型酸化物粒子表面で電極中を移動してきたe
- (電子)を受けとってO2-イオンとなり、この粒子中
を移動して3相界面を通って活性化され、固体電解質中
を燃料極側へ移動していく。 〇 図7(b):この場合はO2 分子が先ず空気極のペ
ロブスカイト型酸化物粒子表面に吸着して、粒子表面を
移動していく過程で活性化され、電極中を移動してきた
- を受けとってO2-イオンになる。あるいはO2 分子
が3相界面へ直接アタックしてe- を受けとってO2-
オンとなる。こののち、固体電解質中を燃料極側へ移動
していく。 図7(a)と図7(b)では若干、現象が異なるが、考
えられる現象である。
The reaction on the air electrode side is shown in FIG.
It is schematically represented as (b). ○ FIG. 7 (a): O 2 molecules in the air have moved in the electrode on the surface of the perovskite type oxide particles of the air electrode e
- be receiving an (electronic) O 2-ions, this is the particles move activated through the 3-phase interface, moves the solid electrolyte to the fuel electrode side. 〇 Fig. 7 (b): In this case, O 2 molecules are first adsorbed on the surface of the perovskite type oxide particles of the air electrode, activated in the process of moving on the particle surface, and moved in the electrode e Then, it becomes O 2- ion. Alternatively, O 2 molecules directly attack the three-phase interface to receive e and become O 2− ions. After that, the solid electrolyte moves to the fuel electrode side. Although the phenomenon is slightly different between FIG. 7A and FIG. 7B, it is a possible phenomenon.

【0007】従来の燃料電池では燃料極と固体電解質、
空気極と固体電解質ともに界面の電極の粒子径が比較的
大きく、このために反応の場となり得る3相界面(固−
固−気)が全体的に少なく、図8に示すように反応(活
性化)分極ηa に相当する抵抗が大きくその分性能(セ
ル電圧)が上がらないという課題があった。
In the conventional fuel cell, the fuel electrode and the solid electrolyte,
Both the air electrode and the solid electrolyte have a relatively large particle size of the electrode at the interface, which makes it possible to become a reaction field.
There is a problem in that solid-gas) is small as a whole, and as shown in FIG. 8, the resistance corresponding to the reaction (activation) polarization ηa is large and the performance (cell voltage) is not increased correspondingly.

【0008】本発明は上記技術水準に鑑み、性能の優れ
た固体電解質型電解セルを提供しようとするものであ
る。
In view of the above-mentioned state of the art, the present invention aims to provide a solid electrolyte type electrolytic cell having excellent performance.

【0009】[0009]

【課題を解決するための手段】本発明は燃料極、固体電
解質、空気極の順で積層されている固体電解質型電解セ
ルにおいて、空気極及び燃料極の材料の粒径を異材との
界面に向うほど微粒にするように変化させてなることを
特徴とする固体電解質型電解セルである。
According to the present invention, in a solid electrolyte type electrolysis cell in which a fuel electrode, a solid electrolyte and an air electrode are laminated in this order, the particle diameters of the materials of the air electrode and the fuel electrode are set to the interface with a different material. The solid electrolyte type electrolytic cell is characterized in that it is changed so as to become finer particles as it goes.

【0010】本発明の固体電解質型電解セルの一態様を
図1によって更に詳細に説明する。図1に示すように、
固体電解質3の片側に空気極4の微粒層4aを成膜し、
固体電解質3を離れるに向って次第に粗粒となる粗粒層
4bを成膜する。また、固体電解質3の他側に燃料極2
の微粒層2aを成膜し、固体電解質3を離れに向って次
第に粗粒となる粗粒層2bを成膜し、さらに支持体とな
る基体管1に向うに従って微粒となる微粒層2a′を基
体管1に接して成膜する。
One embodiment of the solid electrolyte type electrolytic cell of the present invention will be described in more detail with reference to FIG. As shown in Figure 1,
The fine particle layer 4a of the air electrode 4 is formed on one side of the solid electrolyte 3,
A coarse particle layer 4b is formed which gradually becomes coarser as it goes away from the solid electrolyte 3. Further, the fuel electrode 2 is provided on the other side of the solid electrolyte 3.
Of the fine particle layer 2a, a coarse particle layer 2b which gradually becomes coarser away from the solid electrolyte 3 is formed, and a fine particle layer 2a 'which becomes finer toward the substrate tube 1 as a support is formed. A film is formed in contact with the substrate tube 1.

【0011】上記態様は支持体となる基体管1を燃料極
2側に設けた場合を示したが、基体管1を空気極4側に
設けてもよく、その場合には空気極4と基体管1が接す
る界面は上述のように微粒層とする。
In the above embodiment, the base tube 1 serving as a support is provided on the fuel electrode 2 side. However, the base tube 1 may be provided on the air electrode 4 side. In that case, the air electrode 4 and the substrate are provided. The interface with which the tube 1 contacts is the fine particle layer as described above.

【0012】さらに、本発明の固体電解質電解セルは支
持体となる基体管を必ずしも設ける必要はなく、その場
合にはいずれから電極を支持体とする。
Further, in the solid electrolyte electrolytic cell of the present invention, it is not always necessary to provide a substrate tube as a support, and in that case, the electrode is used as the support from any one of them.

【0013】[0013]

【作用】図1に示した微粒層4a及び微粒層2bにより
図2に示すように反応(活性化)分極に相当する内部抵
抗が低減され、セル性能が向上し、作動点におけるセル
電圧が向上する。
With the fine particle layer 4a and the fine particle layer 2b shown in FIG. 1, the internal resistance corresponding to the reaction (activation) polarization is reduced as shown in FIG. 2, the cell performance is improved, and the cell voltage at the operating point is improved. To do.

【0014】[0014]

【実施例】以下、本発明の一実施例を前述の図1によっ
て説明する。ポーラスな基体管1上に微粒層2a′→粗
粒層2b→微粒層2aと粒径を傾斜的に変化させた燃料
極2を成膜し、その上に緻密でガスタイトな固体電解質
3膜を成膜する。そして固体電解質3の他面に微粒層4
a→粗粒層4bへと粒径を変化させた空気極4を成膜し
て固体電解質型燃料電池のセルを構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. On the porous substrate tube 1, a fine particle layer 2a ′ → a coarse particle layer 2b → a fine particle layer 2a and a fuel electrode 2 whose particle diameter is gradually changed are formed, and a dense and gas tight solid electrolyte 3 film is formed thereon. Form a film. Then, on the other surface of the solid electrolyte 3, a fine particle layer 4 is formed.
The cell of the solid oxide fuel cell is formed by forming the air electrode 4 with the particle size changed from a to the coarse particle layer 4b.

【0015】図1の左側の各種の材料の具体例を示して
いるが、これらについて説明する。基体管1は13〜1
7モル%のCaOをドープしたジルコニア(CSZ)で
あって、押出し成形、鋳込成形などによって成形された
ものである。燃料極2は数μm〜10数μmのNiO/
YSZ(12〜14wt%Y2 3 安定化ZrO2 )よ
りなる微粒層2a′、10〜35μmのNiOよりなる
粗粒層2b及び数μm〜10数μmのNiO/YSZ
(同上)よりなる微粒層2aよりなる。固体電解質3は
緻密なYSZよりなる。空気極4は数μm〜40μmの
LaSrMnO3(またはLaCaMnO3 )よりなる
微粒層4aと40〜120μmのLaCoO3 よりなる
粗粒層4bよりなる。空気極材料、燃料極材料は溶射法
かスラリ塗布−焼成法によって成膜することができる。
Specific examples of various materials on the left side of FIG. 1 are shown. These will be described. The base tube 1 is 13 to 1
It is zirconia (CSZ) doped with 7 mol% of CaO and is formed by extrusion molding, cast molding or the like. The fuel electrode 2 is NiO / several μm to several dozen μm.
Fine particle layer 2a ′ made of YSZ (12 to 14 wt% Y 2 O 3 stabilized ZrO 2 ), coarse particle layer 2b made of NiO of 10 to 35 μm, and NiO / YSZ of several μm to several dozen μm.
(Same as above). The solid electrolyte 3 is made of dense YSZ. The air electrode 4 is made of coarse layer 4b made of LaCoO 3 for fine layer 4a and 40~120μm consisting number μm~40μm of LaSrMnO 3 (or LaCaMnO 3). The air electrode material and the fuel electrode material can be formed into a film by a thermal spraying method or a slurry coating-firing method.

【0016】上記の例で、空気極の微粒層4aをLaS
rMnO3 (またはLaCaMnO 3 )としたのはMn
系の方が熱膨張率の点で固体電解質との整合性があるた
めであり、粗粒層4bをLaCoO3 としたのは、この
方が抵抗が小さいからである。
In the above example, the fine particle layer 4a of the air electrode is LaS.
rMnO3(Or LaCaMnO 3) Is Mn
The system is more consistent with the solid electrolyte in terms of coefficient of thermal expansion.
Therefore, the coarse particle layer 4b is formed of LaCoO.3And this is
This is because the resistance is smaller.

【0017】この実施例によれば、燃料極2の微粒層2
aにより燃料極2と固体電解質3間の界面において、3
相界面が増え図6で示すような燃料極側での反応に寄因
する抵抗が低減され、その分セル性能が向上する。また
空気極4の微粒層4aにより空気極4と固体電解質3間
の界面において3相界面が増え、図7で示すような空気
極側での空気中の酸素(O2 )の酸素イオン(O2 )に
なる反応に寄因する抵抗が低減され、その分セル性能が
向上する。またこの実施例によれば、図1に示すよう
に、基体管1側の燃料極側にも微粒層2a′を設けてい
るのでメタンガス(CH4 ) などを含んだ天然ガスなど
を燃料として用いCH4 +H2 O→3H2+COで示さ
れる燃料改質(CH4 の水蒸気改質)が燃料極側で行わ
れる際に、この微粒層2a′が燃料極(Ni)の触媒作
用を向上させ燃料の改質を効率よく行わせることになり
燃料電極の性能、セルの性能を向上させることができ
る。以上により、図2に示すように作動点においてセル
電圧の向上、つまり図3に示すように、燃料利用率の向
上が期待できる。
According to this embodiment, the fine particle layer 2 of the fuel electrode 2 is used.
At the interface between the fuel electrode 2 and the solid electrolyte 3 by a, 3
The number of phase interfaces increases and the resistance due to the reaction on the fuel electrode side as shown in FIG. 6 is reduced, and the cell performance is improved accordingly. Further, the three-phase interface increases at the interface between the air electrode 4 and the solid electrolyte 3 due to the fine particle layer 4a of the air electrode 4, and oxygen ions (O 2 ) of oxygen (O 2 ) in the air on the air electrode side (O 2 ) as shown in FIG. The resistance caused by the reaction 2 ) is reduced, and the cell performance is improved accordingly. According to this embodiment, used as shown in FIG. 1, a natural gas containing such methane (CH 4) Since there is provided a fine layer 2a 'even the fuel electrode side of the substrate tube 1 side as a fuel When the fuel reforming (CH 4 steam reforming) represented by CH 4 + H 2 O → 3H 2 + CO is performed on the fuel electrode side, this fine particle layer 2a ′ improves the catalytic action of the fuel electrode (Ni). The fuel can be reformed efficiently, and the performance of the fuel electrode and the performance of the cell can be improved. From the above, it can be expected that the cell voltage is improved at the operating point as shown in FIG. 2, that is, the fuel utilization rate is improved as shown in FIG.

【0018】[0018]

【発明の効果】本発明により、性能の優れた固体電解質
型電解セルを提供することができる。
According to the present invention, a solid electrolyte type electrolytic cell having excellent performance can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解質型電解セルの一態様の説明
図。
FIG. 1 is an explanatory diagram of one embodiment of a solid electrolyte type electrolytic cell of the present invention.

【図2】本発明の一実施例のセル性能の向上を示すi−
V特性図表。
FIG. 2 is a graph showing an improvement in cell performance of an embodiment of the present invention i-
V characteristic chart.

【図3】本発明の一実施例のセル性能及び燃料利用率の
向上を示す図表。
FIG. 3 is a chart showing improvement in cell performance and fuel utilization rate according to an embodiment of the present invention.

【図4】円筒型固体電解質型燃料電池のセル構成及び原
理の説明図。
FIG. 4 is an explanatory diagram of a cell configuration and a principle of a cylindrical solid oxide fuel cell.

【図5】従来の円筒型固体電解質型燃料電池のセル構成
図。
FIG. 5 is a cell configuration diagram of a conventional cylindrical solid oxide fuel cell.

【図6】固体電解質型燃料電池の燃料極側の反応状況の
説明図。
FIG. 6 is an explanatory diagram of a reaction situation on the fuel electrode side of a solid oxide fuel cell.

【図7】固体電解質型燃料電池の空気極側の反応状況の
説明図。
FIG. 7 is an explanatory diagram of a reaction state on the air electrode side of a solid oxide fuel cell.

【図8】従来の固体電解質型燃料電池のセル性能を示す
i−V特性図表。
FIG. 8 is an i-V characteristic chart showing cell performance of a conventional solid oxide fuel cell.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神前 潤一 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Kamima 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料極、固体電解質、空気極の順で積層
されている固体電解質型電解セルにおいて、空気極及び
燃料極の材料の粒径を異材との界面に向うほど微粒にす
るように変化させてなることを特徴とする固体電解質型
電解セル。
1. In a solid electrolyte type electrolysis cell in which a fuel electrode, a solid electrolyte and an air electrode are laminated in this order, the particle size of the material of the air electrode and the fuel electrode is made finer toward the interface with the dissimilar material. A solid electrolyte type electrolysis cell characterized by being changed.
JP5091253A 1993-04-19 1993-04-19 Solid electrolyte type electrolytic cell Withdrawn JPH06302330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091253A JPH06302330A (en) 1993-04-19 1993-04-19 Solid electrolyte type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091253A JPH06302330A (en) 1993-04-19 1993-04-19 Solid electrolyte type electrolytic cell

Publications (1)

Publication Number Publication Date
JPH06302330A true JPH06302330A (en) 1994-10-28

Family

ID=14021267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091253A Withdrawn JPH06302330A (en) 1993-04-19 1993-04-19 Solid electrolyte type electrolytic cell

Country Status (1)

Country Link
JP (1) JPH06302330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522748A (en) * 2006-01-09 2009-06-11 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Fuel cell assembly having porous electrodes
JP2012054224A (en) * 2010-09-02 2012-03-15 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
US8771901B2 (en) 2006-04-05 2014-07-08 Saint-Gobain Ceramics & Plastics, Inc. SOFC stack having a high temperature bonded ceramic interconnect and method for making same
WO2025146792A1 (en) * 2024-01-04 2025-07-10 日本特殊陶業株式会社 Solid oxide electrolysis cell and use of same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522748A (en) * 2006-01-09 2009-06-11 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Fuel cell assembly having porous electrodes
US8771901B2 (en) 2006-04-05 2014-07-08 Saint-Gobain Ceramics & Plastics, Inc. SOFC stack having a high temperature bonded ceramic interconnect and method for making same
JP2012054224A (en) * 2010-09-02 2012-03-15 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
WO2025146792A1 (en) * 2024-01-04 2025-07-10 日本特殊陶業株式会社 Solid oxide electrolysis cell and use of same

Similar Documents

Publication Publication Date Title
Sahibzada et al. Development of solid oxide fuel cells based on a Ce (Gd) O2− x electrolyte film for intermediate temperature operation
US6479178B2 (en) Direct hydrocarbon fuel cells
JP5581216B2 (en) High performance multilayer electrode for use in reducing gases
US7445814B2 (en) Methods of making porous cermet and ceramic films
US7709124B2 (en) Direct hydrocarbon fuel cells
US7655346B2 (en) Electrode material and fuel cell
JP2011507161A (en) High performance multilayer electrode for use in oxygen-containing gases
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
US20130082421A1 (en) Process for manufacturing elementary electrochemical cells for energy- or hydrogen-producing electrochemical systems, in particular of sofc and hte type
WO2018029994A1 (en) Hydrogen processing device
JP2016154096A (en) Solid oxide fuel battery and manufacturing method for solid oxide fuel battery
JP5481611B2 (en) High temperature steam electrolysis cell
US20060257714A1 (en) Electrode material and fuel cell
Guan et al. Ceramic oxygen generators with thin‐film zirconia electrolytes
Tan et al. Infiltrated nano-CeO2 and inserted Ni-Fe active layer in a tubular cathode substrate for high temperature CO2 electrolysis on solid oxide cells using La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ thin film electrolyte
US11682771B2 (en) Electrochemical cell and electrochemical cell stack
Zhu et al. Non-conventional fuel cell systems: new concepts and development
JP2006283103A (en) Steam electrolysis cell
JPH06302330A (en) Solid electrolyte type electrolytic cell
JP2007335314A (en) Single-chamber solid oxide fuel cell, single-chamber solid oxide fuel cell system, and single-chamber solid oxide fuel cell operating method
JP2004186119A (en) Electrode formation method
JP2013014820A (en) Electrolytic cell for reforming fuel gas, and method of generating reformed gas using electrolytic cell
JP5176362B2 (en) Solid oxide fuel cell structure and solid oxide fuel cell using the same
JP5112711B2 (en) Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell
JP2009054393A (en) Fuel cell and power generation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704