[go: up one dir, main page]

JPH06324158A - Radiation monitoring device - Google Patents

Radiation monitoring device

Info

Publication number
JPH06324158A
JPH06324158A JP13405993A JP13405993A JPH06324158A JP H06324158 A JPH06324158 A JP H06324158A JP 13405993 A JP13405993 A JP 13405993A JP 13405993 A JP13405993 A JP 13405993A JP H06324158 A JPH06324158 A JP H06324158A
Authority
JP
Japan
Prior art keywords
signal
radiation
measuring
abnormality
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13405993A
Other languages
Japanese (ja)
Other versions
JP2878930B2 (en
Inventor
Junichi Hoshi
純一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13405993A priority Critical patent/JP2878930B2/en
Publication of JPH06324158A publication Critical patent/JPH06324158A/en
Application granted granted Critical
Publication of JP2878930B2 publication Critical patent/JP2878930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To detect anomaly at early time by discriminating if the fine variation of the measurement value is generated by the measurement object (radioactive ray) or the anomaly in the characteristic variation on the device side. CONSTITUTION:The fundamental constitution is formed from a calculator 19 for calculating the statistical quantity of the detector signal (measurement value) and a multiple wave height analyzer 17 which carries out the spectrum measurement, and detects the abnormal variation of the measurement value, and at the same time, the soundness of the device is confirmed by measuring the change of the spectrum according to the prescribed sequence corresponding to the kind of the detector 1. Further, the constitution for adding a wave form observing device 18 is realized, and the existence of the anomaly of the signal itself is confirmed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、放射線異常を検知す
る放射線監視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation monitoring device for detecting radiation abnormality.

【0002】[0002]

【従来の技術】図8は従来の放射線監視装置を示すブロ
ック図であり、図において、1は放射線検出器、2は前
置増巾器、3は前置増巾器2を経由した検出器信号を増
巾する主増巾器、4は増巾器2,3を経た検出器信号の
整形・弁別を行なう波高弁別器、5は信号列を計数値又
は計数率に変換するカウンタ又はレートメータ、6は計
数値又は計数率を表示する表示器、7はこの結果を連続
的に記録する記録計、8は警報発信器、9は信号切替ス
イッチ、10はテスト信号発生器、11は高圧電源、1
2はシャッタ駆動回路、13は放射線検出器1の近傍に
配置されたシャッタ、14は上記放射線検出器1に所定
の放射線量を照射する放射線源、15は被測定流体を入
れる測定容器(又は配管)、16はこの測定容器15内
の流体に含まれる放射能である。上記検出器1は測定容
器15の外側に配置されている。
2. Description of the Related Art FIG. 8 is a block diagram showing a conventional radiation monitoring apparatus. In the figure, 1 is a radiation detector, 2 is a pre-amplifier, and 3 is a detector via a pre-amplifier 2. A main amplifier for amplifying a signal, 4 is a wave height discriminator for shaping and discriminating a detector signal passed through the amplifiers 2, 3 and 5 is a counter or rate meter for converting a signal train into a count value or a count rate. , 6 is a display for displaying a count value or a counting rate, 7 is a recorder for continuously recording the result, 8 is an alarm transmitter, 9 is a signal changeover switch, 10 is a test signal generator, 11 is a high voltage power supply. 1
Reference numeral 2 is a shutter drive circuit, 13 is a shutter arranged in the vicinity of the radiation detector 1, 14 is a radiation source for irradiating the radiation detector 1 with a predetermined radiation dose, and 15 is a measurement container (or pipe) for containing a fluid to be measured. ) And 16 are radioactivity contained in the fluid in the measurement container 15. The detector 1 is arranged outside the measurement container 15.

【0003】次に動作について説明する。測定容器15
内を流れる放射性物質16から放出される放射線は測定
容器15に近接して配置された検出器1により検出され
る。検出パルス信号は前置増巾器2を経由して主増巾器
3に入って増巾され、波高弁別器4で波高弁別・整形さ
れて、カウンタ又はレートメータ5で計数値又は計数率
として計数信号に変換される。計数結果は表示器6に表
示され、同時に記録計7で連続的に記録される。また、
カウンタ又はレートメータ5から分岐した計数信号は、
警報発信器8で設定値と比較され、設定値を超えた場合
は警報を発信して、運転員に当該監視対象の異常を知ら
せる。又、シャッタ駆動回路12を動作させてシャッタ
13を開とし、線源14からの放射線を検出器1に照射
する。検出器1は線源14の放射線を検知して所定のパ
ルス信号を出力し、前述した動作処理により所定の計数
値又は計数率表示を行なう。これによって、運転員は当
該装置が健全に動作していることを確認できる。
Next, the operation will be described. Measuring container 15
The radiation emitted from the radioactive substance 16 flowing inside is detected by the detector 1 arranged in the vicinity of the measurement container 15. The detection pulse signal enters the main amplifier 3 through the pre-amplifier 2 to be amplified, and the wave height discriminator 4 performs wave height discrimination / shaping, and the counter or rate meter 5 outputs the count value or count rate. It is converted into a counting signal. The counting result is displayed on the display 6 and simultaneously recorded continuously by the recorder 7. Also,
The count signal branched from the counter or rate meter 5 is
The alarm transmitter 8 compares the set value with the set value, and when the set value is exceeded, an alarm is sent to notify the operator of the abnormality of the monitoring target. Further, the shutter drive circuit 12 is operated to open the shutter 13 to irradiate the detector 1 with the radiation from the radiation source 14. The detector 1 detects the radiation of the radiation source 14, outputs a predetermined pulse signal, and displays a predetermined count value or count rate by the above-described operation processing. Thereby, the operator can confirm that the device is operating normally.

【0004】[0004]

【発明が解決しようとする課題】従来の放射線監視装置
は以上のように構成されているので、警報設定値が固定
されており、測定値との単純な比較の結果によって運転
員が異常を知ることになる。このため、警報設定値に至
るまでの期間の変動異常,すなわち放射線の微小な変動
を知ることができない欠点があった。また、上述の欠点
を補う目的で、装置の測定値(計数信号)を別の計算機
に入力し測定値の変化率を計算するなどして、変化の異
常を知ることも行なわれている。しかしながらいづれに
おいても、測定値の変化が本来の測定対象である放射線
濃度の変化によるものか、あるいは装置自身の特性変化
によるものかは区別ができない欠点があった。このため
に、放射線異常を特定するためには、被測定流体の放射
能分析を別に行なうなどして異常の確認を行なってい
る。
Since the conventional radiation monitoring apparatus is constructed as described above, the alarm set value is fixed and the operator knows the abnormality by the result of simple comparison with the measured value. It will be. For this reason, there is a drawback that it is not possible to know a fluctuation abnormality in the period until reaching the alarm set value, that is, a minute fluctuation in radiation. Further, for the purpose of compensating for the above-mentioned drawback, it is also known that the abnormality of the change is known by inputting the measured value (counting signal) of the apparatus to another computer and calculating the rate of change of the measured value. However, there is a drawback in which it is not possible to distinguish whether the change in the measured value is due to the change in the radiation concentration, which is the original measurement target, or the change in the characteristics of the apparatus itself. Therefore, in order to identify the radiation abnormality, the abnormality is confirmed by separately performing radioactivity analysis of the fluid to be measured.

【0005】この発明は上記のような課題を解決するた
めになされたものであり、測定値の微小な変動を検知す
ると共に、その変動が放射線増加によるものなのか、装
置側の特性異常によるものかを識別できる放射線監視装
置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and detects minute fluctuations in measured values, and whether the fluctuations are due to an increase in radiation or due to characteristic abnormalities on the device side. It is an object of the present invention to obtain a radiation monitoring device capable of identifying whether or not

【0006】[0006]

【課題を解決するための手段】この発明に係る放射線監
視装置は、放射線検出手段と、この検出手段からの出力
パルス信号の計数値又は計数率を測定する計数手段(カ
ウンタ又はレートメータ5)と、上記出力パルス信号の
波高値を分析して波高分布信号を測定する分布信号測定
手段(多重波高分析装置17)と、上記出力パルス信号
の信号波形を測定する波形測定手段(波形観測装置1
8)と、正常時と比較して,上記計数値又は計数率に変
動があって分布信号及び信号波形の変動がない場合は放
射線増加による異常であり、分布信号に変動がある場合
は装置側の異常であると判別する異常種判別手段(計算
機19)とを備えたものである。
A radiation monitoring apparatus according to the present invention comprises radiation detecting means, and counting means (counter or rate meter 5) for measuring the count value or count rate of output pulse signals from this detecting means. A distribution signal measuring means (multiple wave height analyzing apparatus 17) for analyzing the peak value of the output pulse signal to measure a peak distribution signal, and a waveform measuring means for measuring the signal waveform of the output pulse signal (waveform observing apparatus 1
8) When compared to the normal state, if the count value or count rate fluctuates and the distribution signal and the signal waveform do not fluctuate, it is an abnormality due to an increase in radiation, and if there is a fluctuation in the distribution signal, the device side And an abnormal species discriminating means (computer 19) for discriminating that the abnormality is.

【0007】[0007]

【作用】この発明における放射線監視装置は、異常種判
別手段により、計数値又は計数率,分布信号,波形の変
動を検知し、これに基づいて放射線増加異常か装置側異
常かを判別する。
In the radiation monitoring apparatus according to the present invention, the abnormal species discriminating means detects variations in the count value or counting rate, the distribution signal, and the waveform, and discriminates whether the radiation increase abnormality or the apparatus-side abnormality is based on this.

【0008】[0008]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図1,2に基づ
いて説明する。図1は本発明の放射線監視装置のブロッ
ク図であり、図4の従来例と同様な構成は同一符号を付
して説明を省略する。図1において、17は主増巾器3
を経た出力信号パルスの波高分布を測定する多重波高分
析装置、18は信号パルス波形を測定する波形観測装
置、19はカウンタの計数値,多重波高弁別器17から
の波高分布データ,波形観測装置18からの波形データ
を入力して演算処理する計算機、20はCRT、21は
プリンタ、22は演算結果を記憶する記憶装置である。
尚、常時、放射線源14からは所定量の放射線が検出器
1に照射されている。
Example 1. The first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram of a radiation monitoring apparatus according to the present invention. The same components as those in the conventional example of FIG. In FIG. 1, 17 is a main amplifier 3
Multiple wave height analyzer for measuring the wave height distribution of the output signal pulse after passing through, 18 is a waveform observing device for measuring the signal pulse waveform, 19 is a count value of the counter, wave height distribution data from the multiple wave height discriminator 17, and waveform observing device 18 A computer for inputting the waveform data from the computer to perform arithmetic processing, 20 is a CRT, 21 is a printer, and 22 is a storage device for storing the arithmetic result.
Note that the radiation source 14 constantly irradiates the detector 1 with a predetermined amount of radiation.

【0009】次に動作について説明する。ここでは検出
器1として、プラスチックシンチレーション検出器(以
下PL検出器と略す)を使用した実施例について述べ
る。PL検出器は、通常、周囲環境からの放射線を検知
し、パルス信号を出力する。このパルス信号は前置増巾
器2,主増巾器3で増巾され、波高弁別器4で波高弁別
され、カウンタ5で計数値(測定値1)に変換される。
一方、主増巾器3から分岐したパルス信号は多重波高分
析器17に入力され、波高分布信号(スペクトル)が測
定される(測定値2)。同時に、パルス信号は波形観測
装置18としてのオシロスコープに入力され、信号波形
が観測される(測定値3)。これらの測定値1〜3は計
算機19に入力され、図2に示すフローに従って演算さ
れる。
Next, the operation will be described. Here, an embodiment using a plastic scintillation detector (hereinafter abbreviated as PL detector) as the detector 1 will be described. The PL detector usually detects radiation from the surrounding environment and outputs a pulse signal. This pulse signal is widened by the front widening device 2 and the main widening device 3, is wave-height discriminated by the wave height discriminator 4, and is converted into a count value (measured value 1) by the counter 5.
On the other hand, the pulse signal branched from the main amplifier 3 is input to the multiple wave height analyzer 17, and the wave height distribution signal (spectrum) is measured (measurement value 2). At the same time, the pulse signal is input to the oscilloscope as the waveform observing device 18, and the signal waveform is observed (measurement value 3). These measured values 1 to 3 are input to the calculator 19 and calculated according to the flow shown in FIG.

【0010】いま、プラントに何らかの異常が生じて、
微小な放射能漏洩が生じ、測定容器15に入る被測定流
体にわずかな放射性物質16が流入した場合には上述と
同様な過程を経て放射性物質16からの放射線信号が計
数され、測定値1としての計数値が上昇する。測定値1
は例えば公知の統計処理(白色性検定など)により(ス
テップS1)、指示上昇があった場合、通常の放射線ゆ
らぎと異なった測定値ゆらぎパターンとなることが知ら
れており、これによって測定値1の変動異常を判別す
る。すなわち、統計量の変動を調べ(ステップS2)、
統計量に変動があった場合は放射線異常の可能性があ
り、変動がない場合は放射線異常はない。次に測定値2
は、PL検出器に内蔵したライトパルサによる基準ピー
ク位置を計算し(ステップS3)、あらかじめ記憶され
たスペクトルの正常ピーク位置とのずれを確認する(ス
テップS4)。ピーク位置が所定の正常位置にあれば、
ドリフト(環境変化等で生じる装置異常)はなく、正常
と判断する。もし、所定の位置からずれが生じている場
合(これは装置のゲイン設定を変えた場合等,環境状態
が変化した場合に起きる。)は、“ドリフト異常”の警
報メッセージを発信する。ピーク位置に変化がない場
合、さらに測定値2からスペクトルのあらかじめ定めた
エネルギー領域について正常時のスペクトル(初期スペ
クトル)との差を求めて(ステップS5)比較し、スペ
クトル変動の有無を確かめる(ステップS6)。PL検
出器では特性劣化が進んだ場合、スペクトルに変化が生
じるので、スペクトル変動があれば、“検出器異常”の
警報メッセージを発信する。また、上記ステップS3と
並行して、基準ピークの計数値を求め(ステップS
7)、初期値との比較により(ステップS8)、計数値
との差がある場合は“測定系異常”の警報メッセージを
発信する。計数値と初期値との差がない場合,すなわち
正常であれば、測定値3の波形データと初期波形データ
との比較により(ステップS9)、波形に変化があれ
ば、“信号波形異常”の警報メッセージを発信する。前
置増巾器2からカウンタ5に至る信号波形に変化が認め
られない場合は、PL検出器及び信号処理系は正常であ
り、被測定対象からの“放射線増加(異常)”と判断す
る。すなわち、“放射線異常”と判断されるのは、測定
値1の統計量に変動があり、測定値2が正常で、測定値
3に変化がない場合であり、この論理判断はAND回路
30で行なわれる。要約すると、正常時と比較して分布
信号に変動がある場合に装置側の異常と判別するととも
に、正常時と比較して上記計数値又は計数率に変動があ
って分布信号及び信号波形の変動がない場合は放射線増
加による異常であると判別するAND回路30を含む計
算機19により異常種判別手段を構成する。
Now, when something abnormal occurs in the plant,
When a small amount of radioactive leakage occurs and a small amount of radioactive substance 16 flows into the fluid to be measured that enters the measurement container 15, the radiation signal from the radioactive substance 16 is counted through the same process as described above, and the measured value 1 is obtained. The count value of increases. Measured value 1
Is known to have a measured value fluctuation pattern different from the normal radiation fluctuation when there is an instruction rise, for example, by a known statistical process (whiteness test or the like) (step S1). Determine the fluctuation abnormality of. That is, the variation of the statistic is checked (step S2),
If there is a change in the statistics, there is a possibility of radiation abnormality, and if there is no change, there is no radiation abnormality. Next, the measured value 2
Calculates the reference peak position by the light pulser built in the PL detector (step S3), and confirms the deviation from the normal peak position of the spectrum stored in advance (step S4). If the peak position is in the predetermined normal position,
There is no drift (device abnormality caused by environmental changes, etc.) and it is judged to be normal. If there is a deviation from the predetermined position (this occurs when the environmental condition changes, such as when the gain setting of the device is changed), a "drift abnormality" warning message is transmitted. When there is no change in the peak position, the difference between the measured value 2 and the spectrum in the normal state (initial spectrum) in the predetermined energy region of the spectrum is calculated (step S5) and compared, and the presence or absence of spectrum fluctuation is confirmed (step S5). S6). When the characteristics of the PL detector deteriorate, the spectrum changes. Therefore, if there is a spectrum variation, a warning message of "detector abnormality" is transmitted. In addition, in parallel with step S3, the count value of the reference peak is calculated (step S3).
7) As a result of comparison with the initial value (step S8), if there is a difference from the count value, a warning message of "measurement system abnormality" is transmitted. If there is no difference between the count value and the initial value, that is, if it is normal, the waveform data of the measured value 3 is compared with the initial waveform data (step S9). Send an alarm message. When no change is observed in the signal waveform from the pre-amplifier 2 to the counter 5, the PL detector and the signal processing system are normal, and it is determined that "radiation increase (abnormal)" from the object to be measured. That is, the "radiation abnormality" is judged when the statistic of the measured value 1 varies, the measured value 2 is normal, and the measured value 3 does not change. This logical judgment is made by the AND circuit 30. Done. In summary, if the distribution signal fluctuates compared to the normal time, it is judged as an abnormality on the device side, and the count value or counting rate fluctuates compared to the normal time and the distribution signal and signal waveform fluctuate. If there is not, the computer 19 including the AND circuit 30 which determines that the abnormality is caused by the increase in radiation constitutes the abnormality type determination means.

【0011】実施例2.なお、カウンタ5に代えてレー
トメータを使用し、その出力としての計数率を上記測定
値1として用いるようにしても、上記実施例1と同様な
効果が得られる。
Embodiment 2. Even if a rate meter is used in place of the counter 5 and the count rate as its output is used as the measured value 1, the same effect as in the first embodiment can be obtained.

【0012】実施例3.上記実施例1では、検出器1と
してPL検出器を使用した場合について述べたが、他の
種類の検出器,例えばNaI検出器(よう化ナトリウム
検出器)を使用した場合については、図3に示すよう
に、スペクトル測定結果から基準ピークの分解能を計算
することで検出器劣化の有無を確認し、検出器の健全性
を判断する。すなわち図3に示すように、ステップS4
以降に、基準ピークの分解能を計算し(ステップS1
0)、分解能に異常があるか否かを判断し(ステップS
11)、異常があれば“検出器異常”を発信し、異常が
なければ放射線増加の可能性があると判断され、AND
回路30の処理を待つことになる。従って、実施例1と
は点線で囲んだステップS10,ステップS11の処理
100が異なる。
Embodiment 3. In the first embodiment, the case where the PL detector is used as the detector 1 has been described. However, in the case where another type of detector, for example, the NaI detector (sodium iodide detector) is used, FIG. As shown, the resolution of the reference peak is calculated from the spectrum measurement result to confirm the presence or absence of detector deterioration, and to judge the soundness of the detector. That is, as shown in FIG. 3, step S4
After that, the resolution of the reference peak is calculated (step S1
0) to determine whether the resolution is abnormal (step S
11) If there is an abnormality, send out a "detector abnormality", and if there is no abnormality, it is determined that there is a possibility of radiation increase, and AND
The processing of the circuit 30 is awaited. Therefore, the processing 100 of steps S10 and S11 surrounded by a dotted line is different from that of the first embodiment.

【0013】実施例4.さらに検出器1としてGM管
(ガイガミューラ管)を使用する場合においては、図4
に示すように、スペクトル測定結果からピークサーチ
(ステップS12)を行なって、初期ピーク以外のアフ
ターパルスのピークの有無を確認し(ステップS1
3)、検出器の健全性を判断する。本実施例の場合、
“検出器異常”の判断の後に“ドリフト異常”の判断が
行なわれる。また、スペクトル測定値と計数信号とによ
り波高弁別レベル(ノイズをカットするために設定され
るレベル)以上のパルスの計数率を比較し(ステップS
14)、計数に差がある場合は放射線異常の可能性があ
り、計数に差がない場合は“測定系異常”と判断する
(ステップS15)。すなわち、実施例1.2の処理と
比べて破線で囲んだ処理200が異なる。
Embodiment 4. Further, in the case of using a GM tube (Geigumula tube) as the detector 1, FIG.
As shown in (1), a peak search (step S12) is performed from the spectrum measurement result to confirm the presence or absence of an after-pulse peak other than the initial peak (step S1).
3) Determine the integrity of the detector. In the case of this embodiment,
After the determination of "detector abnormality", the determination of "drift abnormality" is performed. In addition, the count rate of the pulse of the wave height discrimination level (the level set to cut noise) or more is compared by the spectrum measurement value and the count signal (step S
14) If there is a difference in the counts, there is a possibility of radiation abnormality, and if there is no difference in the counts, it is determined as "measurement system abnormality" (step S15). That is, the process 200 surrounded by the broken line is different from the process of the example 1.2.

【0014】上記実施例1〜4の要旨を簡単に説明する
と、信号波高値の分布信号の変動指標として、検出器が
PLシンチレーション検出器にあっては、低波高分布領
域の波高分布、NaIシンチレーション検出器を使用し
た装置にあっては検出器分解能、GM管にあってはピー
ク数を採用するものである。
To briefly explain the gist of Examples 1 to 4, when the detector is a PL scintillation detector as a variation index of the distribution signal of the signal peak value, the peak height distribution in the low peak height distribution region and the NaI scintillation For a device using a detector, the detector resolution is used, and for a GM tube, the number of peaks is adopted.

【0015】実施例5.また、被測定流体配管に圧力セ
ンサ、放射線検出器の近傍に温度センサを具備し、測定
流体の圧力変化及び検出器の温度変化による放射線検出
器の計数信号の変動成分を除去するようにすれば、より
正確に放射線異常,装置側異常の有無を確認できる。す
なわち、図5に示すように、測定容器15に圧力センサ
31を付加し、かつ放射線検出器1の近傍に温度センサ
32を付加する。そしてこれらの信号を処理装置33へ
入力する。(ここで信号処理装置33は図1の前置増巾
器2以後の装置を備えたものであり、図2〜4のフロー
処理を行なう。)そこで検出器1の信号変動が生じた場
合、前述のフローに従って異常の有無を判別するが、上
記圧力センサ31,温度センサ32からの出力aがあっ
た場合の計数信号の変動は異常判断の材料としないよう
にする。
Example 5. Further, if a pressure sensor is provided in the fluid to be measured and a temperature sensor is provided in the vicinity of the radiation detector so as to remove the fluctuation component of the count signal of the radiation detector due to the pressure change of the measurement fluid and the temperature change of the detector. Therefore, it is possible to more accurately confirm the presence or absence of radiation abnormality and equipment side abnormality. That is, as shown in FIG. 5, a pressure sensor 31 is added to the measurement container 15, and a temperature sensor 32 is added near the radiation detector 1. Then, these signals are input to the processing device 33. (Here, the signal processing device 33 includes devices after the front widening device 2 of FIG. 1, and performs the flow processing of FIGS. 2 to 4.) When the signal fluctuation of the detector 1 occurs there, Whether or not there is an abnormality is determined according to the flow described above, but the fluctuation of the count signal when there is an output a from the pressure sensor 31 and the temperature sensor 32 is not used as a material for the abnormality determination.

【0016】実施例6.上記各実施例ではいづれも1台
の検出器1で検出した信号による異常の有無判断を行な
う構成としているが、図6に示すように、検出器A35
(検出器1に相当)と同一放射能漏洩監視対象(測定容
器15)を受け持つが、容器15の違う場所の放射線を
検出する別の検出器B36の信号と原子炉34の出力信
号とを信号処理装置37に入力し、検出器A35の信号
に変動が生じた場合、前述のフローに従って装置の異常
の有無を確認すると共に、検出器B36の出力信号の異
常判定の結果と比較することで、変動事象が放射線によ
るものか装置特性の変化によるものかをより適格に判別
できる。すなわち、容器15が長い場合等に有効であ
り、すばやい異常判別が可能となるとともに、検出器が
2つあるので、より確実な異常判別が行なえる。
Example 6. In each of the above-described embodiments, the presence or absence of an abnormality is determined by the signal detected by one detector 1, but as shown in FIG.
Although it is in charge of the same radioactive leakage monitoring target (measurement vessel 15) as (corresponding to the detector 1), it outputs the signal of another detector B36 that detects the radiation in a different location of the vessel 15 and the output signal of the reactor 34. When a signal is input to the processing device 37 and a signal of the detector A35 fluctuates, whether or not there is an abnormality in the device is confirmed according to the above-described flow, and by comparing with the result of the abnormality determination of the output signal of the detector B36, It is possible to more appropriately discriminate whether the variation event is due to radiation or a change in device characteristics. That is, it is effective when the container 15 is long, and quick abnormality determination is possible, and more reliable abnormality determination can be performed because there are two detectors.

【0017】実施例7.さらに、図7に示すように、原
子炉34と、上記検出器A35と、この検出器の監視対
象プロセス系統A38と関連した別のプロセス系統B3
9に装着された検出器B36と、これら原子炉,各検出
器の出力である複数のプラント情報を信号処理装置40
に入力して、相互に比較するようにすれば、複数プロセ
ス系統の監視が行なえる。
Embodiment 7. Further, as shown in FIG. 7, the reactor 34, the detector A35, and another process system B3 associated with the process system A38 to be monitored by the detector.
9 and a detector B36 attached to the reactor 9, and a plurality of plant information output from these reactors and detectors
By inputting into, and comparing each other, it is possible to monitor multiple process systems.

【0018】実施例8.また、炉出力の変化による検出
器周囲環境のバックグラウンド放射線レベルを推定し、
これによる指示への影響を除去するようにすれば、より
正確な測定値変動の異常の有無を確認できる。
Example 8. In addition, the background radiation level of the environment surrounding the detector due to changes in reactor output is estimated,
If the influence on the instruction due to this is removed, it is possible to more accurately confirm whether or not there is an abnormality in measurement value fluctuation.

【0019】以上のように、上記各実施例によれば、検
出器信号(測定値)の統計量を求めると同時にスペクト
ル測定と検出器の種類に応じた異常判断フローを用い
て、検出系及び測定系の動作健全性を確認できるように
構成したので、従来の放射線監視装置の警報機能による
異常検知に比べ早期に放射線異常の有無が確認でき、プ
ラントの事故拡大防止に役立てることができる。また、
波形観測装置18により、検出器信号の波形を測定し、
ノイズが重畳していないかなど検出器以外の信号の侵入
の有無、あるいは信号処理系の異常の有無を確認するこ
とにより、測定系外からの外乱異常の確認も行なえる。
また、実施例6のように他の検出器と炉出力信号などを
組み合わせることにより、より適格かつ正確な異常判断
をすることができる。
As described above, according to each of the above-described embodiments, the detection system and the detection system are detected by using the spectrum measurement and the abnormality determination flow corresponding to the type of the detector while obtaining the statistic of the detector signal (measurement value). Since the operation soundness of the measurement system can be confirmed, it is possible to confirm the presence or absence of radiation abnormality earlier than the abnormality detection by the alarm function of the conventional radiation monitoring device, and it is possible to help prevent the spread of accidents in the plant. Also,
The waveform observation device 18 measures the waveform of the detector signal,
By checking the presence of signals other than the detector, such as whether noise is superimposed, or the presence of an abnormality in the signal processing system, it is possible to confirm a disturbance abnormality from outside the measurement system.
Further, by combining other detectors with the furnace output signal as in the sixth embodiment, a more appropriate and accurate abnormality determination can be performed.

【0020】[0020]

【発明の効果】以上説明したように、本発明の放射線監
視装置によれば、放射線検出手段と、出力パルス信号の
計数手段,分布信号測定手段,波形測定手段と、正常時
と比較して,計数値又は計数率に変動があって分布信号
及び信号波形の変動がない場合は放射線増加による異常
であり,分布信号に変動がある場合は装置側の異常であ
ると判別する異常種判別手段とを備えているので、測定
値の微小な変動も検知できて、かつ、その変動が放射線
増加によるものなのか、装置側の特性異常によるものか
を判別でき、早期に異常を検知できる。また、本発明の
放射線監視装置によれば、測定流体の圧力変動と検出器
の周囲温度変動とによる計数値の変動分を除去する構成
とするか、あるいは複数部位での計数値と原子炉出力と
による異常判別を行なう構成とすることにより、より正
確で確実な異常判別を行なえる効果がある。
As described above, according to the radiation monitoring apparatus of the present invention, the radiation detecting means, the output pulse signal counting means, the distribution signal measuring means, the waveform measuring means are compared with the normal state, An abnormal species discriminating means for discriminating that the distribution signal and the signal waveform are not changed and the distribution signal and the signal waveform are not changed, and the distribution signal is changed. Since it is equipped with, it is possible to detect a minute fluctuation in the measured value, and it is possible to determine whether the fluctuation is due to an increase in radiation or due to a characteristic abnormality on the device side, and an abnormality can be detected early. Further, according to the radiation monitoring apparatus of the present invention, the fluctuation of the count value due to the pressure fluctuation of the measurement fluid and the ambient temperature fluctuation of the detector is removed, or the count value and the reactor output at a plurality of parts are removed. By adopting a configuration in which the abnormality determination is performed by using, there is an effect that more accurate and reliable abnormality determination can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す放射線監視装置のブ
ロック図である。
FIG. 1 is a block diagram of a radiation monitoring apparatus showing a first embodiment of the present invention.

【図2】この発明の実施例1の信号処理フローを示す図
である。
FIG. 2 is a diagram showing a signal processing flow according to the first embodiment of the present invention.

【図3】この発明の実施例3の信号処理フローを示す図
である。
FIG. 3 is a diagram showing a signal processing flow according to a third embodiment of the present invention.

【図4】この発明の実施例4の信号処理フローを示す図
である。
FIG. 4 is a diagram showing a signal processing flow according to a fourth embodiment of the present invention.

【図5】この発明の実施例5を示すブロック図である。FIG. 5 is a block diagram showing a fifth embodiment of the present invention.

【図6】この発明の実施例6を示すブロック図である。FIG. 6 is a block diagram showing a sixth embodiment of the present invention.

【図7】この発明の実施例7を示すブロック図である。FIG. 7 is a block diagram showing a seventh embodiment of the present invention.

【図8】従来の放射線監視装置の一例を示すブロック図
である。
FIG. 8 is a block diagram showing an example of a conventional radiation monitoring apparatus.

【符号の説明】[Explanation of symbols]

1 放射線検出器 5 カウンタ又はレートメータ(計数手段) 17 多重波高分析装置(分布信号測定手段) 18 波形観測装置(波形測定手段) 19 計算機(異常種判別手段) 1 Radiation Detector 5 Counter or Rate Meter (Counting Means) 17 Multiple Wave Height Analyzer (Distributed Signal Measuring Means) 18 Waveform Observing Equipment (Waveform Measuring Means) 19 Calculator (Abnormal Species Means)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 放射線検出手段と、この検出手段からの
出力パルス信号の計数値を測定する計数手段と、上記出
力パルス信号の波高値を分析して波高分布信号を測定す
る分布信号測定手段と、上記出力パルス信号の信号波形
を測定する波形測定手段と、正常時と比較して,上記計
数値に変動があって分布信号及び信号波形の変動がない
場合は放射線増加による異常であり、分布信号に変動が
ある場合は装置側の異常であると判別する異常種判別手
段とを備えていることを特徴とする放射線監視装置。
1. Radiation detection means, counting means for measuring the count value of the output pulse signal from the detection means, and distribution signal measuring means for analyzing the peak value of the output pulse signal to measure the peak distribution signal. A waveform measuring means for measuring the signal waveform of the output pulse signal, and a distribution signal and a signal waveform having no fluctuations in the count value as compared with the normal time, there is an abnormality due to radiation increase, and the distribution A radiation monitoring apparatus comprising: an abnormal species discriminating unit that discriminates an abnormality on the side of the apparatus when the signal fluctuates.
【請求項2】 放射線検出手段と、この検出手段からの
出力パルス信号の計数率を測定する計数手段と、上記出
力パルス信号の波高値を分析して波高分布信号を測定す
る分布信号測定手段と、上記出力パルス信号の信号波形
を測定する波形測定手段と、正常時と比較して,上記計
数率に変動があって分布信号及び信号波形の変動がない
場合は放射線増加による異常であり、分布信号に変動が
ある場合は装置側の異常であると判別する異常種判別手
段とを備えていることを特徴とする放射線監視装置。
2. Radiation detecting means, counting means for measuring the counting rate of the output pulse signal from the detecting means, and distribution signal measuring means for analyzing the peak value of the output pulse signal to measure the peak distribution signal. , A waveform measuring means for measuring the signal waveform of the output pulse signal, and when there is no variation in the distribution signal and the signal waveform as compared to the normal state, the distribution signal and the signal waveform are abnormal, the distribution is A radiation monitoring apparatus comprising: an abnormal species discriminating unit that discriminates an abnormality on the side of the apparatus when the signal fluctuates.
【請求項3】 放射線検出手段をプラスチックシンチレ
ーション検出器とし、この検出手段からの出力パルス信
号の計数値を測定する計数手段と、上記出力パルス信号
の波高値を分析して波高分布信号としての低波高分子領
域の波高値分布を測定する分布信号測定手段と、上記出
力パルス信号の信号波形を測定する波形測定手段と、正
常時と比較して,上記計数値に変動があって分布信号及
び信号波形の変動がない場合は放射線増加による異常で
あり、分布信号に変動がある場合は装置側の異常である
と判別する異常種判別手段とを備えていることを特徴と
する放射線監視装置。
3. The radiation detecting means is a plastic scintillation detector, the counting means for measuring the count value of the output pulse signal from the detecting means, and the peak value of the output pulse signal are analyzed to reduce the peak value as a peak distribution signal. Distribution signal measuring means for measuring the peak value distribution in the wave polymer region, waveform measuring means for measuring the signal waveform of the output pulse signal, and the distribution signal and the signal due to the fluctuation of the count value as compared with the normal time. A radiation monitoring apparatus comprising: an abnormality type determining unit that determines that there is an abnormality due to an increase in radiation when there is no fluctuation in the waveform, and an abnormality on the apparatus side when there is a fluctuation in the distribution signal.
【請求項4】 放射線検出手段をよう化ナトリウム検出
器とし、この検出手段からの出力パルス信号の計数値を
測定する計数手段と、上記出力パルス信号の波高値を分
析して波高分布信号としての検出器分解能を測定する分
布信号測定手段と、上記出力パルス信号の信号波形を測
定する波形測定手段と、正常時と比較して,上記計数値
に変動があって分布信号及び信号波形の変動がない場合
は放射線増加による異常であり、分布信号に変動がある
場合は装置側の異常であると判別する異常種判別手段と
を備えていることを特徴とする放射線監視装置。
4. The radiation detecting means is a sodium iodide detector, the counting means for measuring the count value of the output pulse signal from the detecting means, and the peak value of the output pulse signal are analyzed to obtain a peak distribution signal. The distribution signal measuring means for measuring the detector resolution, the waveform measuring means for measuring the signal waveform of the output pulse signal, and the fluctuation of the distribution signal and the signal waveform due to the fluctuation of the count value as compared with the normal time A radiation monitoring device comprising: an abnormality due to an increase in radiation when there is no radiation, and an abnormality type determination means for determining that there is an abnormality on the device side when there is a change in the distribution signal.
【請求項5】 放射線検出手段をガイガミューラ管と
し、この検出手段からの出力パルス信号の計数値を測定
する計数手段と、上記出力パルス信号の波高値を分析し
て波高分布信号としてのピーク数を測定する分布信号測
定手段と、上記出力パルス信号の信号波形を測定する波
形測定手段と、正常時と比較して,上記計数値に変動が
あって分布信号及び信号波形の変動がない場合は放射線
増加による異常であり、分布信号に変動がある場合は装
置側の異常であると判別する異常種判別手段とを備えて
いることを特徴とする放射線監視装置。
5. The radiation detecting means is a Gaigamuller tube, and counting means for measuring the count value of the output pulse signal from the detecting means, and the peak value of the output pulse signal are analyzed to determine the peak number as a peak distribution signal. Distribution signal measuring means for measuring, waveform measuring means for measuring the signal waveform of the output pulse signal, and radiation when there is no variation in the distribution signal and the signal waveform as compared with the normal time, when the count value varies. A radiation monitoring apparatus comprising: an abnormality due to an increase and an abnormality type determining unit that determines that the abnormality is on the apparatus side when the distribution signal changes.
【請求項6】 上記放射線検出手段が測定対象とする測
定流体の圧力を検出する圧力検出手段と、上記放射線検
出器の周囲温度を検出する温度検出手段と、これら温度
検出手段および圧力検出手段からの出力に応じた上記放
射線検出手段での計数値の変動成分を当該放射線検出手
段で測定した計数値から除去する手段とを備えたことを
特徴とする請求項第1項または第3項または第4項また
は第5項記載の放射線監視装置。
6. The pressure detecting means for detecting the pressure of the fluid to be measured by the radiation detecting means, the temperature detecting means for detecting the ambient temperature of the radiation detector, and the temperature detecting means and the pressure detecting means. Means for removing a fluctuation component of the count value of the radiation detection means in accordance with the output of the radiation detection means from the count value measured by the radiation detection means. The radiation monitoring device according to item 4 or 5.
【請求項7】 上記放射線検出手段を複数に達成すると
ともに、上記放射線検出手段が測定対象とする測定流体
を供する原子炉の出力を検出する原子炉出力検出手段と
設け、これら複数の放射線検出手段で測定した計数値お
よび原子炉出力検出手段で測定した原子炉出力とにより
放射線増加異常か装置側異常であるかを判別する手段を
上記異常種判別手段に付加したことを特徴とする請求項
第1項または第3項または第4項または第5項記載の放
射線監視装置。
7. A plurality of the radiation detecting means are provided, and a reactor output detecting means for detecting an output of a nuclear reactor which supplies a measurement fluid to be measured by the radiation detecting means is provided, and the plurality of radiation detecting means are provided. A means for discriminating whether there is a radiation increase abnormality or an apparatus side abnormality based on the count value measured in step 1 and the reactor output measured by the reactor output detection means is added to the abnormal species discrimination means. The radiation monitoring apparatus according to item 1, item 3, item 4, item 4, or item 5.
JP13405993A 1993-05-12 1993-05-12 Radiation monitoring device Expired - Lifetime JP2878930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13405993A JP2878930B2 (en) 1993-05-12 1993-05-12 Radiation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13405993A JP2878930B2 (en) 1993-05-12 1993-05-12 Radiation monitoring device

Publications (2)

Publication Number Publication Date
JPH06324158A true JPH06324158A (en) 1994-11-25
JP2878930B2 JP2878930B2 (en) 1999-04-05

Family

ID=15119408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13405993A Expired - Lifetime JP2878930B2 (en) 1993-05-12 1993-05-12 Radiation monitoring device

Country Status (1)

Country Link
JP (1) JP2878930B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215279A (en) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp Radiation monitoring system and radiation monitoring method
JP2004061210A (en) * 2002-07-26 2004-02-26 Seiko Instruments Inc Performance evaluation device, method, and program for radioactivity detector
JP2004239783A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Radiation monitor
JP2006098411A (en) * 2005-11-15 2006-04-13 Hitachi Ltd PET apparatus and method for controlling PET apparatus
JP2007108141A (en) * 2005-10-17 2007-04-26 Toshiba Corp Radiation monitoring device
US7627082B2 (en) 2001-12-03 2009-12-01 Hitachi, Ltd. Radiological imaging apparatus
WO2011052313A1 (en) 2009-10-26 2011-05-05 有限会社ケイ・アールアンドデイ Rotary cylinder device
JP2011123009A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Radiation measuring device and diagnostic method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215279A (en) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp Radiation monitoring system and radiation monitoring method
US7627082B2 (en) 2001-12-03 2009-12-01 Hitachi, Ltd. Radiological imaging apparatus
US7634048B2 (en) 2001-12-03 2009-12-15 Hitachi Ltd. Radiological imaging apparatus
US7986763B2 (en) 2001-12-03 2011-07-26 Hitachi, Ltd. Radiological imaging apparatus
US8116427B2 (en) 2001-12-03 2012-02-14 Hitachi, Ltd. Radiological imaging apparatus
JP2004061210A (en) * 2002-07-26 2004-02-26 Seiko Instruments Inc Performance evaluation device, method, and program for radioactivity detector
JP2004239783A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Radiation monitor
JP2007108141A (en) * 2005-10-17 2007-04-26 Toshiba Corp Radiation monitoring device
JP2006098411A (en) * 2005-11-15 2006-04-13 Hitachi Ltd PET apparatus and method for controlling PET apparatus
WO2011052313A1 (en) 2009-10-26 2011-05-05 有限会社ケイ・アールアンドデイ Rotary cylinder device
JP2011123009A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Radiation measuring device and diagnostic method thereof
US8315836B2 (en) 2009-12-14 2012-11-20 Mitsubishi Electric Corporation Radiation measuring device and diagnostic method thereof

Also Published As

Publication number Publication date
JP2878930B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
CN108630330B (en) Pressurized water reactor nuclear power station instrument system detector test processing method, device and system
EP2569658A1 (en) Centralized detection of radiation in multiple facilities
JPH0493637A (en) Granular material analysis device and analysis method therefor, and super-pure water generation device, semiconductor manufacture device and high-purity gas generation device
WO2015145716A1 (en) Radiation monitor
JP2878930B2 (en) Radiation monitoring device
US4380924A (en) Method for monitoring flow condition of liquid metal
JP6066835B2 (en) Radiation measurement equipment
JP4828962B2 (en) Radioactivity inspection method and apparatus
JPH0217488A (en) Measuring apparatus of radiation
US7795599B2 (en) Radioactivity monitoring apparatus and method
KR102619779B1 (en) A threshold voltage level determining device using multichannel analysis and a method thereof
JP3807652B2 (en) Radiation measurement apparatus and method
KR102663201B1 (en) Apparatus for radiation measurement and operation method thereof
JP2004212337A (en) Radiation measurement system
KR100765969B1 (en) Automated Nuclear Analysis Site Digital Radiation Monitoring and Control System
JP7079426B2 (en) Gamma ray detector
JP7499734B2 (en) Radiation Monitor
JPH0259952B2 (en)
CN111312417A (en) Method for measuring reactivity
Bae et al. Assessment of the implementation of a neutron measurement system during the commissioning of the jordan research and training reactor
CN115685297B (en) A tritium measuring device with radon identification function
JP2571844B2 (en) Gas detection alarm device
JPH07248383A (en) Radiation monitor device and natural radiation calculation method
JPH04184197A (en) Below-critical state monitoring device
JP4686328B2 (en) Radiation monitoring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120122

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

EXPY Cancellation because of completion of term