[go: up one dir, main page]

JPH06322517A - Wear resistant amorphous hard film and its production - Google Patents

Wear resistant amorphous hard film and its production

Info

Publication number
JPH06322517A
JPH06322517A JP6821594A JP6821594A JPH06322517A JP H06322517 A JPH06322517 A JP H06322517A JP 6821594 A JP6821594 A JP 6821594A JP 6821594 A JP6821594 A JP 6821594A JP H06322517 A JPH06322517 A JP H06322517A
Authority
JP
Japan
Prior art keywords
film
gas
partial pressure
nitrogen
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6821594A
Other languages
Japanese (ja)
Other versions
JP3027502B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hiroshi Yamagata
寛 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Y K K KK
Original Assignee
Y K K KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Y K K KK filed Critical Y K K KK
Priority to JP6068215A priority Critical patent/JP3027502B2/en
Publication of JPH06322517A publication Critical patent/JPH06322517A/en
Application granted granted Critical
Publication of JP3027502B2 publication Critical patent/JP3027502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】 【目的】 緻密で基材に対する密着性に優れ、折り曲げ
に強く、高い硬度を示す耐摩耗性非晶質硬質膜を比較的
簡単な工程で形成する。 【構成】 一般式:Alab (ここで、MはTi,T
a,V,Cr,Zr,Nb,Mo,Hf,W,Fe,C
o,Ni,Cu及びMnよりなる群から選ばれた少なく
とも1種の元素、a及びbはそれぞれ原子%を示し、6
0at%≦a≦98.5at%、1.5at%≦b≦4
0at%、但し、a+b=100at%)で表わされる
組成を有する蒸発源材料を用い、窒素、酸素又は炭素系
反応ガスを供給しながら、スパッタ法又はイオンプレー
ティング法などの物理的気相蒸着法により所定量の反応
ガスを含む不活性ガス雰囲気中で基材上に非晶質膜を形
成する。
(57) [Summary] [Objective] An abrasion-resistant amorphous hard film that is dense, has excellent adhesion to a substrate, is resistant to bending, and has high hardness is formed by a relatively simple process. [Structure] General formula: Al a M b (where M is Ti, T
a, V, Cr, Zr, Nb, Mo, Hf, W, Fe, C
at least one element selected from the group consisting of o, Ni, Cu, and Mn, a and b each represent atomic%;
0 at% ≦ a ≦ 98.5 at%, 1.5 at% ≦ b ≦ 4
0 at%, where a + b = 100 at%) is used, and a physical vapor deposition method such as a sputtering method or an ion plating method is used while supplying a nitrogen, oxygen or carbon-based reaction gas using an evaporation source material. Thus, an amorphous film is formed on the base material in an inert gas atmosphere containing a predetermined amount of reaction gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性非晶質硬質膜
及びその製造方法に関し、さらに詳しくは、基材を予熱
することなく、基材に対する密着性が良好で、高い硬度
を有する緻密な耐摩耗性非晶質硬質膜を得る方法及びそ
の組成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasion-resistant amorphous hard film and a method for producing the same, and more specifically, it has good adhesion to a base material and high hardness without preheating the base material. The present invention relates to a method for obtaining a dense wear-resistant amorphous hard film and its composition.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】機械部品
や工具などの摩耗や擦り傷を防ぐための耐摩耗コーティ
ング材料としては、TiN,TiC,WC,Al−Ti
−N系等の材料が用いられている。そして、これらの膜
は、一般に反応性スパッタ法やイオンプレーティング法
などの物理的気相蒸着法により成膜され、耐摩耗膜とし
て利用されているが、高い硬度を得るためには膜中の窒
素濃度又は炭素濃度をある程度高くする必要がある。し
かしながら、このことによって、膜には処理後に残留応
力が発生することがある。また、形成された膜は緻密で
なければならず、しかも基材との密着性に優れたもので
なければならない。そのために、一般に基材を予熱して
から成膜する方法がとられている。しかしながら、この
ような処理を施しても膜は柱状構造を示しており、機械
的に脆くなるという問題がある。またこの時、予熱は少
なくとも200℃以上で行われるため、基材として用い
ることのできる材質には制限があり、例えばアルミ合金
のような、予熱によって機械的特性が著しく低下するよ
うな材料を基材として用いることはできなかった。
2. Description of the Related Art TiN, TiC, WC, and Al-Ti are wear resistant coating materials for preventing wear and abrasion of machine parts and tools.
-N-based material or the like is used. And, these films are generally formed by a physical vapor deposition method such as a reactive sputtering method or an ion plating method and are used as abrasion resistant films, but in order to obtain high hardness, It is necessary to increase the nitrogen concentration or carbon concentration to some extent. However, this can cause residual stresses in the film after processing. Further, the formed film must be dense and have excellent adhesion to the substrate. Therefore, generally, a method of preheating a base material and then forming a film is adopted. However, even if such a treatment is performed, the film has a columnar structure, and there is a problem that the film becomes mechanically brittle. Further, at this time, since preheating is performed at least at 200 ° C. or higher, there is a limitation on the material that can be used as the base material, and a material such as an aluminum alloy whose mechanical properties are remarkably deteriorated by preheating is used. It could not be used as a material.

【0003】また従来、高強度、高耐熱性などの優れた
特性を有する非晶質合金材料が液体急冷法等によって製
造されている。特に、特開平1−275732号公報に
開示されている、液体急冷法によって得られるアルミニ
ウム基非晶質合金材料は、高強度、高耐熱性、耐食性な
どに優れた合金である。しかしながら、液体急冷法によ
って得られる非晶質合金材料は、金属材料の中では優れ
た強度などの特性を示すが、セラミックスなどの材料と
比べると低く、改善の余地を残している。一方、セラミ
ックス材料は強度、硬度等の点で優れた特性を示すが、
高い靭性が要求される材料としては使用し難い。特に、
薄膜として使用する場合、上記高い靭性が要求される。
Further, conventionally, an amorphous alloy material having excellent characteristics such as high strength and high heat resistance has been manufactured by a liquid quenching method or the like. In particular, the aluminum-based amorphous alloy material obtained by the liquid quenching method disclosed in JP-A-1-275732 is an alloy excellent in high strength, high heat resistance and corrosion resistance. However, the amorphous alloy material obtained by the liquid quenching method has characteristics such as excellent strength among metal materials, but it is lower than materials such as ceramics and leaves room for improvement. On the other hand, ceramic materials show excellent characteristics in terms of strength and hardness,
It is difficult to use as a material that requires high toughness. In particular,
When used as a thin film, the above high toughness is required.

【0004】本発明は、上記のような従来技術の問題を
解決するためになされたものであり、非晶質構造を有
し、基材に対する密着性に優れ、膜全体としてはセラミ
ックス材料の欠点である脆性が緩和された、高い硬度を
有する緻密な耐摩耗性非晶質硬質膜を提供しようとする
ものである。さらに本発明の目的は、コーティングに先
立ち基材を予熱することなく膜を形成しても、基材上に
形成する膜がそれら界面でのクラックや剥離発生を招く
ことなく、良好に密着する緻密な非晶質硬質膜を簡単な
工程で安価に製造し得る方法を提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, has an amorphous structure, is excellent in adhesion to a substrate, and has drawbacks of a ceramic material as a whole film. The present invention is intended to provide a dense wear-resistant amorphous hard film having a high hardness with reduced brittleness. Further, the object of the present invention is to provide a dense film that adheres well without causing cracks or peeling at their interfaces even if a film is formed without preheating the substrate prior to coating. Another object of the present invention is to provide a method capable of inexpensively producing a stable amorphous hard film by a simple process.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、一般式:(Alab100-cc
(ここで、MはTi,Ta,V,Cr,Zr,Nb,
Mo,Hf,W,Fe,Co,Ni,Cu及びMnより
なる群から選ばれた少なくとも1種の元素、XはN,
O,Cよりなる群から選ばれた1種の元素、a、b及び
cはそれぞれ原子%を示し、60at%≦a≦98.5
at%、1.5at%≦b≦40at%、0at%<c
≦65at%、但し、a+b=100at%)で表わさ
れる組成を有し、非晶質構造を示し、かつ高い硬度を有
する耐摩耗性非晶質硬質膜が提供される。さらに本発明
によれば、前記非晶質薄膜を提供すべく、物理的気相蒸
着法により、一般式:Alab (ここで、M,a及び
bは前記した意味と同じ)で表わされる組成を有する蒸
発源材料を用い、窒素、酸素又は炭素を含む反応ガスを
供給しながら、所定量の反応ガスを含む不活性ガス雰囲
気中で基材上に非晶質膜を形成することを特徴とする耐
摩耗性非晶質硬質膜の製造方法が提供される。
In order to achieve the above object, according to the present invention, the general formula: (Al a M b ) 100-c X c
(Where M is Ti, Ta, V, Cr, Zr, Nb,
At least one element selected from the group consisting of Mo, Hf, W, Fe, Co, Ni, Cu and Mn, X is N,
One element selected from the group consisting of O and C, a, b and c each represent atomic%, and 60 at% ≦ a ≦ 98.5.
at%, 1.5 at% ≦ b ≦ 40 at%, 0 at% <c
There is provided a wear-resistant amorphous hard film having a composition represented by ≦ 65 at%, where a + b = 100 at%), showing an amorphous structure, and having high hardness. Further, according to the present invention, in order to provide the amorphous thin film, it is represented by the general formula: Al a M b (where M, a and b have the same meanings as described above) by physical vapor deposition. It is possible to form an amorphous film on a substrate in an inert gas atmosphere containing a predetermined amount of a reaction gas while supplying a reaction gas containing nitrogen, oxygen or carbon by using an evaporation source material having a composition described below. A method of making a featured wear resistant amorphous hard film is provided.

【0006】[0006]

【発明の作用及び態様】本発明は、物理的気相蒸着法、
特にスパッタ法又はイオンプレーティング法により基材
上に成膜を行うに際して、ターゲット(蒸発材料)とし
て、不活性ガス雰囲気中で反応ガスを供給しながら膜を
形成した時に非晶質となる組成の材料を用いることを特
徴とする。すなわち、一般式:Alab (ここで、M
はTi,Ta,V,Cr,Zr,Nb,Mo,Hf,
W,Fe,Co,Ni,Cu及びMnよりなる群から選
ばれた少なくとも1種の元素、a及びbはそれぞれ原子
%を示し、60at%≦a≦98.5at%、1.5a
t%≦b≦40at%、但し、a+b=100at%)
で表わされる組成を有する蒸発源材料を用い、窒素、酸
素又は炭素を含む反応ガスの供給量を、用いた蒸発源材
料に応じて雰囲気中の反応ガス分圧を非晶質膜を形成し
得る範囲内で分圧一定に、又は連続的にもしくは段階的
に変化するように制御しながら、物理的気相蒸着法、特
にスパッタ法又はイオンプレーティング法により所定量
の反応ガスを含む不活性ガス雰囲気中で基材上に成膜を
行い、非晶質膜を形成するものである。このような本発
明の方法においては、一般に反応ガス分圧0Paでは結
晶質の膜が形成されるが、反応ガス分圧の増大と共に非
晶質の膜となり、また硬度も増すことが見い出された。
従って、非晶質膜を形成し得る反応ガス分圧の雰囲気中
で成膜を行うことにより、非晶質構造を持ち、極めて緻
密で基材との密着性に優れると共に、セラミックス材料
の欠点である脆性を示さない硬度の高い膜を作製でき
る。従ってまた、結晶性高硬度膜で起きる粒界での破壊
という欠点も改善できる。
The present invention relates to a physical vapor deposition method,
In particular, when a film is formed on a substrate by a sputtering method or an ion plating method, a composition that becomes amorphous when a film is formed while supplying a reaction gas in an inert gas atmosphere as a target (evaporating material) It is characterized by using a material. That is, the general formula: Al a M b (where M
Is Ti, Ta, V, Cr, Zr, Nb, Mo, Hf,
At least one element selected from the group consisting of W, Fe, Co, Ni, Cu and Mn, a and b each represent atomic%, and 60 at% ≦ a ≦ 98.5 at%, 1.5a
t% ≦ b ≦ 40 at%, where a + b = 100 at%)
An evaporation source material having a composition represented by the following formula can be used to supply an amount of a reaction gas containing nitrogen, oxygen or carbon, and a partial pressure of the reaction gas in the atmosphere depending on the evaporation source material used to form an amorphous film. An inert gas containing a predetermined amount of reaction gas by physical vapor deposition method, particularly sputtering method or ion plating method while controlling the partial pressure to be constant within the range or to change continuously or stepwise. An amorphous film is formed by forming a film on a base material in an atmosphere. In such a method of the present invention, a crystalline film is generally formed at a reaction gas partial pressure of 0 Pa, but it has been found that as the reaction gas partial pressure increases, it becomes an amorphous film and the hardness also increases. .
Therefore, by forming the film in an atmosphere of a partial pressure of a reaction gas capable of forming an amorphous film, it has an amorphous structure, is extremely dense, and has excellent adhesion to a substrate. A film with high hardness that does not exhibit a certain brittleness can be produced. Therefore, the defect of breakage at the grain boundary occurring in the crystalline high hardness film can also be improved.

【0007】本発明で用いる蒸発源材料の他方の成分、
すなわちTi,Ta,V,Cr,Zr,Nb,Mo,H
f,W,Fe,Co,Ni,Cu及びMnなどの遷移金
属は、Alマトリックス中の拡散能が小さい元素であ
り、種々の準安定又は安定な金属間化合物を形成し、微
細結晶組織の高温での安定化に貢献する。これらの金属
はまた、窒化物等として導電性を有すること、もしくは
耐食性に優れる材料としても知られている。上記蒸着手
段としては、スパッタリング法やイオンプレーティング
法などを挙げることができる。また、蒸発源としては一
つの蒸発源に必要組成を含む化合物又は混合物であって
もよいし、あるいは複数の蒸発源を同時に用いる場合、
個々の蒸発源が単一組成であってもよいし、また前記蒸
発源の組合せであっても良い。
The other component of the evaporation source material used in the present invention,
That is, Ti, Ta, V, Cr, Zr, Nb, Mo, H
Transition metals such as f, W, Fe, Co, Ni, Cu, and Mn are elements having a small diffusivity in the Al matrix, form various metastable or stable intermetallic compounds, and have a high temperature of a fine crystal structure. Contribute to stabilization in. These metals are also known to have conductivity as a nitride or the like, or a material having excellent corrosion resistance. Examples of the vapor deposition means include a sputtering method and an ion plating method. Further, the evaporation source may be a compound or mixture containing the necessary composition in one evaporation source, or when using a plurality of evaporation sources at the same time,
Each evaporation source may have a single composition, or a combination of the above evaporation sources.

【0008】蒸着中の処理装置内への導入ガス中の反応
ガス濃度としては、不活性ガスに対する反応ガスの割合
が2〜35容量%の範囲が好ましく、この範囲外では結
晶質粒子が析出し易くなるので好ましくない。また、形
成する膜は、非晶質膜中の反応ガス成分の濃度が全体的
に均一な組成であってもよいし、あるいは基材と接する
膜の組成と膜表面の組成に違いがあり、膜厚方向に連続
的にもしくは段階的に変化していても良い。すなわち、
不活性ガス(Ar,He,Ne,Xe,Kr等)を導入
してガス圧(全圧)を0.6〜1.2Paの低圧に保っ
た蒸着装置内に、反応ガス(窒素ガス、アンモニアガ
ス、メタンガス等)の供給量を分圧一定に制御して成膜
することにより、膜中の反応ガス成分の濃度が全体的に
実質的に均一な組成の非晶質硬質膜が得られ、また反応
ガスの供給量をその分圧が連続的もしくは段階的に変化
するように制御することにより、非晶質膜中の反応ガス
成分の濃度が膜表面に向って増大しており、膜表面部の
硬度がより高い非晶質硬質膜を得ることもできる。な
お、本発明の方法は、基材温度を200℃以上にできな
い材質の高分子材料、アルミなどの基材にコーティング
する場合に特に有用であるが、他の材質の基材にも適用
できることは勿論である。
The reaction gas concentration in the gas introduced into the processing apparatus during vapor deposition is preferably such that the ratio of the reaction gas to the inert gas is in the range of 2 to 35% by volume. Outside this range, crystalline particles precipitate. It is not preferable because it becomes easy. Further, the film to be formed may have a composition in which the concentration of the reaction gas component in the amorphous film is uniform throughout, or there is a difference in the composition of the film in contact with the substrate and the composition of the film surface, It may change continuously or stepwise in the film thickness direction. That is,
An inert gas (Ar, He, Ne, Xe, Kr, etc.) was introduced to keep the gas pressure (total pressure) at a low pressure of 0.6 to 1.2 Pa. By controlling the supply amount of gas, methane gas, etc.) at a constant partial pressure to form a film, an amorphous hard film having a composition in which the concentration of the reaction gas component in the film is substantially uniform throughout is obtained, Also, by controlling the supply amount of the reaction gas so that the partial pressure thereof changes continuously or stepwise, the concentration of the reaction gas component in the amorphous film increases toward the film surface. It is also possible to obtain an amorphous hard film having a higher part hardness. The method of the present invention is particularly useful when coating a substrate such as a polymeric material or aluminum whose material temperature cannot exceed 200 ° C., but is not applicable to substrates of other materials. Of course.

【0009】[0009]

【実施例】以下、本発明の実施例を示して本発明につい
て具体的に説明するが、本発明が下記実施例に限定され
るものでないことはもとよりである。
EXAMPLES The present invention will be specifically described below with reference to examples of the present invention, but it goes without saying that the present invention is not limited to the following examples.

【0010】実施例1 (80at%Al−20at%Ti)からなるターゲッ
トをマグネトロンスパッタ蒸着装置内の電極(接地電
位)に対向させて配置し、電極とターゲットの間にガラ
ス板又はアルミ板を被蒸着基板として配置した。前記ス
パッタ装置内を真空ポンプにて排気した後、アルゴンガ
スを供給し、装置内のガス圧(全圧)を1Paとした。
コーティングに先立ち、ガラス基板又はアルミ基板を固
定している治具に高周波電源をつなぎ、ガラス基板又は
アルミ基板をそれぞれスパッタエッチングした。つい
で、ターゲットに直流電源をつなぎ、予備放電を行なっ
た。なおこの時、予備放電によるガラス基板又はアルミ
基板へのコーティングがなされないようにした。この予
備放電は、ターゲット表面に吸着したガスや湿気を取り
のぞくことが目的である。上記予備放電の後、シャッタ
ーを移動させ、ガラス基板又はアルミ基板に対するコー
ティングを開始した。但し、コーティングに先立ち基板
を予備加熱することは行なわなかった。コーティング
中、反応ガスである窒素ガスは、電気的に制御できる流
量調節計によって、装置内の窒素分圧が0Paから0.
129Paの範囲内の所定の分圧となるように制御し
た。装置内の圧力変化は、排気ポンプと装置の間に配設
されたバルブによって圧力1Paとなるように調整し
た。
A target made of Example 1 (80 at% Al-20 at% Ti) is arranged facing an electrode (ground potential) in a magnetron sputter vapor deposition apparatus, and a glass plate or an aluminum plate is covered between the electrode and the target. It was arranged as a vapor deposition substrate. After exhausting the inside of the sputtering apparatus with a vacuum pump, argon gas was supplied, and the gas pressure (total pressure) inside the apparatus was set to 1 Pa.
Prior to coating, a high frequency power source was connected to a jig fixing a glass substrate or an aluminum substrate, and the glass substrate or the aluminum substrate was sputter-etched, respectively. Then, a direct current power supply was connected to the target to carry out preliminary discharge. At this time, the glass substrate or the aluminum substrate was not coated by the preliminary discharge. The purpose of this preliminary discharge is to remove the gas and moisture adsorbed on the target surface. After the preliminary discharge, the shutter was moved to start coating on the glass substrate or the aluminum substrate. However, the substrate was not preheated prior to coating. During the coating, the nitrogen gas which is a reaction gas has a nitrogen partial pressure within the apparatus from 0 Pa to 0.
The pressure was controlled so as to be a predetermined partial pressure within the range of 129 Pa. The pressure change in the device was adjusted so that the pressure was 1 Pa by the valve provided between the exhaust pump and the device.

【0011】図1は、窒素分圧を一定に保持して作製し
た各薄膜のX線回折による分析結果である。なお、各膜
のX線回折図は、解り易いように縦座標軸の強さ方向に
分圧順にシフトしてまとめて示した。図1から明らかな
ように、窒素ガスを導入しないで得られた膜は結晶質と
なったが、窒素分圧0.021Pa、0.038Pa、
0.055Pa、0.072Pa、0.087Paで非
晶質膜を得ることができた。この窒素分圧0.021P
a〜0.102Paにおいて作製された膜中の窒素濃度
は、12at%〜38at%であった。即ち、式(Al
80Ti20100- cc において12at%≦c≦38a
t%であり、12at%は窒素分圧0.021Pa,3
8at%は窒素分圧0.102Paにおいて作製された
膜中の窒素濃度を表わす(以下、同じ)。なお、窒素割
合は、測定に供した膜の重量を求め、これをAl,T
i,Nの総重量とし、EPMAによってAl,Tiの量
at%を求めた後、計算によって膜中のN量at%を得
た。また、これらの非晶質膜の微小硬度計によって測定
したヌープ硬さを図2に示す。窒素分圧の増加と共に硬
度は増加し、窒素分圧0.072Paでは911Hkと
なった。
FIG. 1 shows the results of X-ray diffraction analysis of each thin film produced with the nitrogen partial pressure kept constant. The X-ray diffraction patterns of the respective films are collectively shown by shifting in the direction of partial pressure in the strength direction of the ordinate axis for easy understanding. As is clear from FIG. 1, the film obtained without introducing nitrogen gas became crystalline, but the nitrogen partial pressure was 0.021 Pa, 0.038 Pa,
An amorphous film could be obtained at 0.055 Pa, 0.072 Pa, and 0.087 Pa. This nitrogen partial pressure 0.021P
The nitrogen concentration in the film produced at a-0.102 Pa was 12 at% to 38 at%. That is, the formula (Al
80 Ti 20 ) 100- c Nc 12 at% ≤ c ≤ 38a
t% and 12 at% are nitrogen partial pressure 0.021 Pa, 3
8 at% represents the nitrogen concentration in the film produced at a nitrogen partial pressure of 0.102 Pa (hereinafter the same). In addition, the nitrogen ratio is obtained by obtaining the weight of the film used for the measurement,
Using the total weight of i and N, the amount at% of Al and Ti was determined by EPMA, and then the amount of N in the film at% was obtained by calculation. The Knoop hardness of these amorphous films measured by a micro hardness meter is shown in FIG. The hardness increased with an increase in the nitrogen partial pressure, and became 911 Hk when the nitrogen partial pressure was 0.072 Pa.

【0012】実施例2 (89at%Al−11at%Ti)からなるターゲッ
トを用いる以外は実施例1と同様にして基板上に成膜し
た。窒素分圧を一定に保持して作製した各薄膜のX線回
折による分析結果を図3に示す。図3から明らかなよう
に、窒素ガスを導入しないで得られた膜は結晶質となっ
たが、窒素分圧0.028Pa以上で非晶質膜を得るこ
とができた。窒素分圧0.028Pa〜0.109Pa
において作製された膜中の窒素濃度は17at%〜45
at%であった。
Example 2 A film was formed on a substrate in the same manner as in Example 1 except that a target made of 89 at% Al-11 at% Ti was used. FIG. 3 shows the analysis result by X-ray diffraction of each thin film produced by keeping the nitrogen partial pressure constant. As is clear from FIG. 3, the film obtained without introducing nitrogen gas became crystalline, but an amorphous film could be obtained at a nitrogen partial pressure of 0.028 Pa or higher. Nitrogen partial pressure 0.028Pa-0.109Pa
The nitrogen concentration in the film produced in
It was at%.

【0013】実施例3 (98.5at%Al−1.5at%Ti)からなるタ
ーゲットを用いる以外は実施例1と同様にして基板上に
成膜した。窒素分圧を一定に保持して作製した各薄膜の
X線回折による分析結果を図4に示す。図4から明らか
なように、窒素ガスを導入しないで得られた膜は結晶質
となったが、窒素分圧0.042Pa及び0.060P
aで非晶質膜を得ることができた。窒素分圧0.042
Pa〜0.060Paにおいて作製された膜中の窒素濃
度は17at%〜25at%であった。
Example 3 A film was formed on a substrate in the same manner as in Example 1 except that a target made of (98.5 at% Al-1.5 at% Ti) was used. FIG. 4 shows the analysis result by X-ray diffraction of each thin film produced by keeping the nitrogen partial pressure constant. As is clear from FIG. 4, the film obtained without introducing nitrogen gas became crystalline, but the nitrogen partial pressures were 0.042 Pa and 0.060 P.
An amorphous film could be obtained with a. Nitrogen partial pressure 0.042
The nitrogen concentration in the film produced at Pa to 0.060 Pa was 17 at% to 25 at%.

【0014】実施例4 (64at%Al−36at%Ti)からなるターゲッ
トをマグネトロンスパッタ蒸着装置内の電極(+極)に
対向させて配置し、電極とターゲットの間に、ガラス板
又はアルミ板を被蒸着基板として配置した。前記スパッ
タ装置内を真空ポンプにて排気した後、アルゴンガスを
供給し、装置内のガス圧(全圧)を1Paとした。コー
ティングに先立ち、ガラス基板又はアルミ基板を固定し
ている治具に高周波電源をつなぎ、ガラス基板又はアル
ミ基板をスパッタエッチングした。ついで、ターゲット
に直流電源をつなぎ、予備放電を行なった。なおこの
時、予備放電によるガラス基板又はアルミ基板へのコー
ティングがなされないようにした。上記予備放電の後、
シャッターを移動させ、ガラス基板又はアルミ基板に対
するコーティングを開始した。但し、コーティングに先
立ち基板を予備加熱することは行なわなかった。コーテ
ィング中、反応ガスである窒素ガスは、電気的に制御で
きる流量調節計によって窒素ガスの分圧を0Paから
0.074Paへと連続的に変化させた。
Example 4 A target made of (64 at% Al-36 at% Ti) was placed facing the electrode (+ pole) in the magnetron sputtering deposition apparatus, and a glass plate or an aluminum plate was placed between the electrode and the target. It was arranged as a deposition target substrate. After exhausting the inside of the sputtering apparatus with a vacuum pump, argon gas was supplied, and the gas pressure (total pressure) inside the apparatus was set to 1 Pa. Prior to coating, a high frequency power source was connected to a jig fixing a glass substrate or an aluminum substrate, and the glass substrate or the aluminum substrate was sputter-etched. Then, a direct current power supply was connected to the target to carry out preliminary discharge. At this time, the glass substrate or the aluminum substrate was not coated by the preliminary discharge. After the above preliminary discharge,
The shutter was moved to start coating on the glass substrate or aluminum substrate. However, the substrate was not preheated prior to coating. During the coating, the reaction gas, nitrogen gas, continuously changed the partial pressure of nitrogen gas from 0 Pa to 0.074 Pa by an electrically controllable flow rate controller.

【0015】図5乃至図9は、窒素分圧を一定に保持し
て作製した各薄膜のX線回折による分析結果である。こ
れらのX線回折図から明らかなように、窒素分圧0.0
285〜0.0406Paで非晶質膜が得られた。窒素
分圧0.0285Pa〜0.0406Paにおいて作製
された膜中の窒素濃度は18at%〜35at%であっ
た。図10は、所定の窒素分圧で形成された膜の硬度測
定結果である。硬度は微小硬度計によって測定した。図
10から明らかなように、窒素分圧の増加と共に硬度は
増加した。
FIGS. 5 to 9 show the results of X-ray diffraction analysis of each thin film produced with the nitrogen partial pressure kept constant. As is clear from these X-ray diffraction patterns, the nitrogen partial pressure is 0.0
An amorphous film was obtained at 285 to 0.0406 Pa. The nitrogen concentration in the film produced at a nitrogen partial pressure of 0.0285 Pa to 0.0406 Pa was 18 at% to 35 at%. FIG. 10 shows the results of measuring the hardness of a film formed with a predetermined nitrogen partial pressure. The hardness was measured by a micro hardness meter. As is clear from FIG. 10, the hardness increased as the nitrogen partial pressure increased.

【0016】実施例5 (80at%Al−20at%Zr)からなるターゲッ
トをマグネトロンスパッタ蒸着装置内の電極(接地電
位)に対向させて配置し、電極とターゲットの間に、ガ
ラス板又はアルミ板を被蒸着基板として配置した。前記
スパッタ装置内を真空ポンプにて排気した後、アルゴン
ガスを供給し、装置内のガス圧(全圧)を1Paとし
た。コーティングに先立ち、ガラス基板又はアルミ基板
を固定している治具に高周波電源をつなぎ、ガラス基板
又はアルミ基板をそれぞれスパッタエッチングした。つ
いで、ターゲットに直流電源をつなぎ、予備放電を行な
った。なおこの時、予備放電によるガラス基板又はアル
ミ基板へのコーティングがなされないようにした。上記
予備放電の後、シャッターを移動させ、ガラス基板又は
アルミ基板に対するコーティングを開始した。但し、コ
ーティングに先立ち基板を予備加熱することは行なわな
かった。コーティング中、反応ガスである窒素ガスは、
電気的に制御できる流量調節計によって、装置内への導
入量を所定の一定流量に保持するか、又は連続的に増加
させた。この時の窒素分圧は0Paから0.129Pa
となった。窒素ガス導入量の違いによる装置内の圧力変
化は、排気ポンプと装置の間に配設されたバルブによっ
て圧力1Paとなるように調整した。
Example 5 A target made of (80 at% Al-20 at% Zr) was placed facing the electrode (ground potential) in the magnetron sputtering deposition apparatus, and a glass plate or an aluminum plate was placed between the electrode and the target. It was arranged as a deposition target substrate. After exhausting the inside of the sputtering apparatus with a vacuum pump, argon gas was supplied, and the gas pressure (total pressure) inside the apparatus was set to 1 Pa. Prior to coating, a high frequency power source was connected to a jig fixing a glass substrate or an aluminum substrate, and the glass substrate or the aluminum substrate was sputter-etched, respectively. Then, a direct current power supply was connected to the target to carry out preliminary discharge. At this time, the glass substrate or the aluminum substrate was not coated by the preliminary discharge. After the preliminary discharge, the shutter was moved to start coating on the glass substrate or the aluminum substrate. However, the substrate was not preheated prior to coating. During coating, the reaction gas, nitrogen gas,
An electrically controllable flow controller kept the amount introduced into the device at a predetermined constant flow rate or continuously increased it. The nitrogen partial pressure at this time is 0 Pa to 0.129 Pa.
Became. The pressure change in the device due to the difference in the amount of introduced nitrogen gas was adjusted so that the pressure was 1 Pa by the valve arranged between the exhaust pump and the device.

【0017】ガラス基板上に窒素分圧を一定に保持して
作製した各薄膜のX線回折による分析結果を図11に示
す。図11から明らかなように、窒素ガスを導入しない
窒素分圧0PaではAl及びAl3 Zrの結晶質相を示
すピークが有るが、窒素分圧0.028Paでは非晶質
相となった。また、さらに窒素分圧を増しても結晶質相
を示すピークは現われなかった。窒素分圧0.028P
a〜0.109Paにおいて作製された膜中の窒素濃度
は15at%〜62at%であった。図12は、アルミ
基板上に窒素分圧を一定に保持して作製した各薄膜のヌ
ープ硬さを示す。膜のヌープ硬さは、窒素分圧0Paで
は400Hkであったが、窒素分圧の増大と共に硬度は
徐々に増大し、0.129Paでは2100Hkとなっ
た。ガラス基板上に窒素分圧を一定に保持して作製した
各薄膜の電気抵抗を図13に示す。窒素分圧の増大と共
に膜の抵抗値は増大し、窒素分圧0.129Paでは導
電性を示さなかった。また、窒素分圧を0Paから0.
129Paまで連続的に増加させて作製した膜中の窒素
濃度が膜表面に向って増大している傾斜膜は、全厚さ域
にわたって緻密で、基板に対する密着性も良かった。
FIG. 11 shows the result of analysis by X-ray diffraction of each thin film produced by keeping the nitrogen partial pressure constant on the glass substrate. As is clear from FIG. 11, there was a peak showing a crystalline phase of Al and Al 3 Zr at a nitrogen partial pressure of 0 Pa without introducing nitrogen gas, but an amorphous phase was obtained at a nitrogen partial pressure of 0.028 Pa. Further, even if the nitrogen partial pressure was further increased, a peak showing a crystalline phase did not appear. Nitrogen partial pressure 0.028P
The nitrogen concentration in the film produced at a-0.109 Pa was 15 at% to 62 at%. FIG. 12 shows the Knoop hardness of each thin film produced by keeping a nitrogen partial pressure constant on an aluminum substrate. The Knoop hardness of the film was 400 Hk at a nitrogen partial pressure of 0 Pa, but the hardness gradually increased with an increase in the nitrogen partial pressure, and reached 2100 Hk at 0.129 Pa. FIG. 13 shows the electric resistance of each thin film formed on the glass substrate while keeping the nitrogen partial pressure constant. The resistance value of the film increased as the nitrogen partial pressure increased, and no conductivity was exhibited at a nitrogen partial pressure of 0.129 Pa. Further, the nitrogen partial pressure is changed from 0 Pa to 0.
The graded film in which the nitrogen concentration in the film produced by continuously increasing it to 129 Pa increased toward the film surface was dense over the entire thickness range and had good adhesion to the substrate.

【0018】実施例6 (80at%Al−20at%Cr)からなるターゲッ
トをマグネトロンスパッタ蒸着装置内の電極(接地電
位)に対向させて配置し、電極とターゲットの間に、ガ
ラス板又はアルミ板を被蒸着基板として配置した。前記
スパッタ装置内を真空ポンプにて排気した後、アルゴン
ガスを供給し、装置内のガス圧(全圧)を1Paとし
た。コーティングに先立ち、ガラス基板又はアルミ基板
を固定している治具に高周波電源をつなぎ、ガラス基板
又はアルミ基板をそれぞれスパッタエッチングした。つ
いで、ターゲットに直流電源をつなぎ、予備放電を行な
った。なおこの時、予備放電によるガラス基板又はアル
ミ基板へのコーティングがなされないようにした。上記
予備放電の後、シャッターを移動させ、ガラス基板又は
アルミ基板に対するコーティングを開始した。但し、コ
ーティングに先立ち基板を予備加熱することは行なわな
かった。コーティング中、反応ガスである窒素ガスは、
電気的に制御できる流量調節計によって、装置内への導
入量を所定の一定流量に保持するか、又は連続的に増加
させた。この時の窒素分圧は0Paから0.108Pa
となった。窒素ガス導入量の違いによる装置内の圧力変
化は、排気ポンプと装置の間に配設されたバルブによっ
て圧力1Paとなるように調整した。
Example 6 A target made of (80 at% Al-20 at% Cr) was placed facing an electrode (ground potential) in a magnetron sputtering vapor deposition apparatus, and a glass plate or an aluminum plate was placed between the electrode and the target. It was arranged as a deposition target substrate. After exhausting the inside of the sputtering apparatus with a vacuum pump, argon gas was supplied, and the gas pressure (total pressure) inside the apparatus was set to 1 Pa. Prior to coating, a high frequency power source was connected to a jig fixing a glass substrate or an aluminum substrate, and the glass substrate or the aluminum substrate was sputter-etched, respectively. Then, a direct current power supply was connected to the target to carry out preliminary discharge. At this time, the glass substrate or the aluminum substrate was not coated by the preliminary discharge. After the preliminary discharge, the shutter was moved to start coating on the glass substrate or the aluminum substrate. However, the substrate was not preheated prior to coating. During coating, the reaction gas, nitrogen gas,
An electrically controllable flow controller kept the amount introduced into the device at a predetermined constant flow rate or continuously increased it. The nitrogen partial pressure at this time is 0 Pa to 0.108 Pa
Became. The pressure change in the device due to the difference in the amount of introduced nitrogen gas was adjusted so that the pressure was 1 Pa by the valve arranged between the exhaust pump and the device.

【0019】ガラス基板上に窒素分圧を一定に保持して
作製した各薄膜のX線回折による分析結果を図14に示
す。図14から明らかなように、窒素ガスを導入しない
窒素分圧0PaではAlの結晶質相を示すピークが有る
が、窒素分圧0.020Pa以上では非晶質相となっ
た。窒素分圧0.020Pa〜0.11Paにおいて作
製された膜中の窒素濃度は8at%〜45at%であっ
た。図15は、アルミ基板上に窒素分圧を一定に保持し
て作製した各薄膜を微小硬度計(荷重20gf、時間2
0秒)によって測定したヌープ硬さを示す。膜のヌープ
硬さは、窒素分圧0Paでは235Hkであったが、窒
素分圧の増大と共に硬度は徐々に増大し、0.108P
aでは963Hkとなった。また、窒素分圧を0Paか
ら0.108Paまで連続的に増加させて作製した膜中
の窒素濃度が膜表面に向って増大している傾斜膜は、全
厚さ域にわたって緻密で、基板に対する密着性も良かっ
た。
FIG. 14 shows the result of analysis by X-ray diffraction of each thin film produced by keeping the nitrogen partial pressure constant on the glass substrate. As is clear from FIG. 14, there is a peak showing a crystalline phase of Al at a nitrogen partial pressure of 0 Pa without introduction of nitrogen gas, but at a nitrogen partial pressure of 0.020 Pa or more, an amorphous phase was formed. The nitrogen concentration in the film produced at a nitrogen partial pressure of 0.020 Pa to 0.11 Pa was 8 at% to 45 at%. FIG. 15 shows a micro hardness tester (load 20 gf, time 2) for each thin film produced by keeping a nitrogen partial pressure constant on an aluminum substrate.
The Knoop hardness measured by 0 second) is shown. The Knoop hardness of the film was 235 Hk at a nitrogen partial pressure of 0 Pa, but the hardness gradually increased as the nitrogen partial pressure increased to 0.108 P.
It was 963 Hk for a. Moreover, the graded film in which the nitrogen concentration in the film produced by continuously increasing the nitrogen partial pressure from 0 Pa to 0.108 Pa increases toward the film surface is dense over the entire thickness range and adheres well to the substrate. The sex was also good.

【0020】実施例7 基板2上への成膜のために図16に示すように傾斜した
電極系を持つ装置を使用した。2個のターゲット、即ち
円板状の高純度アルミニウム及び高純度マンガンのター
ゲット5,6を用い、同時にスパッタさせることにより
合金組成を調整し、スパッタには2つの高周波電源9,
10を用いた。それぞれ支持台7,8に取り付けられた
2個のターゲット5,6は、これら2個のターゲットの
中心を通る法線が、モータ4により回転されるホルダ3
に取り付けられている基板2の表面で交差するように、
スパッタチャンバー1内に傾斜して設置された。なお、
それぞれの合金組成割合は、ターゲットに印加する電力
量を調整することにより制御し、アルミニウム及びマン
ガンの相対的な割合は80at%Al−20at%Mn
とした。成膜される膜内の変調成分である窒素量は、チ
ャンバー内部への窒素ガス導入量をマス・フロー・コン
トローラーにより調整することにより制御した。この
時、チャンバー内の窒素ガス分圧は0Paから0.06
5Paの範囲で変化した。コーティングは、チャンバー
内の予備排気及びターゲット表面の清浄化のためのプリ
スパッタリング後に行い、コーティング処理後、ターゲ
ット及び基板の温度が下がってから空気を導入してチャ
ンバー内を大気圧とし、試料を取り出した。
Example 7 An apparatus having an inclined electrode system as shown in FIG. 16 was used for film formation on the substrate 2. Two targets, that is, disc-shaped high-purity aluminum and high-purity manganese targets 5 and 6 are used, and the alloy composition is adjusted by sputtering at the same time.
10 was used. The two targets 5 and 6 attached to the support bases 7 and 8 are the holders 3 whose normals passing through the centers of these two targets are rotated by the motor 4.
So that they intersect at the surface of the substrate 2 attached to
It was installed so as to be inclined in the sputtering chamber 1. In addition,
The alloy composition ratio of each is controlled by adjusting the amount of electric power applied to the target, and the relative ratio of aluminum and manganese is 80 at% Al-20 at% Mn.
And The amount of nitrogen, which is a modulation component in the formed film, was controlled by adjusting the amount of nitrogen gas introduced into the chamber with a mass flow controller. At this time, the partial pressure of nitrogen gas in the chamber is 0 Pa to 0.06.
It changed in the range of 5 Pa. Coating is performed after pre-exhaust in the chamber and pre-sputtering for cleaning the target surface, and after the coating process, the temperature of the target and substrate is lowered to introduce air to bring the chamber to atmospheric pressure and take out the sample. It was

【0021】図17は各窒素分圧を一定に保って作製し
た均一組成膜のX線回折の結果を示す。図17から明ら
かなように、窒素分圧0〜0.051Paで非晶質膜が
得られた。また、アルミ基板上に窒素分圧を連続的に増
加させて成膜した33μm厚さの膜について行った硬さ
試験の結果を図18に示す。図18から明らかなよう
に、膜内部のヌープ硬さは膜厚方向に増大した。これ
は、膜中の窒素濃度が膜表面に向って増大したためであ
る。
FIG. 17 shows the result of X-ray diffraction of a uniform composition film produced by keeping each nitrogen partial pressure constant. As is clear from FIG. 17, an amorphous film was obtained at a nitrogen partial pressure of 0 to 0.051 Pa. FIG. 18 shows the result of the hardness test conducted on a 33 μm thick film formed by continuously increasing the nitrogen partial pressure on an aluminum substrate. As is clear from FIG. 18, the Knoop hardness inside the film increased in the film thickness direction. This is because the nitrogen concentration in the film increased toward the film surface.

【0022】[0022]

【発明の効果】以上詳述した如く、本発明の方法によれ
ば、基材に対し良好に密着し、高い硬度を有する緻密な
耐摩耗性非晶質膜を、基材を予熱することなく、処理工
程に特別の工程を追加することなく製造することができ
る。また、本発明で得られる膜は、非晶質構造を持つ高
硬度膜であり、結晶性高硬度膜で起こる粒界での破壊な
どの欠点が改善されると共に、基材に対する密着性に優
れ、折り曲げに強く、高い硬度を有するなど、優れた特
性を示し、耐摩耗膜として使用できる他、高い硬度と導
電性を有することから、耐摩耗性を有する電気接点など
にも応用することができる。その他、本発明の非晶質硬
質膜は、機械的、電気的に優れた特性を示すとともにセ
ラミックス材料の欠点である脆性が緩和されているの
で、電気電子材料、高強度材料、耐摩耗材料、耐高温材
料などとして使用でき、産業上の種々の用途に供するこ
とができる。
As described in detail above, according to the method of the present invention, a dense wear-resistant amorphous film having good adhesion to a substrate and high hardness can be obtained without preheating the substrate. It can be manufactured without adding a special process to the processing process. In addition, the film obtained by the present invention is a high hardness film having an amorphous structure, and defects such as breakage at grain boundaries occurring in a crystalline high hardness film are improved, and excellent adhesion to a substrate is obtained. It has excellent properties such as strong bending resistance and high hardness, and can be used as a wear resistant film. In addition, it has high hardness and conductivity, so it can be applied to electrical contacts with wear resistance. . In addition, the amorphous hard film of the present invention has excellent mechanically and electrically properties, and since brittleness, which is a defect of the ceramic material, is mitigated, an electric / electronic material, a high strength material, an abrasion resistant material, It can be used as a high temperature resistant material and can be used for various industrial applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において窒素分圧を一定に保持して作
製した各(Al80Ti20100- cc 組成薄膜のX線回
折図であり、各X線回折図を縦座標軸の強さ方向に窒素
分圧順にシフトして示す。
[1] Example Each (Al 80 Ti 20) was prepared by holding the nitrogen partial pressure constant at 1 is an X-ray diffraction diagram of 100- c N c composition film, for each X-ray diffraction pattern the vertical axis It is shown by shifting in the order of partial pressure of nitrogen in the strength direction.

【図2】実施例1において窒素分圧を一定に保持して作
製した各(Al80Ti20100- cc 組成非晶質膜のヌ
ープ硬さと窒素分圧の関係を示すグラフである。
Is a graph showing the relationship between the (Al 80 Ti 20) 100- c N c composition amorphous film Knoop hardness and nitrogen partial pressure which is manufactured by holding the nitrogen partial pressure constant in Figure 2 EXAMPLE 1 .

【図3】実施例2において窒素分圧を一定に保持して作
製した各(Al89Ti11100- cc 組成薄膜のX線回
折図であり、各X線回折図を縦座標軸の強さ方向に窒素
分圧順にシフトして示す。
FIG. 3 is a X-ray diffraction pattern of the (Al 89 Ti 11) 100- c N c composition thin film prepared by holding the nitrogen partial pressure constant in the second embodiment, the respective X-ray diffraction pattern the vertical axis It is shown by shifting in the order of partial pressure of nitrogen in the strength direction.

【図4】実施例3において窒素分圧を一定に保持して作
製した各(Al98.5Ti1.5100-cc 組成薄膜のX
線回折図であり、各X線回折図を縦座標軸の強さ方向に
窒素分圧順にシフトして示す。
FIG. 4 is an X of each (Al 98.5 Ti 1.5 ) 100-c N c composition thin film prepared in Example 3 while keeping the nitrogen partial pressure constant.
It is a line diffraction diagram, and shows each X-ray diffraction diagram shifted in the direction of the nitrogen partial pressure in the strength direction of the ordinate axis.

【図5】実施例4において窒素分圧0.0285Paで
作製した(Al64Ti36100- cc 組成薄膜のX線回
折図である。
5 is a X-ray diffraction diagram of nitrogen partial pressure 0.0285Pa prepared in (Al 64 Ti 36) 100- c N c composition film in Example 4.

【図6】実施例4において窒素分圧0.0333Paで
作製した(Al64Ti36100- cc 組成薄膜のX線回
折図である。
6 is a X-ray diffraction diagram of nitrogen partial pressure 0.0333Pa prepared in (Al 64 Ti 36) 100- c N c composition film in Example 4.

【図7】実施例4において窒素分圧0.0378Paで
作製した(Al64Ti36100- cc 組成薄膜のX線回
折図である。
7 is a X-ray diffraction diagram of nitrogen partial pressure 0.0378Pa prepared in (Al 64 Ti 36) 100- c N c composition film in Example 4.

【図8】実施例4において窒素分圧0.0406Paで
作製した(Al64Ti36100- cc 組成薄膜のX線回
折図である。
8 is a X-ray diffraction diagram of nitrogen partial pressure 0.0406Pa prepared in (Al 64 Ti 36) 100- c N c composition film in Example 4.

【図9】実施例4において窒素分圧0.0415Paで
作製した(Al64Ti36100- cc 組成薄膜のX線回
折図である。
9 is a X-ray diffraction diagram of nitrogen partial pressure 0.0415Pa prepared in (Al 64 Ti 36) 100- c N c composition film in Example 4.

【図10】実施例4において窒素分圧を一定に保持して
作製した各(Al64Ti36100- cc 組成非晶質膜の
ヌープ硬さと窒素分圧の関係を示すグラフである。
Is a graph showing the relationship between the (Al 64 Ti 36) 100- c N c composition amorphous film Knoop hardness and nitrogen partial pressure which is manufactured by holding the nitrogen partial pressure constant in [10] Example 4 .

【図11】実施例5において窒素分圧を一定に保持して
作製した各(Al80Zr20100- cc 組成薄膜のX線
回折図であり、各X線回折図を縦座標軸の強さ方向に窒
素分圧順にシフトして示す。
[11] Example Each was prepared to hold the nitrogen partial pressure constant at 5 (Al 80 Zr 20) an X-ray diffraction diagram of 100- c N c composition film, for each X-ray diffraction pattern the vertical axis It is shown by shifting in the order of partial pressure of nitrogen in the strength direction.

【図12】実施例5において窒素分圧を一定に保持して
作製した各(Al80Zr20100- cc 組成非晶質膜の
ヌープ硬さと窒素分圧の関係を示すグラフである。
Is a graph showing FIG. 12 each were produced by holding the nitrogen partial pressure constant in Example 5 (Al 80 Zr 20) of 100- c N c composition amorphous film Knoop hardness and the nitrogen partial pressure relationship .

【図13】実施例5において窒素分圧を一定に保持して
作製した各(Al80Zr20100- cc 組成非晶質膜の
電気抵抗と窒素分圧の関係を示すグラフである。
[Figure 13] is a graph showing the relationship between Example each were produced by holding the nitrogen partial pressure constant at 5 (Al 80 Zr 20) 100- c N c composition amorphous film resistance and the nitrogen partial pressure .

【図14】実施例6において窒素分圧を一定に保持して
作製した各(Al80Cr20100- cc 組成薄膜のX線
回折図であり、各X線回折図を縦座標軸の強さ方向に窒
素分圧順にシフトして示す。
[14] Example 6 each (Al 80 Cr 20) was prepared by holding the nitrogen partial pressure constant in a X-ray diffraction diagram of 100- c N c composition film, for each X-ray diffraction pattern the vertical axis It is shown by shifting in the order of partial pressure of nitrogen in the strength direction.

【図15】実施例6において窒素分圧を一定に保持して
作製した各(Al80Cr20100- cc 組成非晶質膜の
ヌープ硬さと窒素分圧の関係を示すグラフである。
Is a graph showing the relationship between FIG. 15 each were produced by holding the nitrogen partial pressure constant in Example 6 (Al 80 Cr 20) 100- c N c composition amorphous film Knoop hardness and the partial pressure of nitrogen .

【図16】実施例7で用いたスパッタ蒸着装置の概略構
成図である。
16 is a schematic configuration diagram of a sputter deposition apparatus used in Example 7. FIG.

【図17】実施例7において窒素分圧を一定に保持して
作製した各(Al80Mn20100- cc 組成薄膜のX線
回折図であり、各X線回折図を縦座標軸の強さ方向に窒
素分圧順にシフトして示す。
[17] Example Each was prepared to hold the nitrogen partial pressure constant at 7 (Al 80 Mn 20) an X-ray diffraction diagram of 100- c N c composition film, for each X-ray diffraction pattern the vertical axis It is shown by shifting in the order of partial pressure of nitrogen in the strength direction.

【図18】実施例7で作製した(Al80Mn20100-c
c の組成の構造傾斜膜の厚さ方向のヌープ硬さを示す
グラフである。
FIG. 18: (Al 80 Mn 20 ) 100-c produced in Example 7
It is a graph which shows the Knoop hardness in the thickness direction of the structure gradient film of the composition of Nc .

【符号の説明】[Explanation of symbols]

1 スパッタチャンバー、 2 基板、 3 ホルダ、
4 モータ、 5,6 ターゲット、 7,8 支持
台、 9,10 高周波電源
1 sputter chamber, 2 substrate, 3 holder,
4 motors, 5 and 6 targets, 7 and 8 supports, 9 and 10 high frequency power supplies

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 山形 寛 富山県中新川郡立山町道源寺1008 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihisa Inoue Kawauchi Muzenji, Aoba-ku, Sendai City, Miyagi 11-806 (72) Inventor Hiroshi Yamagata 1008 Dogenji, Tateyama-cho, Nakashinkawa-gun, Toyama Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式:(Alab100-cc (こ
こで、MはTi,Ta,V,Cr,Zr,Nb,Mo,
Hf,W,Fe,Co,Ni,Cu及びMnよりなる群
から選ばれた少なくとも1種の元素、XはN,O,Cよ
りなる群から選ばれた1種の元素、a、b及びcはそれ
ぞれ原子%を示し、60at%≦a≦98.5at%、
1.5at%≦b≦40at%、0at%<c≦65a
t%、但し、a+b=100at%)で表わされる組成
を有し、非晶質構造を示し、かつ高い硬度を有する耐摩
耗性非晶質硬質膜。
1. A general formula: (Al a M b ) 100-c X c (where M is Ti, Ta, V, Cr, Zr, Nb, Mo,
At least one element selected from the group consisting of Hf, W, Fe, Co, Ni, Cu and Mn, X represents one element selected from the group consisting of N, O and C, a, b and c Represent atomic%, 60 at% ≦ a ≦ 98.5 at%,
1.5 at% ≦ b ≦ 40 at%, 0 at% <c ≦ 65a
A wear-resistant amorphous hard film having a composition represented by t%, where a + b = 100 at%), showing an amorphous structure, and having high hardness.
【請求項2】 物理的気相蒸着法により、一般式:Al
ab (ここで、MはTi,Ta,V,Cr,Zr,N
b,Mo,Hf,W,Fe,Co,Ni,Cu及びMn
よりなる群から選ばれた少なくとも1種の元素、a及び
bはそれぞれ原子%を示し、60at%≦a≦98.5
at%、1.5at%≦b≦40at%、但し、a+b
=100at%)で表わされる組成を有する蒸発源材料
を用い、窒素、酸素又は炭素を含む反応ガスを供給しな
がら、所定量の反応ガスを含む不活性ガス雰囲気中で基
材上に非晶質膜を形成することを特徴とする耐摩耗性非
晶質硬質膜の製造方法。
2. The physical formula: Al by a physical vapor deposition method.
a M b (where M is Ti, Ta, V, Cr, Zr, N
b, Mo, Hf, W, Fe, Co, Ni, Cu and Mn
At least one element selected from the group consisting of a and b each represents atomic% and 60 at% ≦ a ≦ 98.5.
at%, 1.5 at% ≦ b ≦ 40 at%, where a + b
= 100 at%), and an amorphous material on a substrate in an inert gas atmosphere containing a predetermined amount of a reaction gas while supplying a reaction gas containing nitrogen, oxygen or carbon using an evaporation source material. A method for producing an abrasion-resistant amorphous hard film, which comprises forming a film.
【請求項3】 反応ガスの供給量をその分圧が連続的又
は段階的に変化するように制御しながら、非晶質膜中の
反応ガス成分の濃度が膜表面に向って増大する非晶質膜
を形成することを特徴とする請求項2に記載の方法。
3. An amorphous structure in which the concentration of a reaction gas component in an amorphous film increases toward the film surface while controlling the supply amount of the reaction gas so that the partial pressure thereof changes continuously or stepwise. The method according to claim 2, wherein a quality film is formed.
【請求項4】 反応ガスとして窒素ガス、アンモニアガ
ス及びメタンガスから選ばれた少なくとも1種の気体を
用い、蒸着中の処理装置内への導入ガス中の反応ガス濃
度として不活性ガスに対する反応ガスの割合を2〜35
容量%とすることを特徴とする請求項2又は3に記載の
方法。
4. At least one gas selected from nitrogen gas, ammonia gas and methane gas is used as a reaction gas, and the concentration of the reaction gas in the gas introduced into the processing apparatus during the vapor deposition is set to Ratio 2-35
The method according to claim 2 or 3, wherein the volume% is used.
【請求項5】 不活性ガスと反応ガスの全圧を0.6〜
1.2Paにすることを特徴とする請求項2乃至4のい
ずれか一項に記載の方法。
5. The total pressure of the inert gas and the reaction gas is 0.6 to
The method according to claim 2, wherein the pressure is 1.2 Pa.
【請求項6】 物理的気相蒸着法がスパッタ法又はイオ
ンプレーティング法である請求項2乃至5のいずれか一
項に記載の方法。
6. The method according to claim 2, wherein the physical vapor deposition method is a sputtering method or an ion plating method.
JP6068215A 1993-03-15 1994-03-14 Abrasion-resistant amorphous hard film and method for producing the same Expired - Lifetime JP3027502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068215A JP3027502B2 (en) 1993-03-15 1994-03-14 Abrasion-resistant amorphous hard film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7855793 1993-03-15
JP5-78557 1993-03-15
JP6068215A JP3027502B2 (en) 1993-03-15 1994-03-14 Abrasion-resistant amorphous hard film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06322517A true JPH06322517A (en) 1994-11-22
JP3027502B2 JP3027502B2 (en) 2000-04-04

Family

ID=26409443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068215A Expired - Lifetime JP3027502B2 (en) 1993-03-15 1994-03-14 Abrasion-resistant amorphous hard film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3027502B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256138A (en) * 1996-03-19 1997-09-30 Kobe Steel Ltd Titanium-base alloy member excellent in oxidation resistance and wear resistance
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2006249574A (en) * 2005-02-08 2006-09-21 Kobe Steel Ltd Hard coating, target for forming hard coating, and method for forming hard coating
US7166155B2 (en) 2002-11-19 2007-01-23 Hitachi Tools Engineering Ltd. Hard film and hard film-coated tool
EP1785504A2 (en) * 2005-11-11 2007-05-16 Mitsubishi Heavy Industries, Ltd. Surface-coated article, production method therefor, machine tool, and machine tool apparatus
JP2008018507A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent finished surface accuracy for long period of time in high-speed continuously cutting hard material hard to cut
JP2008018506A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel
US7348074B2 (en) * 2005-04-01 2008-03-25 Oc Oerlikon Balzers Ag Multilayer hard coating for tools
WO2009016938A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Hard coating film, material covered with hard coating film, mold for cold plastic forming, and method for forming hard coating film
JP2010018864A (en) * 2008-07-11 2010-01-28 Kobe Steel Ltd Conducive thin film
US20100260560A1 (en) * 2007-07-02 2010-10-14 Veit Schier Coated tool
US7879443B2 (en) * 2005-02-10 2011-02-01 Oc Oerlikon Trading Ag, Truebbach High wear resistant triplex coating for cutting tools
US20110044775A1 (en) * 2008-03-07 2011-02-24 Seco Tools Ab Oxide coated cutting insert
US20110045245A1 (en) * 2008-03-07 2011-02-24 Seco Tools Ab Oxide coated cutting insert
US20110111193A1 (en) * 2008-07-09 2011-05-12 Oerlikon Trading Ag, Truebbach Coating system, coated workpiece and method for manufacturing the same
US7989060B2 (en) * 2008-03-07 2011-08-02 Seco Tools Ab Oxide coated cutting insert
US7989059B2 (en) * 2008-03-07 2011-08-02 Seco Tools Ab Oxide coated cutting insert
US20110195261A1 (en) * 2008-10-10 2011-08-11 Oerlikon Trading Ag, Trubbach NON GAMMA-PHASE CUBIC AlCrO
US8003231B2 (en) * 2007-11-15 2011-08-23 Kobe Steel, Ltd. Wear-resistant member with hard coating
US8017226B2 (en) * 2008-06-23 2011-09-13 Kobe Steel, Ltd. Hard film-coated member and jig for molding
US20120009402A1 (en) * 2008-06-13 2012-01-12 Seco Tools Ab Coated cutting tool for metal cutting applications generating high temperatures
JP2012012676A (en) * 2010-07-01 2012-01-19 Okayama Prefecture Hard coating, and method for producing the same
US8318328B2 (en) * 2004-07-15 2012-11-27 Oerlikon Trading Ag, Trubbach High oxidation resistant hard coating for cutting tools
JP2013151756A (en) * 2005-02-08 2013-08-08 Kobe Steel Ltd Hard coating and method for producing the same
US8580406B2 (en) 2007-08-02 2013-11-12 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
JP2013256718A (en) * 2013-08-07 2013-12-26 Kobe Steel Ltd Conductive thin film
US9243310B2 (en) 2013-09-12 2016-01-26 Hyundai Motor Company Coating material for aluminum die casting and method for coating the same
CN107274639A (en) * 2017-08-09 2017-10-20 李剑兵 Family fuel gas monitoring alarm movement device
CN108193181A (en) * 2018-02-08 2018-06-22 南京航空航天大学 The method that TA15 alloy surface reaction magnetocontrol sputterings prepare AlN/AlCrN films
WO2020166466A1 (en) 2019-02-12 2020-08-20 三菱マテリアル株式会社 Hard coating cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471580B2 (en) * 2003-04-11 2010-06-02 日立ツール株式会社 Coated mold

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256138A (en) * 1996-03-19 1997-09-30 Kobe Steel Ltd Titanium-base alloy member excellent in oxidation resistance and wear resistance
US7166155B2 (en) 2002-11-19 2007-01-23 Hitachi Tools Engineering Ltd. Hard film and hard film-coated tool
CN1304626C (en) * 2002-11-19 2007-03-14 日立工具股份有限公司 Hard film and hard film coated tool
US8318328B2 (en) * 2004-07-15 2012-11-27 Oerlikon Trading Ag, Trubbach High oxidation resistant hard coating for cutting tools
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
US7479331B2 (en) * 2005-02-08 2009-01-20 Kobe Steel, Ltd. Hard coating, target for forming hard coating, and method for forming hard coating
US7790301B2 (en) 2005-02-08 2010-09-07 Kobe Steel, Ltd. Hard coating, target for forming hard coating, and method for forming hard coating
JP2006249574A (en) * 2005-02-08 2006-09-21 Kobe Steel Ltd Hard coating, target for forming hard coating, and method for forming hard coating
JP2013151756A (en) * 2005-02-08 2013-08-08 Kobe Steel Ltd Hard coating and method for producing the same
US8088501B2 (en) 2005-02-10 2012-01-03 Oerlikon Trading Ag, Trubbach High wear resistant triplex coating for cutting tools
US7879443B2 (en) * 2005-02-10 2011-02-01 Oc Oerlikon Trading Ag, Truebbach High wear resistant triplex coating for cutting tools
US7348074B2 (en) * 2005-04-01 2008-03-25 Oc Oerlikon Balzers Ag Multilayer hard coating for tools
USRE42491E1 (en) 2005-04-01 2011-06-28 Oerlikon Trading Ag, Trubbach Multilayer hard coating for tools
US7618720B2 (en) 2005-04-01 2009-11-17 Oerlikon Trading Ag, Trubbach Multilayer hard coating for tools
US7718043B2 (en) 2005-04-01 2010-05-18 Oelikon Trading Ag Multilayer hard coating for tools
JP2007131927A (en) * 2005-11-11 2007-05-31 Mitsubishi Heavy Ind Ltd Surface covering member, method for manufacturing the same, tool, and machine tool
EP1785504A2 (en) * 2005-11-11 2007-05-16 Mitsubishi Heavy Industries, Ltd. Surface-coated article, production method therefor, machine tool, and machine tool apparatus
JP2008018506A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel
JP2008018507A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent finished surface accuracy for long period of time in high-speed continuously cutting hard material hard to cut
US20100260560A1 (en) * 2007-07-02 2010-10-14 Veit Schier Coated tool
US8491996B2 (en) * 2007-07-02 2013-07-23 Walter Ag Coated tool
US8828562B2 (en) 2007-08-02 2014-09-09 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
US8580406B2 (en) 2007-08-02 2013-11-12 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
WO2009016938A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Hard coating film, material covered with hard coating film, mold for cold plastic forming, and method for forming hard coating film
US8003231B2 (en) * 2007-11-15 2011-08-23 Kobe Steel, Ltd. Wear-resistant member with hard coating
US7989059B2 (en) * 2008-03-07 2011-08-02 Seco Tools Ab Oxide coated cutting insert
US7989060B2 (en) * 2008-03-07 2011-08-02 Seco Tools Ab Oxide coated cutting insert
US8043482B1 (en) 2008-03-07 2011-10-25 Seco Tools Ab Oxide coated cutting insert
US8075743B2 (en) 2008-03-07 2011-12-13 Seco Tools Ab Oxide coated cutting insert
US20110044775A1 (en) * 2008-03-07 2011-02-24 Seco Tools Ab Oxide coated cutting insert
US20110045245A1 (en) * 2008-03-07 2011-02-24 Seco Tools Ab Oxide coated cutting insert
US8409731B2 (en) * 2008-03-07 2013-04-02 Seco Tools Ab Oxide coated cutting insert
US8409732B2 (en) * 2008-03-07 2013-04-02 Seco Tools Ab Oxide coated cutting insert
US8216702B2 (en) * 2008-06-13 2012-07-10 Seco Tools Ab Coated cutting tool for metal cutting applications generating high temperatures
US20120009402A1 (en) * 2008-06-13 2012-01-12 Seco Tools Ab Coated cutting tool for metal cutting applications generating high temperatures
US8017226B2 (en) * 2008-06-23 2011-09-13 Kobe Steel, Ltd. Hard film-coated member and jig for molding
US20110111193A1 (en) * 2008-07-09 2011-05-12 Oerlikon Trading Ag, Truebbach Coating system, coated workpiece and method for manufacturing the same
US8491989B2 (en) * 2008-07-09 2013-07-23 Oberlikon Trading AG, Truebbach Coating system, coated workpiece and method for manufacturing the same
JP2010018864A (en) * 2008-07-11 2010-01-28 Kobe Steel Ltd Conducive thin film
US8529735B2 (en) * 2008-10-10 2013-09-10 Oerlikon Trading Ag, Trubbach Non gamma-phase cubic AlCrO
US20110195261A1 (en) * 2008-10-10 2011-08-11 Oerlikon Trading Ag, Trubbach NON GAMMA-PHASE CUBIC AlCrO
JP2012012676A (en) * 2010-07-01 2012-01-19 Okayama Prefecture Hard coating, and method for producing the same
JP2013256718A (en) * 2013-08-07 2013-12-26 Kobe Steel Ltd Conductive thin film
US9243310B2 (en) 2013-09-12 2016-01-26 Hyundai Motor Company Coating material for aluminum die casting and method for coating the same
CN107274639A (en) * 2017-08-09 2017-10-20 李剑兵 Family fuel gas monitoring alarm movement device
CN108193181A (en) * 2018-02-08 2018-06-22 南京航空航天大学 The method that TA15 alloy surface reaction magnetocontrol sputterings prepare AlN/AlCrN films
CN108193181B (en) * 2018-02-08 2019-10-01 南京航空航天大学 The method that TA15 alloy surface reaction magnetocontrol sputtering prepares AlN/AlCrN film
WO2020166466A1 (en) 2019-02-12 2020-08-20 三菱マテリアル株式会社 Hard coating cutting tool
KR20210118093A (en) 2019-02-12 2021-09-29 미쓰비시 마테리알 가부시키가이샤 hard film cutting tool
US12303982B2 (en) 2019-02-12 2025-05-20 Mitsubishi Materials Corporation Surface-coated cutting tool

Also Published As

Publication number Publication date
JP3027502B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JPH06322517A (en) Wear resistant amorphous hard film and its production
JP2816786B2 (en) Al-Ti-based or Al-Ta-based wear-resistant hard film and method for producing the same
JP2892231B2 (en) Ti-Si-N-based composite hard film and method for producing the same
CN108884550B (en) Hydrogen-free carbon coating with zirconium adhesion layer
US4522844A (en) Corrosion resistant coating
Mukherjee et al. A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering
KR910009840B1 (en) Corrosion-resistant and heat-resistant amorphous aluminum -based alloy thin film and process for producing the same
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
EP0616046B1 (en) Highly hard thin film and method for production thereof
JP3281173B2 (en) High hardness thin film and method for producing the same
JP2009535499A (en) Multifunctional hard material film
US4873152A (en) Heat treated chemically vapor deposited products
GB2179678A (en) Sputter ion plating of tungsten and carbon
US20070128399A1 (en) Hybrid coating structure and method for making the same
RU2329333C1 (en) Method of preparation of quasi-crystalline films on basis of aluminium
Jensen et al. Influence of the reactive gas flow on chromium nitride sputtering
KR100633083B1 (en) Method for manufacturing chromium nitride based multilayer metal nitride nano thin film
JP2010202917A (en) HARD NITRIDE FILM MAKING Ti, Cr, Al UNDERLYING ELEMENT AND METHOD OF MANUFACTURING THE SAME
CN113106390A (en) Multi-nitride protective coating for medical instrument and preparation method thereof
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
Akiyama et al. The corrosion behaviour of sputter-deposited amorphous Ni Ti alloys in 1 M HCl
CN115747604B (en) A Mo-based high-entropy alloy and its application
JPH06191993A (en) Method for production diamond-coated member
JPH04310515A (en) Highly hard ceramic coating film and its production
KR20070105614A (en) High temperature surface coating thin film with excellent oxidation resistance