JPH06310363A - Semiconductor ceramic and manufacture thereof - Google Patents
Semiconductor ceramic and manufacture thereofInfo
- Publication number
- JPH06310363A JPH06310363A JP11900793A JP11900793A JPH06310363A JP H06310363 A JPH06310363 A JP H06310363A JP 11900793 A JP11900793 A JP 11900793A JP 11900793 A JP11900793 A JP 11900793A JP H06310363 A JPH06310363 A JP H06310363A
- Authority
- JP
- Japan
- Prior art keywords
- component
- mol
- oxide
- semiconductor ceramic
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Capacitors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高誘電率を有し、静電容
量の温度特性に優れ且つ高絶縁破壊電圧を有する(S
r,Ca)TiO3 系半導体磁器コンデンサ素体及びそ
の製造方法に関するものである。The present invention has a high dielectric constant, an excellent temperature characteristic of capacitance, and a high dielectric breakdown voltage (S
The present invention relates to an r, Ca) TiO 3 -based semiconductor ceramic capacitor element body and a method for manufacturing the same.
【0002】[0002]
【従来の技術】特開昭58−21312号公報に、(S
r1-x Cax )Tiy O2y+1と、CeO2 、La
2 O3 、WO3 、Gd2 O3 、Y2 O3 及びDy2 O3
の内の少なくとも1種の金属酸化物と、CuO、MnO
2 、Bi2 O3 及びPbOの内の少なくとも1種の金属
酸化物とから成る半導体磁器コンデンサ素体及びその製
造方法が開示されている。この磁器組成物の見掛けの比
誘電率は、7000以上であり、またコンデンサにした
際の静電容量の温度特性が±7%以下であり、tan δが
1.5%以下であり、更に絶縁抵抗Rが104 MΩ(比
抵抗ρ1010Ω・cm)以上であるため比較的特性の優
れた半導体磁器コンデンサを提供することができる。2. Description of the Related Art Japanese Unexamined Patent Publication No. 58-21312 (S)
r 1-x Ca x ) Ti y O 2y + 1 , CeO 2 , La
2 O 3 , WO 3 , Gd 2 O 3 , Y 2 O 3 and Dy 2 O 3
Of at least one metal oxide of CuO, MnO
A semiconductor ceramic capacitor element body comprising at least one metal oxide of 2 , Bi 2 O 3 and PbO, and a method for manufacturing the same are disclosed. The porcelain composition has an apparent relative permittivity of 7,000 or more, a temperature characteristic of capacitance of a capacitor of ± 7% or less, a tan δ of 1.5% or less, and further insulation. Since the resistance R is 10 4 MΩ (specific resistance ρ 10 10 Ω · cm) or more, it is possible to provide a semiconductor ceramic capacitor having relatively excellent characteristics.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記組成によ
り製作した半導体磁器コンデンサは、実効誘電率800
0〜10000のとき、絶縁破壊電圧(B・D・V)が
1000〜1200V/mm程度である。これは素体の
粒子径が不均一であることに起因している。また、上記
組成の半導体磁器コンデンサは、還元性雰囲気中で13
50〜1450℃、3時間焼成(以下これを一次焼成と
称す)及び一次焼成によって得られた素体を空気中で9
00〜1200℃、3時間焼成(以下これを二次焼成と
称す)時に、Cu、Mn、Bi、Pb等の元素が蒸発し
てしまうため、組成ずれを起こす。従って、焼成条件の
変動により電気特性の変化が生じてしまう。However, the semiconductor ceramic capacitor manufactured with the above composition has an effective dielectric constant of 800.
When it is 0 to 10000, the dielectric breakdown voltage (B · D · V) is about 1000 to 1200 V / mm. This is because the particle size of the element body is not uniform. Further, the semiconductor porcelain capacitor having the above composition is 13% in a reducing atmosphere.
The element body obtained by firing at 50 to 1450 ° C. for 3 hours (hereinafter referred to as “primary firing”) and the primary firing is heated in air for 9 hours.
Elements such as Cu, Mn, Bi, and Pb evaporate during baking at 00 to 1200 ° C. for 3 hours (hereinafter referred to as secondary baking), which causes compositional deviation. Therefore, a change in firing condition causes a change in electrical characteristics.
【0004】そこで、本発明の目的は、高絶縁破壊電圧
値を有する半導体磁器及びその製造方法を提供すること
にある。Therefore, an object of the present invention is to provide a semiconductor ceramic having a high dielectric breakdown voltage value and a method for manufacturing the same.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
の本発明は、99.200〜99.915モル%の(S
r1-x Cax )Tiy O2y+1(但し、x=0.31〜
0.52、y=0.99〜1.01である)(以下、第
1成分と言う)と、0.075〜0.600モル%のC
eO2 (酸化セリウム)、La2 O3 (酸化ランタ
ン)、WO3 (酸化タングステン)、Y2 O3 (酸化イ
ットリウム)及びNb2 O5 (酸化ニオブ)の内の少な
くとも1種の金属酸化物(以下、第2成分と言う)と、
0.01〜0.20モル%のバナジウム酸化物(以下、
第3成分と言う)とを含んでいる半導体磁器に係わるも
のである。なお、請求項2又は3に従うように製造する
ことが望ましい。The present invention for achieving the above object is achieved by using 99.200 to 99.915 mol% of (S
r 1-x Ca x ) Ti y O 2y + 1 (where x = 0.31 to
0.52, y = 0.99 to 1.01) (hereinafter referred to as the first component) and 0.075 to 0.600 mol% of C.
At least one metal oxide selected from eO 2 (cerium oxide), La 2 O 3 (lanthanum oxide), WO 3 (tungsten oxide), Y 2 O 3 (yttrium oxide) and Nb 2 O 5 (niobium oxide). (Hereinafter referred to as the second component),
0.01 to 0.20 mol% of vanadium oxide (hereinafter,
(Referred to as a third component)). In addition, it is desirable to manufacture according to claim 2 or 3.
【0006】[0006]
【発明の作用及び効果】従来粒界絶縁化を目的として添
加した金属酸化物(CuO、MnO2 、Bi2O3 、P
bO)は、粒界に偏析して粒界成分の一部と化合するか
又は単独に存在し、且つ焼成時に蒸発した。このため、
結晶粒子の径が不均一になったり、焼成条件の変動によ
る特性変動が大きくなった。これに対して、本発明にし
たがってバナジウム酸化物(V2 O5 )を使用すると、
バナジウム(V)が蒸発せず、組成変動が生じない。こ
のため、結晶粒径が均一になり、絶縁破壊電圧が向上
し、実効誘電率8000〜10000の時に2000〜
4000V/mmになる。バナジウム(V)の蒸発及び
組成変動が生じない理由は、還元雰囲気中での1次焼成
によりV2 O5 がV3+となりペロブスカイト型ABO3
(A:Sr,Ca、B:Ti)で示される結晶構造を持
つ主成分{(Sr,Ca)TiO3 }のBサイト即ちT
i側に完全に固溶してしまうためと考えられる。FUNCTION AND EFFECT OF THE INVENTION Metal oxides (CuO, MnO 2 , Bi 2 O 3 , P added conventionally for the purpose of insulating the grain boundaries).
bO) was segregated at the grain boundaries and combined with a part of the grain boundary components, or was present alone, and evaporated during firing. For this reason,
The diameter of the crystal particles became non-uniform, and the fluctuation of the characteristics became large due to the fluctuation of the firing conditions. On the other hand, when vanadium oxide (V 2 O 5 ) is used according to the present invention,
Vanadium (V) does not evaporate and compositional variation does not occur. Therefore, the crystal grain size becomes uniform, the dielectric breakdown voltage is improved, and when the effective dielectric constant is 8000 to 10000,
It becomes 4000 V / mm. The reason why vanadium (V) does not evaporate and the composition does not change is that V 2 O 5 becomes V 3+ by the primary firing in a reducing atmosphere and the perovskite type ABO 3
B site of the main component {(Sr, Ca) TiO 3 } having a crystal structure represented by (A: Sr, Ca, B: Ti), that is, T
It is considered that this is because the solid solution is completely formed on the i side.
【0007】[0007]
【第1の実施例】次に、本発明の実施例(比較例も含
む)に係わる半導体磁器コンデンサ及びその製造方法を
説明する。合計で100モル%となるように次の組成の
混合物を用意した。 第1成分 (Sr1-x Cax )Tiy O2y+1 99.61モル% 第2成分 CeO2 0.33モル% 第3成分 V2 O5 0.06モル%[First Embodiment] Next, a semiconductor ceramic capacitor according to an embodiment of the present invention (including a comparative example) and a method for manufacturing the same will be described. A mixture having the following composition was prepared so that the total amount was 100 mol%. First component (Sr 1-x Ca x ) Ti y O 2y + 1 99.61 mol% Second component CeO 2 0.33 mol% Third component V 2 O 5 0.06 mol%
【0008】上記第1成分はSrTiO3 (チタン酸ス
トロンチウム)とCaTiO3 (チタン酸カルシウム)
とを、(Sr1-x Cax )Tiy O2y+1を満足するよう
な比率に混合したものから成る。第1成分を得るための
SrTiO3 はSrCO3 (炭酸ストロンチウム)とT
iO2 (酸化チタン)とを等モルに秤量し、ボールミル
にて10〜15時間攪拌し、乾燥し、粉砕した後に95
0〜1250℃、大気中で2時間焼成することによって
得た。また、CaTiO3 はCaCO3 (炭酸カルシウ
ム)とTiO2 とを等モルに秤量し、ボールミルにて1
0〜15時間攪拌し、乾燥し、粉砕した後に950〜1
250℃、大気中で2時間焼成することによって得た。The first component is SrTiO 3 (strontium titanate) and CaTiO 3 (calcium titanate).
And are mixed in a ratio that satisfies (Sr 1-x Ca x ) Ti y O 2y + 1 . SrTiO 3 for obtaining the first component is SrCO 3 (strontium carbonate) and T
iO 2 (titanium oxide) was weighed equimolarly, stirred in a ball mill for 10 to 15 hours, dried and pulverized to 95
It was obtained by firing in the air at 0 to 1250 ° C. for 2 hours. For CaTiO 3 , weigh CaCO 3 (calcium carbonate) and TiO 2 in equimolar amounts and use a ball mill to
After stirring for 0 to 15 hours, drying and crushing, 950-1
It was obtained by firing in air at 250 ° C. for 2 hours.
【0009】なお、第1成分におけるxの値の変化によ
る特性変化を調べるために、表1に示すようにxを0.
28から0.56まで8段階に変化させて試料NO. 1か
らNO. 8までの8個の試料を作った。xは第1成分のS
rTiO3 とCaTiO3 とのモル比を変えることによ
って変化する。例えば試料NO. 1においては、SrTi
O3 を72モル%、CaTiO3 を28モル%の比率に
混合して第1成分を得る。これによりxは0.28にな
る。試料NO. 2〜8においてもxの値に応じてSrTi
O3 とCaTiO3 の比率を決定する。試料NO. 1〜8
において、第1成分の組成式におけるyはいずれも1
(一定)である。従って、試料NO. 1の第1成分の組成
式はSr0.72Ca0.28TiO3 である。In order to investigate the characteristic change due to the change in the value of x in the first component, x is set to 0.
Eight samples from sample No. 1 to NO. 8 were made by changing from 28 to 0.56 in 8 steps. x is S of the first component
It is changed by changing the molar ratio of rTiO 3 and CaTiO 3 . For example, in sample No. 1, SrTi
72 mol% of O 3 and 28 mol% of CaTiO 3 are mixed to obtain the first component. As a result, x becomes 0.28. Also in sample Nos. 2 to 8, SrTi was changed depending on the value of x.
Determine the ratio of O 3 and CaTiO 3 . Sample No. 1-8
In the composition formula of the first component, y is 1
(Constant). Therefore, the composition formula of the first component of sample No. 1 is Sr 0.72 Ca 0.28 TiO 3 .
【0010】次に、各試料の第1成分と第2成分と第3
成分の混合物をボールミルで10〜15時間攪拌した後
乾燥させ、しかる後粉砕した。次に有機バインダーとし
てポリビニルアルコールを10〜15重量%混入して造
粒し、これを1000kg/cm2 の圧力で直径6.6
mm厚さ0.55mmの円板に成形した後バインダーを
飛ばすために、800℃で熱処理を施し、しかる後還元
性雰囲気中で1350〜1450℃、3時間焼成(以下
これを一次焼成と称す)した。次に一次焼成によって得
られた半導体磁器素体を空気中(酸化性雰囲気中)で9
00〜1200℃、3時間焼成(以下これを二次焼成と
称す)して粒界を絶縁化した磁器素体を得た。次に図1
に模式的に示す如く磁器素体1の両主面に銀ペーストを
塗布し焼付けて電極2、3を形成し、コンデンサを完成
させた。なお、磁器素体1は主として一次焼成によって
形成されるN型半導体の結晶粒4と、主として2次焼成
によって形成される絶縁層5とから成る。Next, the first component, second component and third component of each sample
The mixture of components was stirred on a ball mill for 10 to 15 hours, dried, and then ground. Next, 10 to 15% by weight of polyvinyl alcohol was mixed as an organic binder and granulated, and this was granulated at a pressure of 1000 kg / cm 2 to a diameter of 6.6.
After being formed into a circular disc having a thickness of 0.55 mm, a heat treatment is performed at 800 ° C. in order to remove the binder, and thereafter, it is baked at 1350 to 1450 ° C. for 3 hours in a reducing atmosphere (hereinafter referred to as primary baking). did. Next, the semiconductor porcelain body obtained by the primary firing is placed in air (in an oxidizing atmosphere) for 9 days.
Firing was performed at 00 to 1200 ° C. for 3 hours (hereinafter referred to as secondary firing) to obtain a porcelain body with insulated grain boundaries. Next in FIG.
As schematically shown in Fig. 2, silver paste was applied to both main surfaces of the porcelain body 1 and baked to form electrodes 2 and 3 to complete a capacitor. The porcelain body 1 is mainly composed of N-type semiconductor crystal grains 4 formed by primary firing and an insulating layer 5 formed mainly by secondary firing.
【0011】比較のために、 第1成分 Sr0.66Ca0.34TiO3 98.84モル% 第2成分 CeO2 0.33モル% 第3成分CuO 0.83モル% の組成の原料混合物を用意し、試料NO. 1〜8と同一の
方法で磁器コンデンサを作製した。For comparison, a raw material mixture having the composition of the first component Sr 0.66 Ca 0.34 TiO 3 98.84 mol% the second component CeO 2 0.33 mol% and the third component CuO 0.83 mol% was prepared, Porcelain capacitors were produced in the same manner as in sample Nos. 1 to 8.
【0012】次に、試料NO. 1〜8及び比較例のコンデ
ンサの静電容量C及びtan δ(誘電損失)を1kHzの
周波数で測定した。そして、見掛上の比誘電率εを求め
た。また、20℃静電容量C20と、−25℃の静電容量
C-25 と、+85℃の静電容量C85とを測定し、20℃
を基準にした−25℃及び+85℃の静電容量の変化率
T1 、T2 を次式で求めた。 T1 ={(C-25 −C20)/C20}×100(%) T2 ={(C85−C20)/C20}×100(%) また、磁器素体1の比抵抗ρをρ=Rs/tの式で求め
た。但し、Rは電極2、3間の絶縁抵抗値、tは素体1
の厚さ、sは電極面積であり、本実施例の場合tは約
0.49mm、sは約19.635mm2 である。ま
た、素体1の絶縁破壊電圧BDVを直流電圧を加えて測
定した。表1は試料NO. 1〜8の第1成分のx値と、
ε、tan δ、ρ、BDV、T1 、T2 を示す。なお、比
較例のεは10.000、tan δは0.9、ρは8.0
×1010Ω・cm、BDVは1200V/mm、T1 は
3.80%、T2 は−2.90%であった。Next, the capacitance C and tan δ (dielectric loss) of the sample Nos. 1 to 8 and the capacitor of the comparative example were measured at a frequency of 1 kHz. Then, the apparent relative permittivity ε was obtained. In addition, the capacitance C 20 of 20 ° C., the capacitance C -25 of −25 ° C., and the capacitance C 85 of + 85 ° C. were measured to obtain 20 ° C.
The rates of change T1 and T2 of the electrostatic capacitance at -25 ° C and + 85 ° C based on the above were determined by the following formula. T1 = {(C -25 -C 20 ) / C 20} × 100 (%) T2 = {(C 85 -C 20) / C 20} × 100 (%) Further, the specific resistance ρ of porcelain 1 It was determined by the formula of ρ = Rs / t. Where R is the insulation resistance value between the electrodes 2 and 3, and t is the element body 1.
Thickness, s is the electrode area, and in this embodiment, t is about 0.49 mm and s is about 19.635 mm 2 . Moreover, the dielectric breakdown voltage BDV of the element body 1 was measured by applying a DC voltage. Table 1 shows the x value of the first component of sample No. 1 to 8,
ε, tan δ, ρ, BDV, T1 and T2 are shown. In the comparative example, ε is 10.000, tan δ is 0.9, and ρ is 8.0.
× 10 10 Ω · cm, BDV was 1200 V / mm, T1 was 3.80%, and T2 was -2.90%.
【0013】[0013]
【表1】 [Table 1]
【0014】本発明では、εが7000以上、tan δが
1.5%以下、ρが1010Ω・cm以上、BDVが10
00V/mm以上、T1 及びT2 の絶対値が7%以下を
良品基準としている。本発明で特定している組成に従う
試料NO. 2〜7は上記良品基準を満足している。しか
し、試料NO. 1、8は本発明で特定する組成に含まれ
ず、特性も上記良品基準を満足していないので比較例で
ある。In the present invention, ε is 7,000 or more, tan δ is 1.5% or less, ρ is 10 10 Ω · cm or more, and BDV is 10%.
The standard for good products is 00 V / mm or more and the absolute value of T1 and T2 is 7% or less. Sample Nos. 2 to 7 according to the composition specified in the present invention satisfy the above-mentioned criteria for non-defective products. However, sample Nos. 1 and 8 are comparative examples because they are not included in the composition specified in the present invention and their characteristics do not satisfy the above criteria for non-defective products.
【0015】第3成分をCuOとした比較例(従来例)
のBDVと第3成分をV2 O5 とした本発明に従う試料
NO. 2〜7のBDVとの比較から明らかなように、本発
明に従うものは、従来例の約2〜3倍のBDVを得るこ
とができる。Comparative example (conventional example) in which the third component is CuO
According to the invention with BDV of 3 and V 2 O 5 as the third component
As is clear from comparison with BDV of Nos. 2 to 7, the BDV of the present invention can obtain BDV about 2 to 3 times that of the conventional example.
【0016】試料NO. 1に示すように第1成分のxが
0.28の場合にはT2 が基準値よりも大きくなる。ま
た、試料NO. 1に示すように第1成分のxが0.56の
場合にはε、tan δが基準から外れる。従って、xの好
ましい範囲は0.31〜0.52である。As shown in sample No. 1, when x of the first component is 0.28, T2 becomes larger than the reference value. Further, as shown in sample No. 1, when x of the first component is 0.56, ε and tan δ deviate from the reference. Therefore, the preferable range of x is 0.31 to 0.52.
【0017】第1成分のSrTiO3 とCaTiO3 と
の配合比率即ちxの値を変えると、静電容量の温度変化
率T1 、T2 が変化する。これは、SrO−CaO−T
iO2 固溶体の変態点がSrTiO3 とCaTiO3 の
配合割合即ちSrとCaの割合の変化によって移動する
ためである。なお、第2成分及び第3成分が固定されて
いれば、ε、ρ、BDVは第1成分のxの変化に拘らず
ほとんど変化しない。試料NO. 8でxが0.56の時に
εが3000、tan δが1.9と悪くなるのは、2次焼
成時に結晶粒子まで酸化が進むためである。When the mixing ratio of SrTiO 3 and CaTiO 3 as the first component, that is, the value of x is changed, the temperature change rates T1 and T2 of the capacitance change. This is SrO-CaO-T
This is because the transformation point of the iO 2 solid solution moves depending on the change in the compounding ratio of SrTiO 3 and CaTiO 3 , that is, the ratio of Sr and Ca. If the second component and the third component are fixed, ε, ρ, and BDV hardly change regardless of the change in x of the first component. In sample No. 8, when ε is 0.56, ε is 3,000 and tan δ is as bad as 1.9 because oxidation progresses to the crystal grains during the secondary firing.
【0018】第3成分のV2 O5 は一次焼成及び二次焼
成においてほとんど蒸発しないので、焼成後の磁器素体
1の組成は焼成前の原料の組成と実質的に同一である。Since the third component V 2 O 5 hardly evaporates in the primary and secondary firings, the composition of the porcelain body 1 after firing is substantially the same as the composition of the raw material before firing.
【0019】[0019]
【第2の実施例】 第1成分 (Sr1-x Cax )Tiy O2y+1 99.61モル% 第2成分 CeO2 0.33モル% 第3成分 V2 O5 0.06モル% の混合物を第1の実施例と同様に用意した。但し、第1
成分のxを0.34に一定にしてyを表2に示すように
4段階に変化させて4つの試料を用意した。なお、第1
成分のモル%で示す原料の配合割合は次の通りである。 試料NO. SrTiO3 CaTiO3 SrCO3 TiO2 9 66.68 34 1.32 0 10 65.34 34 0.66 0 11 66 34 0 0.5 12 66 34 0 1.0Second Example First component (Sr 1-x Ca x ) Ti y O 2y + 1 99.61 mol% Second component CeO 2 0.33 mol% Third component V 2 O 5 0.06 mol % Mixture was prepared as in the first example. However, the first
Four samples were prepared by keeping x of the component constant at 0.34 and changing y in four steps as shown in Table 2. The first
The mixing ratios of the raw materials shown in mol% of the components are as follows. Sample NO.SrTiO 3 CaTiO 3 SrCO 3 TiO 2 9 66.68 34 1.32 0 10 65.34 34 0.66 0 11 66 34 0 0.5 12 12 66 34 0 1.0
【0020】原料組成を上述のように変えた他は第1の
実施例と同一の方法で磁器コンデンサを作製し、その特
性を測定したところ表2に示す結果が得られた。A porcelain capacitor was manufactured by the same method as in Example 1 except that the composition of the raw materials was changed as described above, and the characteristics were measured. The results shown in Table 2 were obtained.
【0021】[0021]
【表2】 [Table 2]
【0022】表2から明らかなように、試料NO. 9のy
が0.98の時には焼結体が得られず、また試料NO. 1
2のyが1.02の時にはε及びtan δが悪くなる。従
って、yの好ましい範囲は0.99〜1.01である。As is apparent from Table 2, y of sample No. 9
No. 1 was 0.98, no sintered body was obtained, and sample No. 1
When y of 2 is 1.02, ε and tan δ deteriorate. Therefore, the preferable range of y is 0.99 to 1.01.
【0023】[0023]
【第3の実施例】第3成分V2 O5 の好ましい範囲を調
べるために、 第1成分 (Sr0.66Ca0.34)TiO3 99.37〜99.965モル% 第2成分 CeO2 0.33モル%(一定) 第3成分 V2 O5 0.005〜0.300モル% の原料を用意した。なお、第3成分は表3に示すように
9段階に変化させた。また、第1成分はSrTiO3
66モル%とCaTiO3 34モル%の混合物であ
る。組成を変えた他は第1の実施例と同一の方法で磁器
コンデンサを作製し、特性を調べたところ表3に示す結
果が得られた。[Third Example] In order to investigate the preferable range of the third component V 2 O 5 , the first component (Sr 0.66 Ca 0.34 ) TiO 3 99.37 to 99.965 mol% the second component CeO 2 0.33 Mol% (constant) Third component V 2 O 5 A raw material of 0.005 to 0.300 mol% was prepared. The third component was changed in 9 steps as shown in Table 3. The first component is SrTiO 3
It is a mixture of 66 mol% and CaTiO 3 34 mol%. A porcelain capacitor was manufactured by the same method as in Example 1 except that the composition was changed, and the characteristics were examined. The results shown in Table 3 were obtained.
【0024】[0024]
【表3】 [Table 3]
【0025】表3から明らかなように試料NO. 13の第
3成分が0.005モル%の場合にはBDVが悪く、試
料NO. 21の第3成分が0.30の場合にはε、tan
δ、ρ、BDVが悪い。従って、第3成分のV2 O5 の
好ましい範囲は0.01〜0.2モル%である。As is clear from Table 3, BDV is poor when the third component of sample NO. 13 is 0.005 mol%, and ε when the third component of sample NO. 21 is 0.30. tan
δ, ρ, BDV are bad. Therefore, the preferable range of V 2 O 5 as the third component is 0.01 to 0.2 mol%.
【0026】[0026]
【第4の実施例】第2成分の金属酸化物として種々のも
のが種々の割合で使用できることを確かめるために、 第1成分 (Sr0.66Ca0.34)TiO3 99.865〜99.34モル% 第2成分 CeO2 0.075〜0.600モル% 第3成分 V2 O5 0.06モル%(一定) の範囲の15種類の試料を用意し、第1の実施例と同一
の方法で磁器コンデンサを作製し、特性を測定したとこ
ろ、次の表4に示す結果が得られた。[Fourth Embodiment] In order to confirm that various metal oxides as the second component can be used in various proportions, the first component (Sr 0.66 Ca 0.34 ) TiO 3 99.865 to 99.34 mol% Second component CeO 2 0.075 to 0.600 mol% Third component V 2 O 5 0.06 mol% (constant) 15 kinds of samples were prepared in the same manner as in the first embodiment. When a porcelain capacitor was produced and its characteristics were measured, the results shown in Table 4 below were obtained.
【0027】[0027]
【表4】 [Table 4]
【0028】表4から明らかなように、第2成分として
CeO2 、Y2 O3 、La2 O3 、WO3 、Nb2 O5
のいずれかを0.075〜0.600モル%範囲使用し
て第3成分をV2 O5 とすることによって良品基準を満
足する磁器コンデンサを得ることができる。なお、第2
成分をCeO2 、La2 O3 、WO3 、Y2 O3 、Nb
2 O5 の内の複数種類の金属酸化物を組み合わせたもの
としても1つの場合と同様な作用効果が得られることが
確認されている。As is apparent from Table 4, CeO 2 , Y 2 O 3 , La 2 O 3 , WO 3 and Nb 2 O 5 were used as the second component.
It is possible to obtain a porcelain capacitor satisfying the standard of non-defective products by using any one of the above in the range of 0.075 to 0.600 mol% and setting the third component to V 2 O 5 . The second
The components are CeO 2 , La 2 O 3 , WO 3 , Y 2 O 3 and Nb.
It has been confirmed that the same effect as in one case can be obtained even if a plurality of kinds of metal oxides of 2 O 5 are combined.
【0029】なお、以上の実施例及びその実験によって
次のことが確認されている。 (a) 実施例1〜3によって示されている第1成分
(Sr1-x Cax )Tiy O2y+1はSrTiO3 とCa
TiO3 以外の組成合成から作製しても同様な結果が得
られる。例えば、SrCO3 、CaCO3 、TiO2 を
合成したものでも、本実施例と同様な結果を得ることが
できること。 (b) 還元性雰囲気中での加熱温度は好ましくは13
00〜1500℃の範囲であり、より好ましくは135
0〜1450℃の範囲であること。また、この処理時間
は2〜8時間が好ましいこと。 (c) 再酸化処理(二次焼成)は850〜1300℃
で1〜5時間行うことが好ましいこと。 (d) 本発明に関わるコンデンサ素体の性質を損なわ
ない範囲で例えば、Al2 O3 、SiO2 等の更に別の
物質を付加しても差し支えないこと。 (e) グリーンシート(未焼成磁器シート)に電極材
料を塗布したものを積層して焼成して積層コンデンサを
作製する場合にも本発明を適用し得る。The following has been confirmed by the above-mentioned embodiments and experiments. (A) The first component (Sr 1-x Ca x ) Ti y O 2y + 1 shown in Examples 1 to 3 is SrTiO 3 and Ca.
Similar results can be obtained by making from a composition composition other than TiO 3 . For example, even if SrCO 3 , CaCO 3 , and TiO 2 are synthesized, the same results as in the present embodiment can be obtained. (B) The heating temperature in the reducing atmosphere is preferably 13
The temperature is in the range of 0 to 1500 ° C., more preferably 135
It should be in the range of 0 to 1450 ° C. Further, this processing time is preferably 2 to 8 hours. (C) Reoxidation treatment (secondary firing) is 850 to 1300 ° C
It is preferable to carry out for 1 to 5 hours. (D) Other substances such as Al 2 O 3 and SiO 2 may be added within a range that does not impair the properties of the capacitor body according to the present invention. (E) The present invention can also be applied to a case where a green sheet (unfired porcelain sheet) coated with an electrode material is laminated and fired to produce a laminated capacitor.
【図1】実施例の磁器コンデンサを模式的に示す断面図
である。FIG. 1 is a cross-sectional view schematically showing a ceramic capacitor of an example.
1 磁器素体 2、3 電極 1 Porcelain body 2, 3 electrodes
Claims (3)
(Sr1-x Cax )Tiy O2y+1(但し、x=0.31
〜0.52、y=0.99〜1.01である)と、 0.075〜0.600モル%のCeO2 (酸化セリウ
ム)、La2 O3 (酸化ランタン)、WO3 (酸化タン
グステン)、Y2 O3 (酸化イットリウム)及びNb2
O5 (酸化ニオブ)の内の少なくとも1種の金属酸化物
と、 0.01〜0.20モル%のバナジウム酸化物とを含ん
でいることを特徴とする半導体磁器。1. 99.200 to 99.915 mol% of (Sr 1-x Ca x ) Ti y O 2y + 1 (where x = 0.31)
˜0.52, y = 0.99 to 1.01) and 0.075 to 0.600 mol% CeO 2 (cerium oxide), La 2 O 3 (lanthanum oxide), WO 3 (tungsten oxide). ), Y 2 O 3 (yttrium oxide) and Nb 2
A semiconductor porcelain containing at least one metal oxide of O 5 (niobium oxide) and 0.01 to 0.20 mol% of vanadium oxide.
(Sr1-x Cax )Tiy O2y+1(但し、x=0.31
〜0.52、y=0.99〜1.01である)と、 0.075〜0.600モル%のCeO2 (酸化セリウ
ム)、La2 O3 (酸化ランタン)、WO3 (酸化タン
グステン)、Y2 O3 (酸化イットリウム)及びNb2
O5 (酸化ニオブ)の内の少なくとも1種の金属酸化物
と、 0.01〜0.20モル%のバナジウム酸化物との混合
物を用意する工程と、 前記混合物を所定形状に成形して成形体を得る工程と、 前記成形体を非酸化性雰囲気で焼成して焼結体を得る工
程と、 前記焼結体を酸化性雰囲気で熱処理する工程とを含む半
導体磁器の製造方法。2. 99.200 to 99.915 mol% of (Sr 1-x Ca x ) Ti y O 2y + 1 (where x = 0.31)
˜0.52, y = 0.99 to 1.01) and 0.075 to 0.600 mol% CeO 2 (cerium oxide), La 2 O 3 (lanthanum oxide), WO 3 (tungsten oxide). ), Y 2 O 3 (yttrium oxide) and Nb 2
Preparing a mixture of at least one metal oxide of O 5 (niobium oxide) and 0.01 to 0.20 mol% of vanadium oxide, and molding the mixture into a predetermined shape A method of manufacturing a semiconductor porcelain, comprising: a step of obtaining a body; a step of firing the molded body in a non-oxidizing atmosphere to obtain a sintered body; and a step of heat-treating the sintered body in an oxidizing atmosphere.
CaTiO3 とSrTiO3 との混合物である請求項2
記載の半導体磁器の製造方法。3. The (Sr 1-x Ca x ) Ti y O 2y + 1 is a mixture of CaTiO 3 and SrTiO 3.
A method for manufacturing the semiconductor porcelain described.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11900793A JP2972052B2 (en) | 1993-04-21 | 1993-04-21 | Semiconductor porcelain and method of manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11900793A JP2972052B2 (en) | 1993-04-21 | 1993-04-21 | Semiconductor porcelain and method of manufacturing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06310363A true JPH06310363A (en) | 1994-11-04 |
| JP2972052B2 JP2972052B2 (en) | 1999-11-08 |
Family
ID=14750690
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11900793A Expired - Fee Related JP2972052B2 (en) | 1993-04-21 | 1993-04-21 | Semiconductor porcelain and method of manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2972052B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9012030B2 (en) | 2002-01-08 | 2015-04-21 | Applied Materials, Inc. | Process chamber component having yttrium—aluminum coating |
-
1993
- 1993-04-21 JP JP11900793A patent/JP2972052B2/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9012030B2 (en) | 2002-01-08 | 2015-04-21 | Applied Materials, Inc. | Process chamber component having yttrium—aluminum coating |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2972052B2 (en) | 1999-11-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH10310469A (en) | Production of powdery starting material for dielectric ceramic and dielectric ceramic composition | |
| JPH06243725A (en) | Dielectric ceramic composition and compound electronic part | |
| JPH0354165A (en) | PTC porcelain composition and its manufacturing method | |
| US4700264A (en) | Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture | |
| JP2972052B2 (en) | Semiconductor porcelain and method of manufacturing the same | |
| JP4217337B2 (en) | Manufacturing method of semiconductor porcelain | |
| JP2934387B2 (en) | Manufacturing method of semiconductor porcelain | |
| JPS5820133B2 (en) | Porcelain for semiconductor porcelain capacitors and manufacturing method thereof | |
| JPH0785459B2 (en) | Grain boundary insulation type semiconductor ceramic capacitor | |
| JP2970405B2 (en) | Grain boundary insulating semiconductor porcelain composition and method for producing the same | |
| JPH0687364B2 (en) | High dielectric constant porcelain composition | |
| JPS6312372B2 (en) | ||
| KR20020048101A (en) | A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor | |
| JP2872513B2 (en) | Dielectric porcelain and porcelain capacitor | |
| JP2934388B2 (en) | Manufacturing method of semiconductor porcelain | |
| JPH0521265A (en) | Capacitor manufacturing method | |
| JPH0677085A (en) | Semiconductor porcelain capacitor composition and manufacture thereof | |
| JPH05345663A (en) | Semiconductor ceramic and its production | |
| JPH03285870A (en) | Grain boundary insulation type semiconductor porcelain composition and production thereof | |
| JPH02213101A (en) | Manufacturing method of grain boundary barrier type high capacitance ceramic varistor | |
| JPS633442B2 (en) | ||
| JPH0737426A (en) | Dielectric ceramic composition | |
| JPH03285869A (en) | Grain boundary insulation type semiconductor porcelain composition and production thereof | |
| JPH0362005B2 (en) | ||
| JPH04359809A (en) | Dielectric ceramic composition and its preparation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990803 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070827 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 10 |
|
| LAPS | Cancellation because of no payment of annual fees |