[go: up one dir, main page]

JPH06325920A - Low-loss magnetic material and manufacture thereof - Google Patents

Low-loss magnetic material and manufacture thereof

Info

Publication number
JPH06325920A
JPH06325920A JP5115555A JP11555593A JPH06325920A JP H06325920 A JPH06325920 A JP H06325920A JP 5115555 A JP5115555 A JP 5115555A JP 11555593 A JP11555593 A JP 11555593A JP H06325920 A JPH06325920 A JP H06325920A
Authority
JP
Japan
Prior art keywords
magnetic material
ferrite
loss magnetic
crystal grains
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5115555A
Other languages
Japanese (ja)
Other versions
JP3654303B2 (en
Inventor
Hiroshi Oyanagi
浩 大柳
Etsuo Otsuki
悦夫 大槻
Tsutomu Otsuka
努 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11555593A priority Critical patent/JP3654303B2/en
Publication of JPH06325920A publication Critical patent/JPH06325920A/en
Application granted granted Critical
Publication of JP3654303B2 publication Critical patent/JP3654303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the loss of an eddy current by a method wherein Cao and SiO2 are made to solubilize in a specified ratio in the crystal grains of a spinel type Mn-Zn ferrite as the subcomponents of the ferrite. CONSTITUTION:A spinal type Mn-Zn ferrite contains 30 to 42mol% of MnO and 4 to 19 mol % of ZnO with the remnant of Fe2O3 as its main components and contains CaO and SiO2 as its subcomponents. At least one kind of a compound out of these subcomponents is a low-loss magnetic material being solid solubilized in spinel crystal grains. Thereby, the loss of the Mn-Zn ferrite is a loss lower than that of a conventional Mn-Zn ferrite and the Mn-Zn ferrite, which shows a superior performance as the material for a transformer of a switching power supply or the like, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,低損失性材料に関し,
更に詳しくは,スイッチング電源のメイントランスある
いは平滑チョークや電源用トランス材等に用いられるス
ピネル型Mn−Zn系フェライト及びその製造方法に関
するものである。
The present invention relates to a low loss material,
More specifically, the present invention relates to a spinel type Mn—Zn-based ferrite used for a main transformer of a switching power supply, a smooth choke, a power supply transformer material, and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来,スイッチング電源,電源用トラン
ス材等は,その駆動周波数が〜200kHz程度のもの
が使用されてきた。
2. Description of the Related Art Conventionally, switching power supplies, transformer materials for power supplies, etc. having a drive frequency of about 200 kHz have been used.

【0003】近年の各種電子機器の高性能及び小型化の
進展は著しく,それに伴いスイッチング電源,電源用ト
ランス材等のより一層の高性能化,小型化が望まれてい
るところである。
In recent years, the progress of high performance and miniaturization of various electronic devices has been remarkable, and accordingly, further higher performance and miniaturization of switching power supplies, transformer materials for power supplies, etc. are desired.

【0004】それ故,メイントランスあるいは平滑チョ
ークなどや,電源用トランス材に用いられるMn−Zn
系フェライトのより一層の低損失化が望まれている。小
型軽量化のため,スイッチング周波数,駆動周波数の高
周波化に対する検討も各方面で著しく,1MHz程度の
電源も製品化されつつあるのが現状である。
Therefore, Mn-Zn used for a main transformer, a smooth choke, etc. and a power transformer material.
It is desired to further reduce the loss of the system ferrite. In order to reduce the size and weight of the product, consideration is being given to increasing the switching frequency and drive frequency in various fields, and power supplies of about 1 MHz are now being commercialized.

【0005】ここで,電源用トランス材等に用いられる
スピネル型Mn−Znフェライトは,通常一般的に,ス
ピネル型Mn−Znフェライトは混合・予焼・粉砕・造
粒・成形・焼成の工程を有する粉末冶金法により製造さ
れており,その焼結体密度はせいぜい4.75〜4.8
5gr/cm3 程度である。
Here, spinel type Mn-Zn ferrite used for a power transformer material or the like is generally prepared by mixing, pre-firing, pulverizing, granulating, shaping and firing the spinel type Mn-Zn ferrite. Manufactured by the powder metallurgy method, and the density of the sintered body is 4.75 to 4.8 at most.
It is about 5 gr / cm 3 .

【0006】[0006]

【発明が解決しようとする課題】ところが,従来のスピ
ネル型Mn−Zn系フェライトを1MHzのような高周
波で使用した場合,フェライトのパワーロスによる発熱
が著しく,その機能を有効に果たすことができないとい
う欠点を有していた。
However, when the conventional spinel type Mn-Zn type ferrite is used at a high frequency such as 1 MHz, the heat generation due to the power loss of the ferrite is remarkable and the function cannot be effectively achieved. Had.

【0007】また,上述した従来の粉末冶金法において
は,予焼後粉砕により粉末粒径をコントロールし焼成雰
囲気及び温度との兼合いにより焼結体の密度及び組織を
コントロールしている。密度を向上させる手段として粉
末粒径を細かくしたり,又,焼成時の保持温度を高くす
るといった方法もあるが,両者とも異常粒成長により磁
気特性が著しく劣化するだけでなく前者は粉砕時間が長
くなり,又,粉砕機及びメディアの消耗が著しくなると
いう欠点がある。さらに後者では焼成炉に多大な負担が
かかり炉の寿命が短かくなりコスト高であるため好まし
くない。
In the above-mentioned conventional powder metallurgy method, the powder particle size is controlled by crushing after pre-firing, and the density and structure of the sintered body are controlled by the balance with the firing atmosphere and temperature. As a means for improving the density, there are methods such as making the powder particle size fine and increasing the holding temperature during firing, but both of them not only significantly deteriorate the magnetic properties due to abnormal grain growth but It has a drawback that it becomes long and the consumption of the crusher and the media becomes remarkable. Furthermore, the latter is not preferable because the firing furnace imposes a great burden, the life of the furnace becomes short, and the cost is high.

【0008】このように,製造されたスピネル型Mn−
Znフェライト自身は約5.2gr/cm3 程度の密度
を有するが,現状では,そこまで焼結体密度を向上せし
めることが一般の粉末冶金法では達成されていない。そ
れ故,初透磁率(μi ),飽和磁束密度(Bs)等が低
く,また,コアロス値も十分な値が得られず,本来のM
n−Znフェライトの有する優れた磁気特性を生かすこ
とができなかった。
The spinel type Mn-
Zn ferrite itself has a density of about 5.2 gr / cm 3, but at present, it has not been achieved by a general powder metallurgy method to improve the density of the sintered body to that extent. Therefore, the initial permeability (μ i ) and the saturation magnetic flux density (Bs) are low, and the core loss value is not sufficient.
The excellent magnetic properties of the n-Zn ferrite could not be utilized.

【0009】そこで,本発明の技術的課題は,低周波か
ら高周波までの全域の使用に対して,スピネル型Mn−
Zn系フェライトの低損失化が望まれていることに応え
るためになされたもので,前記従来技術の欠点を除去
し,100kHz程度から1MHz付近の高周波帯域に
おいても,パワーロスが少なく,発熱を有効に抑えた低
損失磁性材料及びその製造方法を提供することにある。
Therefore, the technical problem of the present invention is that spinel type Mn-
This was done in response to the desire to reduce the loss of Zn-based ferrite. By eliminating the drawbacks of the prior art, power loss is small and heat is effectively generated even in the high frequency band from about 100 kHz to about 1 MHz. An object is to provide a suppressed low loss magnetic material and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】一般に,スピネル型Mn
−Zn系フェライトに副成分として含有されるCaO,
SiO2 は,粒界に粒界相を形成するとされているが,
本発明者らは種々の検討を行った結果,副成分であるこ
れらCaOとSiO2 を,粒界相のみならず,結晶粒内
へも特定比率固溶せしめることにより,前述した問題を
解決し,より一層低損失なスピネル型Mn−Zn系フェ
ライトが得られることを発見したものである。
[Means for Solving the Problems] Generally, spinel type Mn
-CaO contained as an accessory component in the Zn-based ferrite,
SiO 2 is said to form a grain boundary phase at the grain boundary.
As a result of various investigations, the present inventors have solved the above-mentioned problems by making CaO and SiO 2 which are subcomponents solid-solved not only in the grain boundary phase but also in the crystal grains in a specific ratio. It was discovered that spinel type Mn-Zn based ferrite with even lower loss can be obtained.

【0011】本発明によれば,主成分として30〜42
モル%のMnO,4〜19モル%のZnO及び残部とし
てFe2 3 を含み,副成分としてCaOとSiO2
含むスピネル型Mn−Zn系フェライトにおいて,前記
副成分の少なくとも一種は,スピネル結晶粒中に固溶し
ていることを特徴とする低損失磁性材料が得られる。
According to the present invention, the main component is 30 to 42.
In a spinel-type Mn—Zn-based ferrite containing mol% MnO, 4 to 19 mol% ZnO and the balance Fe 2 O 3 , and CaO and SiO 2 as subcomponents, at least one of the subcomponents is spinel crystal. A low-loss magnetic material characterized by being solid-dissolved in grains can be obtained.

【0012】本発明によれば,前記低損失磁性材料にお
いて,前記固溶している副成分の量は,CaOの場合,
CaO総含有量の10〜70%の範囲内であり,SiO
2 の場合は,SiO2 総含有量の10〜60%範囲内で
あることを特徴とする低損失磁性材料が得られる。
According to the present invention, in the low loss magnetic material, when the amount of the sub-component dissolved as solid solution is CaO,
Within the range of 10 to 70% of the total CaO content, SiO
In the case of 2 , a low loss magnetic material characterized by being in the range of 10 to 60% of the total SiO 2 content is obtained.

【0013】すなわち,本発明では,スピネル型Mn−
Zn系フェライトに,副成分として1.0wt%以下含
有されるCaOをCaO総含有量の10〜70%,副成
分として1.0wt%以下含有されるSiO2 をSiO
2 総含有量の10〜60%の範囲で,それぞれスピネル
結晶粒子中に固溶せしめることにより,コアロス特性が
改善でき,スイッチング電源の高性能化を実現できるも
のである。
That is, according to the present invention, spinel type Mn-
10 to 70% of the total CaO content of CaO, which is contained as a sub-component in an amount of 1.0 wt% or less, and SiO 2 which is contained as a sub-component of 1.0 wt% or less, in SiO 2
2 In the range of 10 to 60% of the total content, by solid-dissolving in spinel crystal particles, the core loss characteristics can be improved and high performance of the switching power supply can be realized.

【0014】現在一般的には,スピネル型Mn−Zn系
フェライト材に対して,100kHz程度の低周波数領
域においては,450kW/m3 以下のコアロス値が要
求され,1MHz前後の高周波数領域においては,50
0kW/m3 以下のコアロス値が要求されている。そこ
で,本発明では,副成分であるこれらCaO及びSiO
2 を,粒界相のみならず,結晶粒内へも特定比率固溶さ
せることにより,上記要求を満たすように,コアロス特
性の向上が図れたのは,酸素分圧を0〜10%と適度に
コントロールした雰囲気下で焼成することでSiO2
CaOを特定量粒内に固溶させることができ,フェライ
トの粒界相と主相結晶の酸化度の差を小さくすることが
可能となり,その結果,焼結体の結晶粒と粒界相の酸化
度の均一化が図れ,焼結体内部の粒界相及び主相結晶の
比抵抗が共に向上し,主に渦電流損失が低下したためと
思われる。
Currently, for spinel type Mn-Zn ferrite materials, a core loss value of 450 kW / m 3 or less is required in a low frequency region of about 100 kHz, and a core loss value of about 1 MHz is required. , 50
A core loss value of 0 kW / m 3 or less is required. Therefore, in the present invention, these CaO and SiO, which are subordinate components, are used.
The solid loss of 2 in a specific ratio not only in the grain boundary phase, but in the crystal grains, improved the core loss characteristics so as to satisfy the above requirements. By firing in a controlled atmosphere, SiO 2 ,
A specific amount of CaO can be dissolved in the grains, and the difference in the degree of oxidation between the ferrite grain boundary phase and the main phase crystal can be reduced. This is probably because the degree of oxidation was made uniform, the resistivity of the grain boundary phase and main phase crystals inside the sintered body were both improved, and the eddy current loss was mainly reduced.

【0015】また,本発明者らは,更に検討を行った結
果,副成分としてNb2 5 を,粒界相のみならず,結
晶粒内へも特定比率固溶せしめることにより,より一層
低損失なスピネル型Mn−Zn系フェライトが得られる
ことを発見したものである。
Further, as a result of further investigations, the present inventors have made Nb 2 O 5 as a subcomponent a solid solution not only in the grain boundary phase but also in the crystal grains in a specific ratio to further lower the content. It was discovered that lossy spinel type Mn-Zn ferrite can be obtained.

【0016】本発明によれば,前記低損失磁性材料にお
いて,更に副成分としてNb2 5を0〜0.08重量
%(0は含まず)含有することを特徴とする低損失磁性
材料が得られる。
According to the present invention, there is provided a low loss magnetic material characterized by further containing 0 to 0.08% by weight (not including 0) of Nb 2 O 5 as an auxiliary component in the low loss magnetic material. can get.

【0017】本発明によれば,前記低損失磁性材料にお
いて,Nb2 5 はスピネル結晶粒中にNb2 5 総重
量の20〜70%の範囲内で固溶していることを特徴と
する低損失磁性材料が得られる。
According to the present invention, in the low loss magnetic material, Nb 2 O 5 is solid-dissolved in the spinel crystal grains in the range of 20 to 70% of the total weight of Nb 2 O 5. A low loss magnetic material that can be obtained

【0018】すなわち,本発明では,Nb2 5 をNb
2 5 総含有量の20〜70%の範囲で,スピネル結晶
粒子中に固溶せしめることにより,コアロス特性が改善
でき,電源用トランス材の高性能化を実現できるもので
ある。
That is, in the present invention, Nb 2 O 5 is added to Nb
By making a solid solution in the spinel crystal particles in the range of 20 to 70% of the total 2 O 5 content, the core loss characteristics can be improved and the performance of the power transformer material can be improved.

【0019】ここで,本発明において,副成分であるこ
れらNb2 5 を粒界相のみならず,結晶粒内へも特定
比率固溶させることにより,コアロス特性の向上が図れ
たのは,適度に酸素分圧を制御した雰囲気下で焼成する
ことで,Nb2 5 を結晶粒内へ特定比率固溶させるこ
とができ,フェライトの粒界相と主相結晶の酸化度の差
を小さくすることが可能となり,結果として,焼結体の
結晶粒と粒界相の酸化度の均一化が図れ,焼結体内部の
粒界相及び主相結晶の比抵抗が共に向上し,主に渦電流
損失が低下したためと思われる。
Here, in the present invention, the core loss characteristics can be improved by solid-solving these Nb 2 O 5 sub-components not only in the grain boundary phase but also in the crystal grains in a specific ratio. By firing in an atmosphere in which the oxygen partial pressure is controlled appropriately, Nb 2 O 5 can be dissolved in the crystal grains in a specific ratio, and the difference in the degree of oxidation between the ferrite grain boundary phase and the main phase crystal can be reduced. As a result, the degree of oxidation of the crystal grains and the grain boundary phase of the sintered body can be made uniform, and the resistivity of the grain boundary phase and the main phase crystal inside the sintered body are both improved, mainly It seems that the eddy current loss decreased.

【0020】更に本発明により,焼結体内部の粒界相と
主相結晶の内部応力の差によって生じる磁気的な歪の影
響を低減することが可能となり,高い透磁率を得ること
ができる。
Further, according to the present invention, it is possible to reduce the influence of magnetic strain caused by the difference in internal stress between the grain boundary phase inside the sintered body and the main phase crystal, and it is possible to obtain high magnetic permeability.

【0021】また,本発明者らは,焼結体密度を4.9
g/cm3 以上とすることでMn−Znフェライトの本
来有する優れた磁気特性をフェライトコアに持たせるこ
とが可能であることを見出したものである。更に,Nb
2 5 を0.08wt%以下(0を含まず)副成分とし
て含有せしめることで著しい磁気特性の向上が図れ,さ
らに焼結工程における昇温雰囲気をN2 とすることで,
焼結体密度が著しく向上し優れた磁気特性を得ることが
できることを見出したものである。
Further, the present inventors set the density of the sintered body to 4.9.
It has been found that the ferrite core can have excellent magnetic characteristics originally possessed by Mn-Zn ferrite by setting g / cm 3 or more. Furthermore, Nb
By including 2 O 5 as a sub-component of 0.08 wt% or less (not including 0), the magnetic properties can be remarkably improved, and the temperature rising atmosphere in the sintering step is N 2 .
The inventors have found that the density of the sintered body is remarkably improved and excellent magnetic properties can be obtained.

【0022】本発明によれば,主成分として30〜42
モル%のMnO,4〜19モル%のZnO及び残部とし
てFe2 3 を含むスピネル型Mn−Zn系フェライト
焼結体において,焼結体密度が少なくとも4.9g/c
3 であることを特徴とする低損失磁性材料が得られ
る。
According to the present invention, the main component is 30 to 42.
Mol% of MnO, in spinel Mn-Zn ferrite sintered body containing Fe 2 O 3 as ZnO, and the balance of 4 to 19 mol%, the sintered body density of at least 4.9 g / c
A low loss magnetic material characterized by having m 3 is obtained.

【0023】また,本発明によれば,前記低損失磁性材
料において,前記焼結体は副成分としてNb2 5 を0
〜0.08重量%(0は含まず)含有することを特徴と
する低損失磁性材料が得られる。
Further, according to the present invention, in the low loss magnetic material, the sintered body contains 0% Nb 2 O 5 as an accessory component.
A low loss magnetic material characterized by containing 0.08 wt% (not including 0) is obtained.

【0024】本発明によれば,スピネル型Mn−Zn系
フェライト焼結体の製造方法において,窒素雰囲気中で
昇温しながら焼成すること含むことを特徴とする低損失
磁性材料の製造方法が得られる。
According to the present invention, there is obtained a method for producing a spinel type Mn-Zn ferrite sintered body, which comprises firing while raising the temperature in a nitrogen atmosphere. To be

【0025】ここで,本発明において,窒素(N2 )雰
囲気中で,昇温することで何故密度が向上し,著しい磁
気特性の向上が図れるのか,その詳細な理由は不明であ
るがスピネル反応がより一層促進された状況下で粒成
長,緻密化が進むため密度の向上と共に組織の均質化が
図れたためと思われる。
Here, in the present invention, the reason why the density is improved by raising the temperature in a nitrogen (N 2 ) atmosphere and the magnetic properties are remarkably improved is not clear, but the spinel reaction is not clear. It is considered that the grain growth and the densification proceeded under the condition that the grain size was further promoted, so that the density was improved and the structure was homogenized.

【0026】また,本発明において,Nb2 5 は,粒
界に析出して電気抵抗を高くし,渦電流損失を低下せし
めるだけでなく,微細組織のコントロールをしてBs,
μi等の磁気特性を向上させる作用がある。ここで,本
発明において,Nb2 5 の量を0.08wt%以下と
したのは0.08wt%を越えた領域では異常粒成長等
の磁気特性劣化因子が発生するためである。以上の方法
により焼結体密度が4.9g/cm3 以上とすることで
著しく磁気特性が向上し,電源用トランス材として優れ
た材料を供給することが可能となる。本発明では特に著
しくコスト高となることはなく,現状の工程を若干変化
させるだけで著しい磁気特性の改善が可能となり有益で
ある。
Further, in the present invention, Nb 2 O 5 not only reduces the eddy current loss by precipitating at the grain boundaries to increase the electric resistance, but also controls Bs,
It has the effect of improving the magnetic characteristics such as μ i . Here, in the present invention, the amount of Nb 2 O 5 is set to 0.08 wt% or less because a magnetic property deterioration factor such as abnormal grain growth occurs in a region exceeding 0.08 wt%. By setting the density of the sintered body to 4.9 g / cm 3 or more by the above method, the magnetic characteristics are remarkably improved, and it becomes possible to supply an excellent material as a power transformer material. In the present invention, the cost is not significantly increased, and it is advantageous that the magnetic properties can be remarkably improved only by slightly changing the current process.

【0027】[0027]

【実施例】以下,本発明に係わる低損失磁性材料の実施
例について説明する。
EXAMPLES Examples of the low loss magnetic material according to the present invention will be described below.

【0028】(実施例1)高純度のFe2 3 ,Mn3
4 ,ZnOの粉末を,53モル(mol)%のFe2
3 ,35モル%のMnO,12モル%のZnOとなる
よう秤量し,これら粉末をボールミルにて混合した後,
約900℃で仮焼した。
Example 1 High-purity Fe 2 O 3 and Mn 3
O 4 and ZnO powder are mixed with 53 mol% Fe 2
O 3 , 35 mol% MnO, 12 mol% ZnO were weighed and mixed with a ball mill,
It was calcined at about 900 ° C.

【0029】次にこの仮焼粉末に0.02重量%(wt
%)のSiO2 及び0.05wt%のCaOを添加し
て,さらにボールミルで混合,解砕を行った。次に得ら
れた粉末にバインダーを混合した後,約2トン/cm2
で成形し,これら得られた成形体を焼成温度:1000
〜1400℃,酸素分圧:1〜10%の雰囲気中で焼成
した。
Next, 0.02% by weight (wt.
%) SiO 2 and 0.05 wt% CaO were added, and further mixed and crushed by a ball mill. Then, after mixing the obtained powder with a binder, about 2 tons / cm 2
And the resulting molded body is fired at a firing temperature of 1000.
Firing was performed in an atmosphere of ˜1400 ° C. and oxygen partial pressure: 1-10%.

【0030】図1は,主相結晶粒内のSiO2 含有量
が,SiO2 総含有量の30%である試料において,主
相結晶粒内のCaO量を変化させた時に得られた各試料
の100℃,周波数(f=)100kHz−最大磁束密
度(Bm =)2000Gにおけるパワーロス(PB )値
及び常温での初透磁率(μi )値を示し,図2は,主相
結晶粒内のCaO含有量が,CaO総含有量の30%で
ある試料において,主相結晶粒内のSiO2 量を変化さ
せた時に得られた各試料の100℃,100kHz−2
000GにおけるPB 及び常温におけるμi 値を示して
いる。
FIG. 1 shows each sample obtained when the amount of CaO in the main phase crystal grains was changed in the sample in which the SiO 2 content in the main phase crystal grains was 30% of the total SiO 2 content. At 100 ° C., frequency (f =) 100 kHz-maximum magnetic flux density (B m =) 2000 G, power loss (P B ) value and initial magnetic permeability (μ i ) value at room temperature are shown in FIG. In the sample in which the CaO content in the sample is 30% of the total CaO content, 100 ° C. and 100 kHz−2 of each sample obtained when the amount of SiO 2 in the main phase crystal grains was changed
The P B at 000 G and the μ i value at room temperature are shown.

【0031】図1及び図2の主相結晶粒内のCaO,S
iO2 量は,化学的なエッチングにより粒界相を除去し
た主相結晶粒内の含有量を総含有量に対する比率(%)
で示した値である。
CaO, S in the main phase crystal grains of FIGS. 1 and 2
The iO 2 content is the ratio (%) of the content in the main phase crystal grains from which the grain boundary phase is removed by chemical etching to the total content.
It is the value shown in.

【0032】図1及び図2より,CaOではCaO総含
有量の10〜70%の範囲で,SiO2 ではSiO2
含有量の10〜60%の範囲で,それぞれスピネル結晶
粒中に固溶せしめた試料は,コアロス値が小さく,高い
透磁率の得られることがわかる。
From FIG. 1 and FIG. 2, CaO is in the range of 10 to 70% of the total CaO content, and SiO 2 is in the range of 10 to 60% of the total SiO 2 content. It can be seen that the compacted sample has a small core loss value and high magnetic permeability.

【0033】(実施例2)高純度のFe2 3 ,Mn3
4 ,ZnOの粉末を,53モル%のFe2 3,39
モル%のMnO,8モル%のZnOとなるよう秤量し,
これら粉末をボールミルにて混合した後,約900℃で
仮焼した。次に,この仮焼粉末に0.03wt%のSi
2 及び0.10wt%のCaOを添加して,さらにボ
ールミルで混合,解砕を行った。次に,得られた粉末に
バインダーを混合した後,約2トン/cm2 で成形し,
これら得られた成形体を焼成温度:1000〜1250
℃,酸素分圧:0.1〜6%の雰囲気下で焼成した。
Example 2 High-purity Fe 2 O 3 and Mn 3
O 4 and ZnO powder were mixed with 53 mol% of Fe 2 O 3 and 39
Weigh it so that it is mol% MnO, 8 mol% ZnO,
These powders were mixed in a ball mill and then calcined at about 900 ° C. Next, 0.03 wt% of Si was added to the calcined powder.
O 2 and 0.10 wt% CaO were added, and further mixed and crushed with a ball mill. Next, after mixing the obtained powder with a binder, it is molded at about 2 ton / cm 2 ,
Baking temperature of these obtained molded bodies: 1000 to 1250
Firing was carried out in an atmosphere of ° C and oxygen partial pressure of 0.1 to 6%.

【0034】図3は,主相結晶粒内のSiO2 含有量
が,SiO2 総含有量の30%である試料において,主
相結晶粒内のCaO量を変化させた時に得られた各試料
の60℃,f=1MHz,Bm =500GにおけるPB
値を示し,図4は,主相結晶粒内のCaO含有量が,C
aO総含有量の30%である試料において,主相結晶粒
内のSiO2 量を変化させた時に得られた各試料の60
℃,f=1MHz,Bm=500GにおけるPB 値を示
している。
FIG. 3 shows the samples obtained when the amount of CaO in the main phase crystal grains was changed in the sample in which the SiO 2 content in the main phase crystal grains was 30% of the total SiO 2 content. P B at 60 ° C., f = 1 MHz, B m = 500 G
Fig. 4 shows the values, and Fig. 4 shows that the CaO content in the main phase grains is C
60% of each sample obtained when the amount of SiO 2 in the main phase crystal grains was changed in the sample containing 30% of the total content of aO.
The P B value at ° C, f = 1 MHz, and B m = 500 G is shown.

【0035】図3及び図4の主相結晶粒内のCaO,S
iO2 量は,化学的なエッチングにより粒界相を除去し
た主相結晶粒内の含有量を,総含有量に対する比率
(%)で示した値である。
CaO and S in the main phase crystal grains of FIGS.
The amount of iO 2 is a value in which the content in the main phase crystal grains from which the grain boundary phase has been removed by chemical etching is expressed as a ratio (%) to the total content.

【0036】図3及び図4より,CaOではCaO総含
有量の10〜70%の範囲で,SiO2 ではSiO2
含有量の10〜60%の範囲で,それぞれスピネル結晶
粒中に固溶せしめた試料は,低コアロス値の得られてい
ることがわかる。
From FIG. 3 and FIG. 4, CaO in the range of 10 to 70% of the total content of CaO and SiO 2 in the range of 10 to 60% of the total content of SiO 2 are dissolved in the spinel crystal grains. It can be seen that a low core loss value was obtained for the aged sample.

【0037】(実施例3)高純度のFe2 3 ,Mn3
4 ,ZnOの粉末を,53モル%のFe2 3,35
モル%のMnO,12モル%のZnOとなるよう秤量
し,これら粉末をボールミルにて混合した後,約900
℃で仮焼した。
(Example 3) High-purity Fe 2 O 3 and Mn 3
O 4 and ZnO powder were mixed with 53 mol% of Fe 2 O 3 and 35
Weighed so as to be mol% MnO and 12 mol% ZnO, mixed these powders in a ball mill, and then measured about 900
It was calcined at ℃.

【0038】次にこの仮焼粉末に0.02wt%のSi
2 ,0.05wt%のCaO及び0.04wt%のN
2 5 を添加して,さらにボールミルで混合,解砕を
行った。次に得られた粉末にバインダーを混合した後,
約2トン/cm2 で成形し,これら得られた成形体を,
焼成温度:1100〜1400℃,酸素分圧:1〜10
%の雰囲気中で焼成した。
Next, 0.02 wt% of Si was added to the calcined powder.
O 2 , 0.05 wt% CaO and 0.04 wt% N
b 2 O 5 was added, and further mixed and crushed with a ball mill. Next, after mixing the obtained powder with a binder,
Molded at about 2 ton / cm 2
Firing temperature: 1100 to 1400 ° C, oxygen partial pressure: 1 to 10
% In the atmosphere.

【0039】図5は,主相結晶粒内のNb2 5 量を変
化させた時に得られた各試料の100℃,f=100k
Hz,Bm =2000GにおけるPB 値及び常温におけ
るμi 値を示している。また,図5の主相結晶粒内のN
2 5 量は,化学的なエッチングにより粒界相を除去
した主相結晶粒内の含有量を,総含有量に対する比率
(%)で示した値である。
FIG. 5 shows each sample obtained when the amount of Nb 2 O 5 in the main phase crystal grains was changed at 100 ° C. and f = 100 k.
The P B value at Hz and B m = 2000 G and the μ i value at room temperature are shown. In addition, N in the main phase crystal grains in FIG.
The amount of b 2 O 5 is the content of the content in the main phase crystal grains from which the grain boundary phase has been removed by chemical etching, as a ratio (%) to the total content.

【0040】図5より,Nb2 5 総含有量の20〜7
0%の範囲で,Nb2 5 をスピネル結晶粒中に固溶せ
しめた試料は低いコアロス値の得られていることがわか
る。 (実施例4)高純度のFe2 3 ,Mn3 4 ,ZnO
の粉末を,53モル%のFe2 3,39モル%のMn
O,8モル%のZnOとなるよう秤量し,これら粉末を
ボールミルにて混合した後,約900℃で仮焼した。次
に,この仮焼粉末に0.03wt%のSiO2 ,0.1
0wt%のCaO,及び0.04wt%のNb2 5
添加して,さらにボールミルで混合,解砕を行った。次
に,得られた粉末にバインダーを混合した後,約2トン
/cm2 で成形し,これら得られた成形体を焼成温度:
1100〜1400℃,酸素分圧:3%以下の雰囲気中
で焼成した。
According to FIG. 5, the total content of Nb 2 O 5 is 20 to 7
It can be seen that in the range of 0%, the sample in which Nb 2 O 5 is solid-solved in the spinel crystal grains has a low core loss value. (Example 4) High purity Fe 2 O 3, Mn 3 O 4, ZnO
Powder of 53 mol% Fe 2 O 3 and 39 mol% Mn
O and ZnO of 8 mol% were weighed, and these powders were mixed in a ball mill and calcined at about 900 ° C. Next, 0.03 wt% of SiO 2 , 0.1
0 wt% CaO and 0.04 wt% Nb 2 O 5 were added, and further mixed and crushed by a ball mill. Next, the obtained powder is mixed with a binder and then molded at about 2 ton / cm 2 , and the obtained molded body is fired at a firing temperature:
It was fired in an atmosphere of 1100 to 1400 ° C. and an oxygen partial pressure of 3% or less.

【0041】図6は,主相結晶粒内のNb2 5 含有量
を変化させた時に得られた各試料の60℃,1kHz−
500GにおけるPB 値を示している。図6の主相結晶
粒内のNb2 5 量は,化学的なエッチングにより粒界
相を除去した主相結晶粒内の含有量を,総含有量に対す
る比率(%)で示した値である。
FIG. 6 shows 60 ° C., 1 kHz-of each sample obtained when the Nb 2 O 5 content in the main phase crystal grains was changed.
The P B value at 500 G is shown. The amount of Nb 2 O 5 in the main phase crystal grains in FIG. 6 is the content of the main phase crystal grains in which the grain boundary phase has been removed by chemical etching as a ratio (%) to the total content. is there.

【0042】図6より,Nb2 5 総含有量の20〜7
0%の範囲で,Nb2 5 をスピネル結晶粒中に固溶せ
しめた試料は,低いコアロス値の得られていることがわ
かる。
From FIG. 6, the total content of Nb 2 O 5 is 20 to 7
It can be seen that in the range of 0%, the sample in which Nb 2 O 5 is solid-solved in the spinel crystal grains has a low core loss value.

【0043】(実施例5)実施例1と同様の工程で,N
2 5 を0〜0.10wt%まで変化させて添加した
試料を作成した。図7は,この試料のNb2 5 含有量
と100℃,100kHz−2000GにおけるPB
及び常温におけるμi 値との関係を示している。
(Fifth Embodiment) In the same process as in the first embodiment, N
A sample was prepared by adding b 2 O 5 varying from 0 to 0.10 wt%. FIG. 7 shows the relationship between the Nb 2 O 5 content of this sample, the P B value at 100 ° C. and 100 kHz-2000 G, and the μ i value at room temperature.

【0044】図7より,Nb2 5 の含有量が0〜0.
08wt%(0%を除く)の時に優れた磁気特性の得ら
れていることがわかる。
From FIG. 7, the Nb 2 O 5 content was 0 to 0.
It can be seen that excellent magnetic characteristics are obtained when the content is 08 wt% (excluding 0%).

【0045】(実施例6)高純度のFe2 3 ,Mn3
4 ,ZnO原料を配合して52.5Fe2 3−35
MnO−12.5ZnO(モル%)となるようにした。
次に本配合粉末をボールミルにて混合し,予焼し,さら
に再びボールミルにて粉砕しバンダーを混合後成形し
た。そして得られた成形体を,昇温雰囲気,温度,保持
条件を変化させて焼成体を得た。下記表1に焼結体密度
と得られた磁気特性を示す。焼結体密度が4.9g/c
3 以上の試料ではいずれの磁気特性も優れていること
がわかる。
Example 6 High-purity Fe 2 O 3 and Mn 3
52.5Fe 2 O 3 -35 by blending O 4 and ZnO raw materials
It was set to be MnO-12.5ZnO (mol%).
Next, the compounded powder was mixed in a ball mill, pre-fired, pulverized again in the ball mill, mixed with a bander, and then molded. Then, the obtained molded body was changed in the temperature rising atmosphere, temperature and holding conditions to obtain a fired body. Table 1 below shows the sintered body density and the obtained magnetic characteristics. Sintered body density is 4.9g / c
It can be seen that all the magnetic properties are excellent in the samples of m 3 or more.

【0046】[0046]

【表1】 [Table 1]

【0047】(実施例7)実施例1で得られた粉末成形
体をN2 中昇温と大気中昇温で焼成した。保持は130
0℃とし,また雰囲気はN2 とO2 の混合ガス中とし
た。下表2に昇温部をN2 雰囲気と空気(Air)中雰
囲気とした材料の磁気特性を示す。昇温部をN2 とした
方が優れた磁気特性を示す。
Example 7 The powder compact obtained in Example 1 was fired at a temperature rise in N 2 and a temperature rise in the atmosphere. Hold 130
The temperature was 0 ° C., and the atmosphere was a mixed gas of N 2 and O 2 . Table 2 below shows the magnetic characteristics of the materials in which the temperature rising part is in an N 2 atmosphere and an air (air) atmosphere. Excellent magnetic properties are exhibited when the temperature rising portion is set to N 2 .

【0048】[0048]

【表2】 [Table 2]

【0049】(実施例8)実施例1と同様の工程で,N
2 5 を0〜0.1wt%まで変化させて添加した試
料を作成した。
(Embodiment 8) In the same process as in Embodiment 1, N
A sample was prepared by adding b 2 O 5 varying from 0 to 0.1 wt%.

【0050】下表3にNb2 5 量を変化させた時の磁
気特性を示す。Nb2 5 か0.08wt%以下(0を
含まず)の時に優れた磁気特性を示す。
Table 3 below shows the magnetic characteristics when the amount of Nb 2 O 5 was changed. When Nb 2 O 5 or 0.08 wt% or less (not including 0), excellent magnetic properties are exhibited.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【発明の効果】以上の述べた如く,本発明によれば,M
n−Zn系フェライトを通常の粉末冶金法で製造する方
法において,副成分である酸化カルシウムと二酸化ケイ
素を,酸化カルシウムでは酸化カルシウム総含有量の1
0〜70%を,二酸化ケイ素では二酸化ケイ素総含有量
の10〜60%を,それぞれスピネル結晶粒中に固溶せ
しめることにより,従来のMn−Zn系フェライトより
も低損失で,スイッチング電源等のトランス材として優
れた性能を示すMn−Zn系フェライトを得ることがで
きる。
As described above, according to the present invention, M
In a method for producing an n-Zn ferrite by an ordinary powder metallurgy method, calcium oxide and silicon dioxide, which are subcomponents, are contained in calcium oxide in a total content of 1 of calcium oxide.
By making 0 to 70% and 10 to 60% of the total content of silicon dioxide in silicon dioxide into solid solution in spinel crystal grains respectively, the loss is lower than that of the conventional Mn-Zn type ferrite, and it can be used in switching power supplies. It is possible to obtain Mn—Zn based ferrite exhibiting excellent performance as a transformer material.

【0053】また,本発明によればMn−Zn系フェラ
イトを通常の粉末冶金法で製造する方法において,副成
分であるNb2 5 を0〜0.08wt%(0%を除
く)の範囲で含有せめ,さらにNb2 5 を,スピネル
結晶粒中に,Nb2 5 総含有量の20〜70%固溶せ
しめることにより,従来のMn−Zn系フェライトより
も低損失で,電源用トランス材として優れた性能を示す
Mn−Zn系フェライトを提供することができる。
Further, according to the present invention, in the method for producing Mn-Zn-based ferrite by the usual powder metallurgy method, the auxiliary component Nb 2 O 5 is in the range of 0 to 0.08 wt% (excluding 0%). In addition, Nb 2 O 5 is contained in the spinel crystal grains as a solid solution in an amount of 20 to 70% of the total content of Nb 2 O 5 , so that the power loss is lower than that of conventional Mn-Zn ferrite. It is possible to provide a Mn-Zn-based ferrite exhibiting excellent performance as a transformer material.

【0054】更に,本発明によれば,焼結体密度を4.
9g/cm3 以上とすることで著しく磁気特性向上が実
現される。またこの際に,Nb2 5 を0.08wt%
以下(0を含まず)とし,さらにN2 中で昇温する焼成
パターンを用いることで密度を4.9g/cm3 以上と
することができるものである。これは,密度を4.9g
/cm3 以上とすることでMn−Znフェライトの本来
有する優れた磁気特性を確保できることのためであり,
2 中での昇温はスピネル化反応がより一層促進された
状況下での粒成長及び緻密化が進行することが高特性化
に寄与しているものと思われる。
Furthermore, according to the present invention, the density of the sintered body is 4.
When it is 9 g / cm 3 or more, the magnetic characteristics are remarkably improved. At this time, 0.08 wt% of Nb 2 O 5 was added.
The density can be increased to 4.9 g / cm 3 or more by using the following (not including 0) and using a firing pattern of raising the temperature in N 2 . This has a density of 4.9g
/ Cm 3 or more because it is possible to secure the excellent magnetic properties originally possessed by Mn-Zn ferrite,
It is considered that the temperature increase in N 2 contributes to the improvement of the characteristics by the progress of grain growth and densification under the condition that the spinelization reaction is further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における主相結晶粒内のSi
2 含有量が,総SiO2 含有量の30%である試料に
おける,主相結晶粒内のCaO量と100℃,f=10
0kHz,Bm =2000Gにおけるパワーロス値及び
常温,f=100kHzにおけるμi 値との関係を示す
図である。
FIG. 1 shows Si in a main phase crystal grain in Example 1 of the present invention.
In a sample having an O 2 content of 30% of the total SiO 2 content, the CaO content in the main phase crystal grains and 100 ° C., f = 10
0 kHz, power loss value and the ambient temperature at B m = 2000 G, is a diagram showing the relationship between the mu i value at f = 100kHz.

【図2】本発明の実施例1における主相結晶粒内のCa
O含有量が,総CaO含有量の30%である試料におけ
る,主相結晶粒内のSiO2 量と100℃,f=100
kHz,Bm =2000Gにおけるパワーロス値及び常
温,f=100kHzにおけるμi 値との関係を示す図
である。
FIG. 2 Ca in the main phase crystal grains in Example 1 of the present invention
In the sample in which the O content is 30% of the total CaO content, the SiO 2 content in the main phase crystal grains and 100 ° C., f = 100
kHz, power loss value and the ambient temperature at B m = 2000 G, is a diagram showing the relationship between the mu i value at f = 100kHz.

【図3】本発明の実施例2における主相結晶粒内のSi
2 含有量が,総SiO2 含有量の30%である試料に
おける,主相結晶粒内のCaO量と60℃,f=1MH
z,Bm =500Gにおけるパワーロス値との関係を示
す図である。
FIG. 3 Si in the main phase crystal grains in Example 2 of the present invention
The amount of CaO in the main phase crystal grains and 60 ° C., f = 1 MH in the sample in which the O 2 content is 30% of the total SiO 2 content
z, it is a diagram showing the relationship between the power loss value of B m = 500G.

【図4】本発明の実施例2における主相結晶粒内のCa
O含有量が,総CaO含有量の30%である試料におけ
る,主相結晶粒内のSiO2 量と60℃,f=1MH
z,Bm =500Gにおけるパワーロス値との関係を示
す図である。
FIG. 4 Ca in the main phase crystal grains in Example 2 of the present invention
In the sample in which the O content is 30% of the total CaO content, the amount of SiO 2 in the main phase crystal grains and 60 ° C., f = 1 MH
z, it is a diagram showing the relationship between the power loss value of B m = 500G.

【図5】本発明の実施例3における主相結晶粒内のNb
2 5 量と100℃,f=100kHz,Bm =200
0Gにおけるパワーロス値及び常温,f=100kHz
におけるμi との関係を示す図である。
FIG. 5: Nb in crystal grains of main phase in Example 3 of the present invention
2 O 5 amount and 100 ° C., f = 100 kHz, B m = 200
Power loss value at 0G and room temperature, f = 100kHz
FIG. 6 is a diagram showing a relationship with μ i in FIG.

【図6】本発明の実施例4における主相結晶粒内のNb
2 5 量と60℃,f=1MHz,Bm =500Gにお
けるパワーロス値との関係を示す図である。
FIG. 6 is an Nb in a main phase crystal grain in Example 4 of the present invention.
2 O 5 amount and 60 ° C., a diagram showing the relationship between the power loss value at f = 1MHz, B m = 500G .

【図7】本発明の実施例5におけるNb2 5 含有量と
100℃,f=100kHz,Bm =2000Gにおけ
るパワーロス値及び常温,f=100kHzにおけるμ
i との関係を示す図である。
FIG. 7 is a graph showing the Nb 2 O 5 content in Example 5 of the present invention, the power loss value at 100 ° C., f = 100 kHz, B m = 2000 G, and μ at room temperature, f = 100 kHz.
It is a figure which shows the relationship with i .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 主成分として30〜42モル%のMn
O,4〜19モル%のZnO及び残部としてFe2 3
を含み,副成分としてCaOとSiO2 を含むスピネル
型Mn−Zn系フェライトにおいて,前記副成分の少な
くとも一種は,スピネル結晶粒中に固溶していることを
特徴とする低損失磁性材料。
1. Mn of 30 to 42 mol% as a main component
O, 4 to 19 mol% ZnO and the balance Fe 2 O 3
In a spinel-type Mn—Zn-based ferrite containing CaO and SiO 2 as a minor component, at least one of the minor components is a solid solution in the spinel crystal grains.
【請求項2】 請求項1記載の低損失磁性材料におい
て,更に副成分としてNb2 5 を0〜0.08重量%
(0は含まず)含有することを特徴とする低損失磁性材
料。
2. The low loss magnetic material according to claim 1, further comprising Nb 2 O 5 as an accessory component in an amount of 0 to 0.08% by weight.
A low loss magnetic material containing (not including 0).
【請求項3】 請求項1又は2記載の低損失磁性材料に
おいて,前記固溶している副成分の量は,CaOの場
合,CaO総含有量の10〜70%の範囲内であり,S
iO2 の場合は,SiO2 総含有量の10〜60%範囲
内であることを特徴とする低損失磁性材料。
3. The low-loss magnetic material according to claim 1 or 2, wherein the amount of the sub-component dissolved as a solid solution is in the range of 10 to 70% of the total CaO content in the case of CaO.
In the case of iO 2 , a low loss magnetic material characterized by being in the range of 10 to 60% of the total SiO 2 content.
【請求項4】 請求項2又は3記載の低損失磁性材料に
おいて,Nb2 5はスピネル結晶粒中にNb2 5
重量の20〜70%の範囲内で固溶していることを特徴
とする低損失磁性材料。
4. The low loss magnetic material according to claim 2 or 3, wherein Nb 2 O 5 is solid-dissolved in the spinel crystal grains within a range of 20 to 70% of the total weight of Nb 2 O 5. Characteristic low loss magnetic material.
【請求項5】 スピネル型Mn−Zn系フェライト焼結
体の製造方法において,酸素分圧が10%以下の雰囲気
中で焼成すること含むことを特徴とする低損失磁性材料
の製造方法。
5. A method for producing a spinel type Mn—Zn ferrite sintered body, which comprises firing in an atmosphere having an oxygen partial pressure of 10% or less.
【請求項6】 主成分として30〜42モル%のMn
O,4〜19モル%のZnO及び残部としてFe2 3
を含むスピネル型Mn−Zn系フェライト焼結体におい
て,焼結体密度が少なくとも4.9g/cm3 であるこ
とを特徴とする低損失磁性材料。
6. Mn of 30 to 42 mol% as a main component
O, 4 to 19 mol% ZnO and the balance Fe 2 O 3
A spinel-type Mn-Zn-based ferrite sintered body containing, a low-loss magnetic material having a sintered body density of at least 4.9 g / cm 3 .
【請求項7】 請求項6記載の低損失磁性材料におい
て,前記焼結体は副成分としてNb2 5 を0〜0.0
8重量%(0は含まず)含有することを特徴とする低損
失磁性材料。
7. The low loss magnetic material according to claim 6, wherein the sintered body contains Nb 2 O 5 in an amount of 0 to 0.0.
A low loss magnetic material containing 8% by weight (not including 0).
【請求項8】 スピネル型Mn−Zn系フェライト焼結
体の製造方法において,窒素雰囲気中で昇温しながら焼
成すること含むことを特徴とする低損失磁性材料の製造
方法。
8. A method for producing a spinel type Mn—Zn ferrite sintered body, which comprises firing while raising the temperature in a nitrogen atmosphere, and a method for producing a low loss magnetic material.
JP11555593A 1993-05-18 1993-05-18 Low loss magnetic material Expired - Fee Related JP3654303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11555593A JP3654303B2 (en) 1993-05-18 1993-05-18 Low loss magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11555593A JP3654303B2 (en) 1993-05-18 1993-05-18 Low loss magnetic material

Publications (2)

Publication Number Publication Date
JPH06325920A true JPH06325920A (en) 1994-11-25
JP3654303B2 JP3654303B2 (en) 2005-06-02

Family

ID=14665445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11555593A Expired - Fee Related JP3654303B2 (en) 1993-05-18 1993-05-18 Low loss magnetic material

Country Status (1)

Country Link
JP (1) JP3654303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032140A1 (en) * 1997-01-21 1998-07-23 Fdk Corporation Ferrite material, method of manufacturing the same and deflection yoke core made from the material
US6858155B1 (en) * 2001-12-12 2005-02-22 Spang & Company Ferrite materials, methods of preparing the same, and products formed therefrom
JP2022025803A (en) * 2020-07-30 2022-02-10 株式会社トーキン MnZn-BASED FERRITE AND METHOD OF MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032140A1 (en) * 1997-01-21 1998-07-23 Fdk Corporation Ferrite material, method of manufacturing the same and deflection yoke core made from the material
US6858155B1 (en) * 2001-12-12 2005-02-22 Spang & Company Ferrite materials, methods of preparing the same, and products formed therefrom
JP2022025803A (en) * 2020-07-30 2022-02-10 株式会社トーキン MnZn-BASED FERRITE AND METHOD OF MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP3654303B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP2001093718A (en) Magnetic ferrite composition and method for manufacturing thereof
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JP2007297232A (en) Method for producing oxide magnetic material
JP2000327411A (en) Method for producing Ni-Zn ferrite
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP2802839B2 (en) Oxide soft magnetic material
JPH08236336A (en) Low-loss oxide magnetic material
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
JP2002343616A (en) Method for manufacturing oxide containing rare earth element
JPH06333724A (en) Ferrite sintered body having fine crystal grains and method for producing the same
JP2000091114A (en) High permeability oxide magnetic material
JPH05267038A (en) Manufacture of oxide magnetic material
JPH09180926A (en) Low loss oxide magnetic material
JPH0529125A (en) Production of oxide magnetic material
JPH0547540A (en) Oxide calcinated power, high-permeability magnetic material using the same and manufacture thereof
JPH10144514A (en) Calcinated oxide powder, oxide magnetic material using it and their manufacture
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JP2005289667A (en) MnZn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JPH0891921A (en) Production of oxide magnetic low in electric power loss
JPH0574623A (en) High permeability magnetic material and its manufacture
JPH04271102A (en) Manufacture of low loss oxide magnetic material
JPH08124734A (en) Small-loss oxide magnetic material
JPH10177912A (en) Low-loss oxide magnetic material and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees