[go: up one dir, main page]

JPH06322167A - Production of polyolefinic resin foam - Google Patents

Production of polyolefinic resin foam

Info

Publication number
JPH06322167A
JPH06322167A JP10922693A JP10922693A JPH06322167A JP H06322167 A JPH06322167 A JP H06322167A JP 10922693 A JP10922693 A JP 10922693A JP 10922693 A JP10922693 A JP 10922693A JP H06322167 A JPH06322167 A JP H06322167A
Authority
JP
Japan
Prior art keywords
resin
agent
foam
inorganic
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10922693A
Other languages
Japanese (ja)
Other versions
JP3345093B2 (en
Inventor
Hitoshi Shirato
斉 白土
Hiroyuki Kurio
浩行 栗尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10922693A priority Critical patent/JP3345093B2/en
Publication of JPH06322167A publication Critical patent/JPH06322167A/en
Application granted granted Critical
Publication of JP3345093B2 publication Critical patent/JP3345093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a polyolefinic resin foam having uniform and fine cells and a high ratio of closed cells expanded in high magnification by using an inexpensive inorganic gas free from environmental problems as a blowing agent. CONSTITUTION:100 pts.wt. of a polyolefinic resin (polyethylene or polypropylene) is mixed with an inorganic foam nucleus forming agent (talc) subjected to surface treatment with a coupling agent (silane-based coupling agent) to prepare a resin composition. The resin composition is fed to a vented extruder, melted and kneaded, an inorganic gas (carbon dioxide gas) is introduced under pressure as a blowing agent from the vent part of the extruder and the melted material is extruded and expanded from an extrusion spinneret to give the objective polyolefinic resin foam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発泡剤として無機ガ
スを用いるポリオレフィン系樹脂発泡体の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyolefin resin foam using an inorganic gas as a foaming agent.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂発泡体の製造に
は、通常、発泡剤が用いられる。発泡剤としては、アゾ
ジカルボンアミド等の熱分解型有機発泡剤、ペンタンや
ジクロロジフロロエタン等の低沸点有機溶媒発泡剤、炭
酸ガスや窒素等の無機ガス発泡剤が使用されている。
2. Description of the Related Art A foaming agent is usually used for producing a polyolefin resin foam. As the foaming agent, a thermal decomposition type organic foaming agent such as azodicarbonamide, a low boiling point organic solvent foaming agent such as pentane or dichlorodifluoroethane, and an inorganic gas foaming agent such as carbon dioxide and nitrogen are used.

【0003】熱分解型有機発泡剤を使用する場合は、発
泡体中に発泡剤の分解残渣が含有されるため、発泡体に
変色や臭気が発生し品質が低下する。低沸点有機溶媒発
泡剤を使用する場合は、爆発の危険やオゾン層破壊等の
環境問題がある。無機ガス発泡剤を使用する場合は、上
記のような問題が発生せず、しかも安価であるので好ま
しい。
When a thermal decomposition type organic foaming agent is used, since the foaming agent contains decomposition residues of the foaming agent, discoloration or odor occurs in the foam and the quality deteriorates. When using a low boiling organic solvent blowing agent, there are environmental problems such as explosion risk and ozone layer depletion. The use of an inorganic gas foaming agent is preferable because it does not cause the above problems and is inexpensive.

【0004】しかし、発泡剤として無機ガスを用いてポ
リオレフィン系樹脂を押出発泡させる場合、無機ガスは
樹脂との相溶性が悪く、発泡時に樹脂から早く分離し、
そのため、均一で微細な気泡を有し且つ高倍率(例えば
10倍以上)に発泡させることは困難である。
However, in the case of extruding and foaming a polyolefin resin using an inorganic gas as a foaming agent, the compatibility of the inorganic gas with the resin is poor and the inorganic gas is quickly separated from the resin during foaming,
Therefore, it is difficult to have uniform and fine air bubbles and to foam at a high magnification (for example, 10 times or more).

【0005】均一で微細な気泡を生成させるには、通
常、炭酸カルシウムやタルク等の気泡核形成剤が使用さ
れる。もちろん、樹脂の粘弾性や無機ガスの圧入量も調
整される(例えば、特公昭60−26418号公報参
照)。
In order to generate uniform and fine bubbles, bubble nucleating agents such as calcium carbonate and talc are usually used. Of course, the viscoelasticity of the resin and the press-fit amount of the inorganic gas are also adjusted (for example, see Japanese Patent Publication No. 60-41818).

【0006】[0006]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0007】しかし、無機ガスは、樹脂の発泡時に蒸発
潜熱を樹脂から奪って気泡を固定化するような作用はな
い。また、気泡核形成剤を多量に使用すると樹脂の伸び
が悪くなる。それゆえ、高倍率を得るために高圧力で樹
脂中に無機ガスを注入すると、気泡が破れやすくなり、
発泡倍率はせいぜい8倍程度で、より高倍率に発泡させ
ることは容易でない。
However, the inorganic gas does not act to remove the latent heat of vaporization from the resin during the foaming of the resin to fix the bubbles. Further, if a large amount of the bubble nucleating agent is used, the elongation of the resin will deteriorate. Therefore, if the inorganic gas is injected into the resin at a high pressure to obtain a high magnification, the bubbles tend to break,
The expansion ratio is at most about 8 times, and it is not easy to expand to a higher expansion ratio.

【0008】この発明は、上記の問題を解決するもの
で、その目的とするところは、発泡剤として炭酸ガス等
の無機ガスを用い、ポリオレフィン系樹脂を均一で微細
な気泡を有し且つ独立気泡率が高くて高倍率に容易に発
泡させることのできるポリオレフィン系樹脂発泡体の製
造方法を提供するものである。
The present invention is intended to solve the above problems. An object of the present invention is to use an inorganic gas such as carbon dioxide gas as a foaming agent and to make a polyolefin resin have uniform and fine cells and independent cells. It is intended to provide a method for producing a polyolefin resin foam, which has a high rate and can be easily foamed at a high magnification.

【0009】[0009]

【課題を解決するための手段】この発明に用いるポリオ
レフィン系樹脂としては、ポリエチレン、ポリプロピレ
ン、エチレン−プロピレン共重合体、エチレン−酢酸ビ
ニル共重合体、エチレン−アクリル酸共重合体、エチレ
ン−エチルアクリレート共重合体、エチレン−プロピレ
ン−ジエン共重合体、塩素化ポリエチレン、ポリブテ
ン、ポリメチルペンテン等が挙げられる。
The polyolefin resin used in the present invention includes polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate. Examples thereof include copolymers, ethylene-propylene-diene copolymers, chlorinated polyethylene, polybutene, polymethylpentene and the like.

【0010】これ等のポリオレフィン系樹脂は、JIS
K 7210によるメルトイッデックス(MI)が、
0.05〜20のものが好ましい。樹脂のMIが低くす
ぎると、溶融粘度が高くなって高倍率の発泡体が得られ
ないばかりか、押出機での負荷が増大し押出しが難しく
なる。逆に、MIが高すぎると、発泡時の樹脂の伸びに
対する粘度が低く破泡しやすくなり、高倍率の発泡体が
得られない。
These polyolefin resins are JIS
Melt Idex (MI) by K 7210
It is preferably 0.05 to 20. If the MI of the resin is too low, the melt viscosity becomes too high to obtain a high-magnification foam, and the load on the extruder increases, making extrusion difficult. On the other hand, if the MI is too high, the viscosity against the elongation of the resin at the time of foaming is low and the cells are easily broken, so that a foam having a high magnification cannot be obtained.

【0011】これ等のポリオレフィン系樹脂の中でも、
特に、ポリプロピレン系樹脂(ポリプロピレン及びプロ
ピレン共重合体)は耐熱性及び機械的強度が優れている
ので好適である。その中でも長鎖分岐を有するポリプロ
ピレン系樹脂が好ましい。
Among these polyolefin resins,
In particular, polypropylene resins (polypropylene and propylene copolymer) are preferable because they have excellent heat resistance and mechanical strength. Among them, polypropylene resin having long chain branch is preferable.

【0012】長鎖分岐を有するポリプロピレン系樹脂
は、長鎖分岐のない慣用のポリプロピレン系樹脂に比べ
高い溶融張力(伸長粘度)を持っている。それゆえ、こ
のような長鎖分岐を有するポリプロピレン系樹脂を用い
ると、溶融時の粘度及び張力、伸びが発泡に適したもの
となり、発泡適温範囲が広くなる。
The polypropylene resin having a long chain branch has a higher melt tension (elongation viscosity) than a conventional polypropylene resin having no long chain branch. Therefore, when a polypropylene resin having such a long-chain branch is used, the viscosity, tension, and elongation at the time of melting are suitable for foaming, and the suitable foaming temperature range is widened.

【0013】特に、長鎖分岐を有するポリプロピレン系
樹脂において、伸長歪速度が0.01〜1.0(s-1
の範囲内で測定可能な任意の2点における伸長歪量A、
Bである時のそれぞれの溶融伸長粘度ηA (Pa・
s)、ηB (Pa・s)の比の最大値が、ηB /ηA
3.0〜100、且つB/A=10、A=0.1〜1.
0であるものが好ましい。
Particularly, in a polypropylene resin having a long chain branch, the elongation strain rate is 0.01 to 1.0 (s -1 ).
Amount of elongation strain A at any two points that can be measured within the range of
Melt elongation viscosity η A (Pa ·
s), the maximum value of the ratio of η B (Pa · s) is η B / η A =
3.0-100, and B / A = 10, A = 0.1-1.
Those of 0 are preferred.

【0014】因みに、長鎖分岐のない慣用のポリプロピ
レン系樹脂のηB /ηA は、一般に2.0以下である。
なお、樹脂の溶融伸長粘度は、市販の溶融伸長粘度計
(例えば、東洋精機社製のメルテンレオメーター)を用
いて簡単に測定することができる。
Incidentally, η B / η A of a conventional polypropylene resin having no long-chain branch is generally 2.0 or less.
The melt elongational viscosity of the resin can be easily measured by using a commercially available melt elongational viscometer (for example, a melten rheometer manufactured by Toyo Seiki Co., Ltd.).

【0015】この発明では、先ず、上記のポリオレフィ
ン系樹脂に、カップリング剤で表面処理した無機の気泡
核形成剤を混合して樹脂組成物を調製する。ここで、無
機の気泡核形成剤としては、従来より発泡体の製造に用
いられている無機の気泡核形成剤が使用される。
In the present invention, first, a resin composition is prepared by mixing the above polyolefin resin with an inorganic cell nucleating agent surface-treated with a coupling agent. Here, as the inorganic cell nucleating agent, an inorganic cell nucleating agent which has been conventionally used for producing a foam is used.

【0016】これ等の気泡核形成剤の例では、タルク、
炭酸カルシウム、クレー、カオリン、雲母、酸化マグネ
シウム、酸化亜鉛、カーボンブラック、ガラス、石英、
シリカ、アルミナ、ノバキュライト、水和アルミナ、ウ
ォラストナイト、鉄、酸化鉄、二酸化珪素、酸化チタン
等が挙げられる。
Examples of these cell nucleating agents include talc,
Calcium carbonate, clay, kaolin, mica, magnesium oxide, zinc oxide, carbon black, glass, quartz,
Examples thereof include silica, alumina, novaculite, hydrated alumina, wollastonite, iron, iron oxide, silicon dioxide and titanium oxide.

【0017】これ等の気泡核形成剤は、その平均粒径が
0.1〜500μm が好ましく、さらに好ましくは1〜
100μm である。平均粒径が大きすぎると、得られる
発泡体の気泡径が粗大となり、表面平滑性や断熱性が低
下し、逆に平均粒径が小さすぎると、樹脂に均一に分散
させることが難しくなり、均一微細な気泡の発泡体が得
られない。
The average particle size of these cell nucleating agents is preferably 0.1 to 500 μm, more preferably 1 to 500 μm.
It is 100 μm. If the average particle size is too large, the foam size of the resulting foam will be coarse, and the surface smoothness and heat insulating properties will decrease. Conversely, if the average particle size is too small, it will be difficult to uniformly disperse the resin in the resin. A foam having uniform fine cells cannot be obtained.

【0018】気泡核形成剤の表面を処理するカップリン
グ剤としては、主に、シラン系カップリング剤やチタネ
ート系チタン系カップリング剤が使用され、その他、ア
ルミ系カップリング剤やジルコニア系カップリング剤等
も使用することができる。
As the coupling agent for treating the surface of the bubble nucleation agent, a silane coupling agent or a titanate titanium coupling agent is mainly used. In addition, an aluminum coupling agent or a zirconia coupling agent is used. Agents and the like can also be used.

【0019】これ等のカップリング剤は、分子中に無機
物と反応性もしくは親和性を有する基と、有機物と反応
性もしくは親和性を有する基とを持っている。特に、無
機物と反応性もしくは親和性を有する基としては、アル
コキシ基、水酸基が好ましく、また、有機物と反応性も
しくは親和性を有する基としては、ビニル基、フェニル
基、アルキル基、(メタ)アクリル基が好ましく、これ
等の基にさらにグリシジル基、アミノ基、メルカプト基
等が存在していてもよい。
These coupling agents have a group having a reactivity or affinity with an inorganic substance and a group having a reactivity or affinity with an organic substance in the molecule. In particular, the group having reactivity or affinity with an inorganic substance is preferably an alkoxy group or a hydroxyl group, and the group having reactivity or affinity with an organic substance is a vinyl group, a phenyl group, an alkyl group or (meth) acryl. A group is preferable, and a glycidyl group, an amino group, a mercapto group and the like may be further present in these groups.

【0020】シラン系カップリング剤の例では、3−
〔N−アリル−N(2−アミノエチル)〕アミノプロピ
ルトリメトキシシラン、3−〔N−アリル−N−グリシ
ジル)アミノプロピルトリメトキシシラン、3−〔N−
アリル−N−メタクリル)アミノプロピルトリメトキシ
シラン、p−〔N−(2−アミノエチル)アミノメチ
ル〕フェネチルトリメトキシシラン、N−(2−アミノ
エチル)−3−アミノプロピルトリメトキシシラン、3
−アミノプロピルトリエトキシシラン、N,N−ビス
〔(メチルジメトキシシリル)プロピル〕アミン、N,
N−ビス〔3−(メチルジメトキシシリル)プロピル〕
エチレンジアミン、N,N−ビス〔(メチルジメトキシ
シリル)プロピル〕メタクリルアミド、N,N−ビス
〔3−(トリメトキシシリル)プロピル〕アミン、N,
N−ビス〔3−(トリメトキシシリル)プロピル〕エチ
レンジアミン、N,N−ビス〔3−(トリメトキシシリ
ル)プロピル〕メタクリルアミド、シクロヘキシルメチ
ルジメトキシシラン、3−(N,N−ジグリシジル)ア
ミノプロピルトリメトキシシラン、ジメチルジエトキシ
シラン、ジメチルジメトキシシラン、ジメチルエトキシ
シラン、ジメチルビニルエトキシシラン、ジメチルビニ
ルメトキシシラン、ジフェニルジエトキシシラン、ジフ
ェニルジメトキシシラン、ジフェニルシランジオール、
N−グリシジル−N,N−ビス〔3−(メチルジメトキ
シシリル)プロピル〕アミン、N−グリシジル−N,N
−ビス〔3−(トリメトキシシリル)プロピル〕アミ
ン、3−グリシドキシプロピルメチルジメトキシシラ
ン、3−グリシドキシプロピルトリメトキシシラン、ヘ
キシルトリメトキシシラン、3−メルカプトプロピルト
リメトキシシラン、3−メタクリロキシプロピルメチル
ジメトキシシラン、3−メタクリロキシプロピルトリメ
トキシシラン、メチルトリメトキシシラン、メチルジエ
トキシシラン、メチルジメトキシシラン、メチルトリス
(ジメチルシロキシ)シラン、メチルビニルジエトキシ
シラン、メチルビニルジメトキシシラン、オクタデシル
メチルジメトキシシラン、オクタデシルトリエトキシシ
シラン、オクタデシルトリメトキシシラン、フェニルト
リエトキシシラン、フェニルトリメトキシシラン、N−
〔(3−トリメトキシシリル)プロピル〕ジエチレント
リアミン、N−〔(3−トリメトキシシリル)プロピ
ル〕トリエチレンテトラミン、N−3−トリメトキシシ
リルプロピル−m−フェニレンジアミン、トリメチルシ
リルビニルビシクロ〔2.2.1〕ヘプラン、トリメチ
ルメトキシシラン、トリフェニルエトキシシラン、ビニ
ルトリエトキシシラン、ビニルトリス(2−メトキシエ
トキシ)シラン、ビニルトリメトキシシラン、β−
(3,4−エポキシシクロヘキシル)エチルトリメトキ
シシラン等が挙げられる。
Examples of silane coupling agents include 3-
[N-allyl-N (2-aminoethyl)] aminopropyltrimethoxysilane, 3- [N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- [N-
Allyl-N-methacryl) aminopropyltrimethoxysilane, p- [N- (2-aminoethyl) aminomethyl] phenethyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3
-Aminopropyltriethoxysilane, N, N-bis [(methyldimethoxysilyl) propyl] amine, N,
N-bis [3- (methyldimethoxysilyl) propyl]
Ethylenediamine, N, N-bis [(methyldimethoxysilyl) propyl] methacrylamide, N, N-bis [3- (trimethoxysilyl) propyl] amine, N,
N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N, N-bis [3- (trimethoxysilyl) propyl] methacrylamide, cyclohexylmethyldimethoxysilane, 3- (N, N-diglycidyl) aminopropyltri Methoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, dimethylethoxysilane, dimethylvinylethoxysilane, dimethylvinylmethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, diphenylsilanediol,
N-glycidyl-N, N-bis [3- (methyldimethoxysilyl) propyl] amine, N-glycidyl-N, N
-Bis [3- (trimethoxysilyl) propyl] amine, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, hexyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-methacryl Roxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, methyltrimethoxysilane, methyldiethoxysilane, methyldimethoxysilane, methyltris (dimethylsiloxy) silane, methylvinyldiethoxysilane, methylvinyldimethoxysilane, octadecylmethyldimethoxy Silane, octadecyltriethoxysilane, octadecyltrimethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, N-
[(3-Trimethoxysilyl) propyl] diethylenetriamine, N-[(3-trimethoxysilyl) propyl] triethylenetetramine, N-3-trimethoxysilylpropyl-m-phenylenediamine, trimethylsilylvinylbicyclo [2.2. 1] Heplan, trimethylmethoxysilane, triphenylethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, vinyltrimethoxysilane, β-
Examples include (3,4-epoxycyclohexyl) ethyltrimethoxysilane.

【0021】チタネート系カップリング剤の例では、イ
ソプロピルトリイソステアロイルチタネート、イソプロ
ピルトリス(ジオクチルパイロホスフェート)チタネー
ト、イソプロピルトリ(N−アミノエチル−アミノエチ
ル)チタネート、テトラオクチルビス(ジトリデシルホ
スファイト)チタネート、ビス(ジオクチルパイロホス
フェート)オキシアセテートチタネート、ビス(ジオク
チルパイロホスフェート)エチレンチタネート、イソプ
ロピルトリオクタノイルチタネート、イソプロピルジメ
タクリルイソステアロイルチタネート、イソプロピルト
リドデシルベンゼンスルホニルチタネート、イソプロピ
ルイソステアロイルジアクリルチタネート、イソプロピ
ルトリ(ジオクチルホスフェート)チタネート、イソプ
ロピルトリクミルフェニルチタネート、テトライソプロ
ピルビス(ジオクチルホスファイト)チタネート等が挙
げられる。
Examples of titanate coupling agents are isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate. , Bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl isostearoyl diacrylic titanate, isopropyl tri ( Dioctyl phosphate) titanate, isopropyl tricumyl Eniruchitaneto, tetraisopropyl bis (dioctyl phosphite) titanate.

【0022】アルミ系カップリング剤の例では、アセト
アルコキシアルミニウムジイソプロピレート等が挙げら
れる。
Examples of aluminum-based coupling agents include acetoalkoxyaluminum diisopropylate and the like.

【0023】上記気泡核形成剤の表面をカップリング剤
で処理するには、例えば、カップリング剤を水又はアル
コール、ヘキサン、トルエン等の有機溶剤に溶解し、こ
のカップリング剤溶液と気泡核形成剤とをヘンシェルミ
キサー或いはスーパーミキサーで混合攪拌し、その後加
熱乾燥することにより水又は有機溶剤を除去する方法が
採用される。
To treat the surface of the bubble nucleation agent with a coupling agent, for example, the coupling agent is dissolved in water or an organic solvent such as alcohol, hexane or toluene, and the coupling agent solution and bubble nucleation are formed. A method of removing water or an organic solvent by mixing and stirring the agent with a Henschel mixer or a super mixer and then heating and drying is employed.

【0024】その他、気泡核形成剤をVブレンダーで強
制攪拌しながら、これにカップリング剤溶液を乾燥空気
や窒素ガスで噴霧させる方法、或いは気泡核形成剤を加
熱し高温状態にある時にカップリング剤溶液を噴霧する
方法等も採用することができる。
In addition, while the cell nucleating agent is forcibly stirred by a V blender, the coupling agent solution is sprayed with dry air or nitrogen gas, or when the cell nucleating agent is heated and coupled at a high temperature. A method of spraying the agent solution can also be adopted.

【0025】この場合、気泡核形成剤100重量部に対
してカップリング剤0.1〜10重量部の割合で表面処
理するのが好ましい。カップリング剤の表面処理量が少
なすぎると、気泡核形成剤の表面が不完全に処理され、
樹脂と気泡核形成剤との親和性が劣り、押出発泡の際に
ガス抜けが多くなり高倍率に発泡させることが難しくな
る。逆に、カップリング剤の表面処理量が多すぎると、
表面処理量に比例した効果が上がらないので無駄であ
る。
In this case, it is preferable that the surface treatment is carried out at a ratio of 0.1 to 10 parts by weight of the coupling agent to 100 parts by weight of the cell nucleating agent. If the surface treatment amount of the coupling agent is too small, the surface of the cell nucleating agent will be incompletely treated,
The affinity between the resin and the cell nucleating agent is inferior, and gas is often released during extrusion foaming, making it difficult to foam at a high ratio. On the contrary, if the surface treatment amount of the coupling agent is too large,
This is wasteful because the effect proportional to the amount of surface treatment does not increase.

【0026】そして、ポリオレフィン系樹脂100重量
部に対して、上記のカップリング剤で表面処理した無機
の気泡核形成剤が0.01〜10重量部の範囲で含有さ
れるのが好ましい。表面処理した気泡核形成剤の含有量
が少なすぎると、得られる発泡体の気泡が粗大となり、
逆に、表面処理した気泡核形成剤の含有量が多すぎる
と、発泡時の樹脂の伸びが悪くなり破泡しやすくなり、
高倍率に発泡させることが難しくなる。
It is preferable that the inorganic cell nucleating agent surface-treated with the above coupling agent is contained in an amount of 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyolefin resin. When the content of the surface treated cell nucleating agent is too small, the cells of the resulting foam become coarse,
On the other hand, if the content of the surface-treated bubble nucleating agent is too large, the elongation of the resin at the time of foaming will be poor and the cells will be easily broken,
It becomes difficult to foam at a high magnification.

【0027】次ぎに、ポリオレフィン系樹脂に表面処理
した気泡核形成剤を含有させた樹脂組成物を、無機ガス
を発泡剤として押出発泡させる。樹脂組成物の押出発泡
には、一般に、ベントタイプの押出機が使用され、この
押出機のベント部から押出機内の溶融混練された樹脂組
成物中に発泡剤として無機ガスが圧入される。
Next, a resin composition containing a surface-treated cell nucleus forming agent in a polyolefin resin is extruded and foamed by using an inorganic gas as a foaming agent. A vent type extruder is generally used for extrusion foaming of a resin composition, and an inorganic gas is press-fitted as a foaming agent into the melt-kneaded resin composition in the extruder from a vent portion of the extruder.

【0028】その他、押出機の原料供給口を密閉してお
いて、原料供給口から無機ガスを樹脂中を圧入する方
法、有孔の押出スクリューを用い、その孔から無機ガス
を樹脂中を圧入する方法等も採用することができる。
In addition, a method in which the raw material supply port of the extruder is closed and the inorganic gas is pressed into the resin through the raw material supply port, or an extrusion screw having a hole is used, and the inorganic gas is pressed into the resin through the hole. It is also possible to adopt a method of doing so.

【0029】発泡剤である無機ガスとしては、炭酸ガ
ス、窒素、空気、酸素、ネオン、アルゴン等の単独ガス
或いは混合ガスが用いられる。特に、炭酸ガスはポリオ
レフィン系樹脂に対する溶解度が高いので、発泡剤とし
ては、炭酸ガス或いは炭酸ガスを含有する無機ガスが好
適である。
As the inorganic gas as a foaming agent, a single gas such as carbon dioxide gas, nitrogen, air, oxygen, neon, argon or a mixed gas is used. In particular, since carbon dioxide has a high solubility in polyolefin resin, carbon dioxide or an inorganic gas containing carbon dioxide is suitable as the foaming agent.

【0030】これ等の無機ガスの使用量(圧入量)は、
無機ガスの種類、ポリオレフィン系樹脂の種類、所望の
発泡倍率により異なるが、一般に押出機の注入部に取り
付けた圧力計の読みで、その圧入圧力が25〜150 k
g/cm2 の範囲になるように圧入される。
The use amount (press-fit amount) of these inorganic gases is
It depends on the type of inorganic gas, the type of polyolefin resin, and the desired expansion ratio, but generally, the reading of the pressure gauge attached to the injection part of the extruder shows that the press-fitting pressure is 25 to 150 k.
It is press-fitted in the range of g / cm 2 .

【0031】無機ガスの使用量が少なすぎると、発泡時
のガス膨張圧力が小さく均一で微細な気泡の発泡体が得
られない。逆に、無機ガスの使用量が多すぎると、発泡
時のガスの膨張圧力が高くなり気泡膜が破裂し、表面性
が悪くなるとともに、高倍率の発泡体が得られない。
When the amount of the inorganic gas used is too small, the gas expansion pressure at the time of foaming is small and a foam having uniform and fine bubbles cannot be obtained. On the other hand, if the amount of the inorganic gas used is too large, the expansion pressure of the gas at the time of foaming increases, the bubble film ruptures, the surface property deteriorates, and a high-magnification foam cannot be obtained.

【0032】無機ガスが圧入された溶融状態の樹脂組成
物は、押出機の先端に付設された押出金型の口金より所
望の形状に連続的に押出され、圧力が開放されて樹脂組
成物の発泡が行われる。押出金型の口金の形状は、一般
に、目的の発泡体の形状に相似した形状になされる。
The molten resin composition into which the inorganic gas is pressed is continuously extruded into a desired shape from the die of the extrusion die attached to the tip of the extruder, and the pressure is released to release the resin composition. Foaming takes place. The shape of the die of the extrusion die is generally similar to the shape of the target foam.

【0033】金型口金から押出される樹脂組成物の温度
は、樹脂の融点±10℃の範囲に調節するのが好まし
い。樹脂組成物の温度が低すぎる場合は、樹脂の粘度が
高すぎて押出しが難しくなり、逆に樹脂組成物の温度が
高すぎる場合は、樹脂の粘弾性が低くなって破泡しやす
くなり、高倍率に発泡させることが難しくなる。
The temperature of the resin composition extruded from the die die is preferably adjusted within the range of the melting point of the resin ± 10 ° C. If the temperature of the resin composition is too low, it is difficult to extrude the resin viscosity is too high, conversely, if the temperature of the resin composition is too high, the viscoelasticity of the resin becomes low and foam breakage easily occurs, It becomes difficult to foam at a high magnification.

【0034】こうして、押出口金から押出される樹脂組
成物は良好に発泡し、均一で微細な気泡を有し且つ高倍
率に発泡した独立気泡性のポリオレフィン系樹脂が製造
される。押出口金から押出される樹脂組成物の発泡体
は、その形状を良好に保つために、水や冷風等により冷
却するのが好ましい。
In this way, the resin composition extruded from the extrusion die satisfactorily foams, and a closed-cell polyolefin resin having uniform and fine cells and having a high expansion ratio is produced. The foam of the resin composition extruded from the extrusion die is preferably cooled with water, cold air, or the like in order to maintain its shape in good condition.

【0035】なお、ポリオレフィン系樹脂には、この発
明の効果が損なわれない範囲で、必要に応じて、難燃
剤、充填剤、抗酸化剤、難燃剤、顔料等の添加剤を配合
してもよい。このような添加剤は広く知られている。
If necessary, additives such as flame retardants, fillers, antioxidants, flame retardants, pigments, etc. may be added to the polyolefin resin as long as the effects of the present invention are not impaired. Good. Such additives are widely known.

【0036】例えば、難燃剤としては、ヘキサブロモビ
フェノールエーテル、デカブロモジフェニルエーテル等
の臭素系難燃剤、ポリ燐酸アンモニウム、トリメチルホ
スフェート、トリエチルホスフェート等の含燐系難燃
剤、メラミン誘導体、無機系難燃剤等がある。
For example, as the flame retardant, a brominated flame retardant such as hexabromobiphenol ether or decabromodiphenyl ether, a phosphorus-containing flame retardant such as ammonium polyphosphate, trimethyl phosphate, triethyl phosphate, a melamine derivative, an inorganic flame retardant, etc. There is.

【0037】[0037]

【作用】ポリオレフィン系樹脂とカップリング剤で表面
処理した無機の気泡核形成剤と無機ガスとを押出機に供
給し発泡させると、樹脂とカップリング剤との親和性が
増して、無機ガスが樹脂から早く分離するのが抑えられ
る。
[Function] When the polyolefin-based resin, the inorganic cell nucleating agent surface-treated with the coupling agent, and the inorganic gas are supplied to the extruder and foamed, the affinity between the resin and the coupling agent increases, and the inorganic gas Fast separation from resin is suppressed.

【0038】それゆえ、均一で微細な気泡を生成させる
ために、気泡核形成剤を使用しても、無機ガスが発泡に
寄与する前に樹脂から逃げる割合が少なくなり、少量の
気泡核形成剤により均一微細な気泡の生成が行われると
ともに、無機ガスが効率よく樹脂の発泡に使用されて樹
脂が高倍率に発泡する。
Therefore, even if the bubble nucleating agent is used to generate uniform and fine bubbles, the proportion of the inorganic gas escaping from the resin before contributing to the foaming is small, and a small amount of the bubble nucleating agent is used. As a result, uniform and fine bubbles are generated, and the inorganic gas is efficiently used for foaming the resin, so that the resin is foamed at a high magnification.

【0039】[0039]

【実施例】以下、この発明の実施例及び比較例を示す。実施例1 3−メタクリロキシプロピルトリメトキシシラン1重量
部を、エタノールと水との混合溶液(エタノール80重
量%含有)3重量部に添加し混合して、シランカップリ
ング剤溶液を調製した。
EXAMPLES Examples and comparative examples of the present invention will be shown below. Example 1 1 part by weight of 3-methacryloxypropyltrimethoxysilane was added to 3 parts by weight of a mixed solution of ethanol and water (containing 80% by weight of ethanol) and mixed to prepare a silane coupling agent solution.

【0040】平均粒径9μm のタルク(MS:日本タル
ク社製)100重量部をスーパーミキサーに投入し攪拌
しながら、これに上記のシランカップリング剤溶液4重
量部を数回に分けて数分間で添加し、さらに7分間スー
パーミキサーで攪拌し、その後トレーに取り出し150
℃で1時間乾燥して、カップリング剤処理タルクAを作
成した。
100 parts by weight of talc having an average particle size of 9 μm (MS: manufactured by Nippon Talc Co., Ltd.) was put into a super mixer and stirred, and 4 parts by weight of the above-mentioned silane coupling agent solution was divided into several parts for several minutes. , And stir in the super mixer for another 7 minutes, then remove to a tray for 150
It dried at 1 degreeC for 1 hour, and produced the coupling agent processing talc A.

【0041】低密度ポリエチレンA(MI2.8、融点
112.5℃)(ユカロンZH51:三菱油化社製)1
00重量部に、カップリング剤処理タルクA0.6重量
部を混合して樹脂組成物を調製し、この樹脂組成物を1
30℃の温度に設定されたベントタイプの押出機(口径
65mm、L/D=35)のホッパーから押出機の原料供
給口に供給し、樹脂組成物を押出機内で溶融混練した。
Low-density polyethylene A (MI2.8, melting point 112.5 ° C.) (Yukaron ZH51: manufactured by Mitsubishi Petrochemical Co., Ltd.) 1
A resin composition was prepared by mixing 0.6 part by weight of coupling agent-treated talc A with 100 parts by weight of the resin composition.
The resin composition was melt-kneaded in the extruder from a hopper of a vent type extruder (diameter 65 mm, L / D = 35) set at a temperature of 30 ° C., to the raw material supply port of the extruder.

【0042】そして、押出機のベント部より炭酸ガスを
75 kg/cm2 の圧力で注入し、これを押出機内で溶融
混練し、引き続いて108℃に設定された直径2mmの押
出口金から20 kg/hrの押出量で押出発泡させ、ロ
ッド状の発泡体を連続的に製造した。
Then, carbon dioxide gas was injected from the vent portion of the extruder at a pressure of 75 kg / cm 2 , and this was melt-kneaded in the extruder, and subsequently 20 from the extrusion die with a diameter of 2 mm set at 108 ° C. Extrusion foaming was performed at an extrusion rate of kg / hr to continuously produce a rod-shaped foam.

【0043】得られた発泡体の発泡倍率は22.5 cc/
g、独立気泡率は79.5%、平均気泡径は400μm
で、均一微細な気泡を有し独立気泡率の高い、高倍率に
発泡した発泡体であった。なお、独立気泡率は、空気比
較式比重計1000型(東京サイエンス社製)を用いて
測定した。その結果をまとめて表1に示した。
The expansion ratio of the obtained foam is 22.5 cc /
g, closed cell ratio 79.5%, average cell diameter 400 μm
It was a foam having uniform fine cells and a high closed cell ratio, which was expanded at a high magnification. The closed cell ratio was measured using an air comparison type hydrometer 1000 (manufactured by Tokyo Science Co., Ltd.). The results are summarized in Table 1.

【0044】実施例2 実施例1において、低密度ポリエチレンA(MI2.
8、融点112.5℃)(ユカロンZH51:三菱油化
社製)を、低密度ポリエチレンB(MI0.15、融点
109℃)(ユカロンZC30:三菱油化社製)に変更
した。それ以外は実施例1と同様に行った。その結果を
まとめて表1に示した。
Example 2 In Example 1, low density polyethylene A (MI2.
8, melting point 112.5 ° C.) (Yukaron ZH51: manufactured by Mitsubishi Petrochemical Co., Ltd.) was changed to low density polyethylene B (MI 0.15, melting point 109 ° C.) (Yukaron ZC30: manufactured by Mitsubishi Petrochemical Co., Ltd.). Other than that was performed like Example 1. The results are summarized in Table 1.

【0045】実施例3 実施例1において、低密度ポリエチレンA(MI2.
8、融点112.5℃)(ユカロンZH51:三菱油化
社製)を、ポリプロピレン(MI4、融点169℃)
(Pro−fax PF814:米国HIMONT社
製)100重量部に変更した。それ以外は実施例1と同
様に行った。その結果をまとめて表1に示した。
Example 3 In Example 1, low density polyethylene A (MI2.
8, melting point 112.5 ° C) (Yukaron ZH51: manufactured by Mitsubishi Petrochemical Co., Ltd.) using polypropylene (MI4, melting point 169 ° C)
(Pro-fax PF814: manufactured by HIMONT, USA) was changed to 100 parts by weight. Other than that was performed like Example 1. The results are summarized in Table 1.

【0046】なお、上記のポリプロピレンは長鎖分岐を
有し、溶融伸長粘度に関する測定値は、次の通りであっ
た。伸長歪速度:0.4s-1、伸長歪量A:0.86、
伸長歪量B:8.6、溶融伸長粘度ηA :21544P
a・s、溶融伸長粘度ηB :843190Pa・s、η
B /ηA :39.1。ここで、溶融伸長粘度は、メルテ
ンレオメーター(東洋精機社製)を用いて測定した。
The above polypropylene has long-chain branching, and the measured values regarding the melt extensional viscosity were as follows. Elongation strain rate: 0.4 s -1 , Elongation strain amount A: 0.86,
Elongation strain amount B: 8.6, melt elongation viscosity η A : 21544P
a · s, melt elongation viscosity η B : 843190 Pa · s, η
B / [eta] A : 39.1. Here, the melt extensional viscosity was measured using a melten rheometer (manufactured by Toyo Seiki Co., Ltd.).

【0047】実施例4 実施例1において、3−メタクリロキシプロピルトリメ
トキシシランを、ビニルトリス(2−メトキシエトキ
シ)シランに変更して、カップリング剤処理タルクBを
作成した。それ以外は実施例1と同様に行った。その結
果をまとめて表1に示した。
Example 4 Coupling agent-treated talc B was prepared by changing 3-methacryloxypropyltrimethoxysilane in Example 1 to vinyltris (2-methoxyethoxy) silane. Other than that was performed like Example 1. The results are summarized in Table 1.

【0048】比較例1 実施例1において、カップリング剤処理タルクAを全く
配合しなかった。それ以外は実施例1と同様に行った。
その結果をまとめて表1に示した。
Comparative Example 1 In Example 1, no talc A treated with a coupling agent was added. Other than that was performed like Example 1.
The results are summarized in Table 1.

【0049】比較例2 実施例1において、カップリング剤処理タルクAに替え
て、カップリング剤で表面処理しないタルク(無処理タ
ルク)0.6重量部を混合した。それ以外は実施例1と
同様に行った。その結果をまとめて表1に示した。
Comparative Example 2 In Example 1, the talc A treated with the coupling agent was replaced with 0.6 part by weight of talc not surface-treated with the coupling agent (untreated talc). Other than that was performed like Example 1. The results are summarized in Table 1.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】上述の通り、この発明は、ポリオレフィ
ン系樹脂とカップリング剤で表面処理した無機の気泡核
形成剤と無機ガスとを押出機に供給し発泡させるもの
で、それにより、無機ガス発泡剤による樹脂の発泡性が
向上し、均一微細な気泡を有し且つ独立気泡率が高く高
倍率に発泡したポリオレフィン系樹脂発泡体を容易に得
ることができる。
As described above, according to the present invention, the polyolefin-based resin, the inorganic cell nucleating agent surface-treated with the coupling agent, and the inorganic gas are supplied to the extruder for foaming. The foamability of the resin due to the foaming agent is improved, and it is possible to easily obtain a polyolefin-based resin foam having uniform fine cells, high closed cell ratio, and high-foaming ratio.

【0052】また、この発明によれば、発泡剤として無
機ガスを使用するので、安価で爆発の危険や環境問題な
どが発生せず、また、得られる発泡体には変色や臭気の
発生がなく、品質の低下がないという利点がある。
Further, according to the present invention, since the inorganic gas is used as the foaming agent, it is inexpensive and does not cause the danger of explosion or environmental problems, and the obtained foam is free from discoloration or odor. The advantage is that there is no deterioration in quality.

【0053】そして、この発明によれば、フィルム、シ
ート、ボード、管状、棒状等の各種の形状の長尺のポリ
オレフィン系樹脂発泡体が得られ、断熱材、緩衝材、防
音材、浮子材、シール材など広汎な用途に使用すること
ができる。
According to the present invention, a long polyolefin resin foam having various shapes such as a film, a sheet, a board, a tube, and a rod can be obtained, and a heat insulating material, a cushioning material, a soundproofing material, a floating material, It can be used for a wide range of applications such as sealing materials.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系樹脂とカップリング剤
で表面処理した無機の気泡核形成剤と無機ガスとを押出
機に供給し発泡させることを特徴とするポリオレフィン
系樹脂発泡体の製造方法。
1. A method for producing a polyolefin resin foam, which comprises supplying an polyolefin-based resin, an inorganic cell nucleating agent surface-treated with a coupling agent, and an inorganic gas to an extruder for foaming.
JP10922693A 1993-05-11 1993-05-11 Method for producing polyolefin resin foam Expired - Fee Related JP3345093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10922693A JP3345093B2 (en) 1993-05-11 1993-05-11 Method for producing polyolefin resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10922693A JP3345093B2 (en) 1993-05-11 1993-05-11 Method for producing polyolefin resin foam

Publications (2)

Publication Number Publication Date
JPH06322167A true JPH06322167A (en) 1994-11-22
JP3345093B2 JP3345093B2 (en) 2002-11-18

Family

ID=14504808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10922693A Expired - Fee Related JP3345093B2 (en) 1993-05-11 1993-05-11 Method for producing polyolefin resin foam

Country Status (1)

Country Link
JP (1) JP3345093B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028111A1 (en) * 1997-11-28 1999-06-10 Jsp Corporation Blow-molded foam and process for producing the same
WO2001005569A1 (en) * 1999-07-16 2001-01-25 Wavin B.V. Method for forming an article comprising closed-cell microfoam from thermoplastic
JP2009105473A (en) * 2002-12-10 2009-05-14 Nikon Corp Exposure apparatus, device manufacturing method, and exposure system
JP2013216912A (en) * 2013-07-25 2013-10-24 Nitto Denko Corp Resin foam
JP2013234332A (en) * 2013-07-25 2013-11-21 Nitto Denko Corp Resin foam
JP2015532945A (en) * 2012-10-26 2015-11-16 ベリー プラスチックス コーポレイション Polymer materials for insulated containers
US9975687B2 (en) 2011-06-17 2018-05-22 Berry Plastics Corporation Process for forming an insulated container having artwork
US10023710B2 (en) 2011-08-31 2018-07-17 Berry Plastics Corporation Polymeric material for an insulated container
US10046880B2 (en) 2013-03-14 2018-08-14 Berry Plastics Corporation Container
US10351332B2 (en) 2011-06-17 2019-07-16 Berry Plastics Corporation Insulated sleeve for a container
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container
US10906725B2 (en) 2011-06-17 2021-02-02 Berry Plastics Corporation Insulated container
US11091311B2 (en) 2017-08-08 2021-08-17 Berry Global, Inc. Insulated container and method of making the same
US11091600B2 (en) 2013-08-16 2021-08-17 Berry Plastics Corporation Polymeric material for an insulated container
WO2023191081A1 (en) * 2022-03-31 2023-10-05 積水化学工業株式会社 Polyolefin resin foam and molded article
US12145303B2 (en) 2015-03-04 2024-11-19 Berry Plastics Corporation Polymeric material for container
US12275180B2 (en) 2013-08-26 2025-04-15 Berry Plastics Corporation Polymeric material for container

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028111A1 (en) * 1997-11-28 1999-06-10 Jsp Corporation Blow-molded foam and process for producing the same
WO2001005569A1 (en) * 1999-07-16 2001-01-25 Wavin B.V. Method for forming an article comprising closed-cell microfoam from thermoplastic
JP2009105473A (en) * 2002-12-10 2009-05-14 Nikon Corp Exposure apparatus, device manufacturing method, and exposure system
US10351332B2 (en) 2011-06-17 2019-07-16 Berry Plastics Corporation Insulated sleeve for a container
US12139319B2 (en) 2011-06-17 2024-11-12 Berry Plastics Corporation Insulated container
US10906725B2 (en) 2011-06-17 2021-02-02 Berry Plastics Corporation Insulated container
US9975687B2 (en) 2011-06-17 2018-05-22 Berry Plastics Corporation Process for forming an insulated container having artwork
US10023710B2 (en) 2011-08-31 2018-07-17 Berry Plastics Corporation Polymeric material for an insulated container
US10428195B2 (en) 2011-08-31 2019-10-01 Berry Plastics Corporation Polymeric material for an insulated container
US11155689B2 (en) 2011-08-31 2021-10-26 Berry Plastics Corporation Polymeric material for an insulated container
US10011696B2 (en) 2012-10-26 2018-07-03 Berry Plastics Corporation Polymeric material for an insulated container
JP2015532945A (en) * 2012-10-26 2015-11-16 ベリー プラスチックス コーポレイション Polymer materials for insulated containers
US10046880B2 (en) 2013-03-14 2018-08-14 Berry Plastics Corporation Container
US10633139B2 (en) 2013-03-14 2020-04-28 Berry Plastics Corporation Container
JP2013234332A (en) * 2013-07-25 2013-11-21 Nitto Denko Corp Resin foam
JP2013216912A (en) * 2013-07-25 2013-10-24 Nitto Denko Corp Resin foam
US12091523B2 (en) 2013-08-16 2024-09-17 Berry Plastics Corporation Insulated container
US11091600B2 (en) 2013-08-16 2021-08-17 Berry Plastics Corporation Polymeric material for an insulated container
US12275180B2 (en) 2013-08-26 2025-04-15 Berry Plastics Corporation Polymeric material for container
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container
US12145303B2 (en) 2015-03-04 2024-11-19 Berry Plastics Corporation Polymeric material for container
US11214429B2 (en) 2017-08-08 2022-01-04 Berry Global, Inc. Insulated multi-layer sheet and method of making the same
US11091311B2 (en) 2017-08-08 2021-08-17 Berry Global, Inc. Insulated container and method of making the same
JPWO2023191081A1 (en) * 2022-03-31 2023-10-05
WO2023191081A1 (en) * 2022-03-31 2023-10-05 積水化学工業株式会社 Polyolefin resin foam and molded article

Also Published As

Publication number Publication date
JP3345093B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JPH06322167A (en) Production of polyolefinic resin foam
EP0910605B1 (en) Cross-linked foamable compositions of silane-grafted, essentially linear polyolefins blended with polypropylene
HU216158B (en) Extruded synthetic resin foam and process for producing same
KR102210037B1 (en) Polyolefin-based cable compound formulation for improved foamability and enhanced processability
US20070149630A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
EP1440119A2 (en) Insulating foam composition
EP2285872B1 (en) Physically blown polyethylene foam
JPH0952983A (en) Expandable resin composition for highly expanded insulating polyethylene and electric wire covered with highly expanded insulating polyethylene produced by covering therewith
CN115466492B (en) Flame-retardant polyester foam material and preparation method thereof
CN101959944A (en) flame retardant composite foam
US6242502B1 (en) Foamed thermo-elastic article
US5902858A (en) Modified polypropylene resin, foam made thereof and processes for the preparation of them
US6548562B2 (en) Foamed thermo-elastic article
JP2008274155A (en) Polypropylene resin foam and method for producing the same
US3882209A (en) Method for extrusion coating electric wires with a foamed polyolefin resin involving reduced die-plateout
JP4370182B2 (en) Rubber composition and weather strip for automobile using the rubber composition
EP1308475A2 (en) Physically foamed fine cellular polyethylene foam
KR100711609B1 (en) Composition of Thermoplastic Elastomer Foam
CN1749322A (en) Silicone rubber sponge composition and silicone rubber sponge
TWI886131B (en) Polypropylene resin composition containing ultra-high molecular weight propylene (co)polymer
JP2000007855A (en) Polypropylene resin composition for heterogeneous extrusion molding and heterogeneous extrusion molded material
EP0961808A1 (en) Foamed thermo-elastic article
JPH07268121A (en) Polypropylene-based resin composition for expansion and expanded polypropylene-based resin sheet using the same
RU2223983C2 (en) Composition for manufacturing chemically filled polyolefin foams
JPH0611866B2 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees