JPH06337420A - Manufacture of liquid crystal display device - Google Patents
Manufacture of liquid crystal display deviceInfo
- Publication number
- JPH06337420A JPH06337420A JP5127264A JP12726493A JPH06337420A JP H06337420 A JPH06337420 A JP H06337420A JP 5127264 A JP5127264 A JP 5127264A JP 12726493 A JP12726493 A JP 12726493A JP H06337420 A JPH06337420 A JP H06337420A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrate
- alignment film
- pretilt angle
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
(57)【要約】 (修正有)
【目的】 製造しやすく、精確な配向膜を形成して対称
的な視角特性を有する液晶表示装置を提供する。
【構成】 一方の基板には所定のプレチルト角15を有
する配向処理が施し、他方の基板には前記所定のプレチ
ルト角よりも低い角度のプレチルト角を有する部分6
と、前記所定のプレチルト角よりも高い角度のプレチル
ト角を有する部分4とが、所望の形状で配置した配向処
理を施し、プレチルト角によって規定される所定の方向
の螺旋構造をとりながら配向する液晶パネルであって、
所定の方向と反対の螺旋構造をとるようなねじれ力を有
するネマティック液晶を2つの基板間に封入した液晶表
示装置では、他方の基板上に高分子配向膜を形成し、ラ
ビング処理を行なった後、所定のパターンを有するマス
クを介して紫外光を照射して、配向膜のプレチルト角を
部分的に非照射部と変化させる。
(57) [Summary] (Modified) [Object] To provide a liquid crystal display device which is easy to manufacture and has a precise viewing angle by forming an accurate alignment film. [Structure] One substrate is subjected to an alignment treatment having a predetermined pretilt angle 15, and the other substrate is provided with a portion 6 having a pretilt angle lower than the predetermined pretilt angle.
And a portion 4 having a pretilt angle higher than the predetermined pretilt angle are subjected to an alignment treatment arranged in a desired shape, and are aligned while forming a spiral structure in a predetermined direction defined by the pretilt angle. A panel,
In a liquid crystal display device in which a nematic liquid crystal having a twisting force that takes a spiral structure opposite to a predetermined direction is enclosed between two substrates, a polymer alignment film is formed on the other substrate, and after rubbing treatment is performed. By irradiating ultraviolet light through a mask having a predetermined pattern, the pretilt angle of the alignment film is partially changed to a non-irradiated portion.
Description
【0001】[0001]
【産業上の利用分野】本発明は、画像表示を行なう液晶
表示装置の製造法に関し、とくに従来より視野角が広い
液晶表示装置の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a liquid crystal display device for displaying an image, and more particularly to a method of manufacturing a liquid crystal display device having a wider viewing angle than conventional ones.
【0002】[0002]
【従来の技術】液晶表示装置の中で、特に表示品位の高
い画像を得るために、近年薄膜トランジスタをスイッチ
ング素子として用いたアクティブマトリクス駆動方式の
表示装置の開発がさかんである。これは、スイッチング
素子のない、単純マトリクス駆動方式に比べて、走査電
極数に関係なく高いコントラスト比が得られるため、解
像度が高い大容量表示においても、鮮明な画像が得られ
るからである。2. Description of the Related Art Among liquid crystal display devices, in recent years, in order to obtain an image with particularly high display quality, active matrix drive type display devices using thin film transistors as switching elements have been actively developed. This is because a high contrast ratio can be obtained regardless of the number of scanning electrodes as compared with a simple matrix driving method without a switching element, and thus a clear image can be obtained even in large-capacity display with high resolution.
【0003】このようなアクティブマトリクス方式の液
晶表示装置に於て、広く用いられている液晶表示モード
に、TN(Twisted Nematic )方式の、NW(Normally
White)モードがある。TN方式は、基板間で液晶分子
が90゜捻れた構成をもつ液晶パネルを2枚の偏光板によ
りはさんだものである。NWモードにおいて、2枚の偏
光板は、互いの偏光軸方向が直交し、また一方の偏光板
はその偏光軸が、一方の基板に接している液晶分子の長
軸方向と平行か垂直になるように配置されている。In such an active matrix type liquid crystal display device, a TN (Twisted Nematic) type NW (Normally) liquid crystal display mode is widely used.
White) mode. The TN method consists of two polarizing plates sandwiching a liquid crystal panel in which liquid crystal molecules are twisted 90 ° between substrates. In the NW mode, the polarizing axes of the two polarizing plates are orthogonal to each other, and the polarizing axis of one polarizing plate is parallel or perpendicular to the major axis direction of the liquid crystal molecules in contact with one substrate. Are arranged as follows.
【0004】このTN方式のNWモードの場合、電圧無
印加、または、しきい値電圧付近の低電圧において白表
示、それより高い電圧を印加していくと、だんだん光透
過率が低下して黒表示となる。このような表示特性が得
られるのは、液晶パネルに電圧を印加すると液晶分子は
捻れ構造をほどきながら、電界の向きに配列しようと
し、この分子の配列状態により、パネルを通過してくる
光の偏光状態が変わり、光の透過率が変調されるからで
ある。ところで、おなじ分子配列の状態でも、液晶パネ
ルに入射してくる光の入射方向によって透過光の偏光状
態は変化するので、入射方向に対応して光の透過率は異
なってくる。すなわち、液晶パネルの特性は視角依存性
を持つ。In the TN mode NW mode, no voltage is applied or white display is performed at a low voltage near the threshold voltage, and when a voltage higher than that is applied, the light transmittance gradually decreases and black appears. Will be displayed. Such display characteristics are obtained because when a voltage is applied to the liquid crystal panel, the liquid crystal molecules try to align themselves in the direction of the electric field while untwisting the twisted structure. This is because the polarization state of is changed and the light transmittance is modulated. By the way, even in the state of the same molecular arrangement, the polarization state of transmitted light changes depending on the incident direction of light incident on the liquid crystal panel, so that the light transmittance varies depending on the incident direction. That is, the characteristics of the liquid crystal panel have a viewing angle dependency.
【0005】この視角依存性は次のような特徴を持って
いる。NWモードの場合は、電圧印加によって液晶分子
が基板に対して立ち上がっていく黒表示付近で顕著であ
る。そして、その時の視角依存性は、液晶層中央部付近
の液晶分子の長軸方向を含み、かつ基板に垂直な平面に
対してほぼ対称の特性をもっている。しかし、この平面
内に進行方向を持つ光線に対しては非対称であり、基板
への入射角度によって透過率が著しく変化するので、こ
の方向での視角特性の変化は大きい。通常の駆動電圧範
囲では、液晶分子は基板面に完全に垂直には立ち上がら
ないので、視角特性の非対称性が残り、NWモードTN
パネルの視野角を狭くしてしまう。なお、一般に液晶層
中央部付近の液晶分子の長軸方向を主視角方向とよび、
この方向では他の方向から見た場合に比べて、低い電圧
で透過率が最低となる。This viewing angle dependence has the following features. In the case of the NW mode, it is remarkable in the vicinity of black display in which liquid crystal molecules stand up with respect to the substrate by applying a voltage. Then, the viewing angle dependency at that time has a characteristic that it includes the major axis direction of the liquid crystal molecules near the center of the liquid crystal layer and is substantially symmetrical with respect to a plane perpendicular to the substrate. However, it is asymmetric with respect to a ray having a traveling direction in this plane, and the transmittance significantly changes depending on the angle of incidence on the substrate, so that the viewing angle characteristics change greatly in this direction. In the normal driving voltage range, the liquid crystal molecules do not rise completely perpendicularly to the substrate surface, so that the asymmetry of the viewing angle characteristics remains and the NW mode TN
It narrows the viewing angle of the panel. The major axis direction of the liquid crystal molecules near the center of the liquid crystal layer is generally called the main viewing angle direction,
In this direction, the transmittance becomes the lowest at a low voltage as compared with the case of being viewed from other directions.
【0006】一般には、画面に対しそれぞれ図8〜図1
0に示すように手前側基板31に矢印32方向で、対向
する基板33に矢印34方向でラビング配向処理を施
す。35は上下方向を示す。液晶分子36はラビング方
向37に対して、図10のようにプレチルト角38を生
じるので、液晶層中央部付近の液晶分子の長軸方向は、
基板31,33に垂直な平面内で整列し、従って視角特
性の変化の大きい方向は画面の上下方向35であり、左
右に対しては対称である。39は配向膜を示す。つま
り、このパネルの電圧印加時(黒表示時)の光透過率の
視角特性は、図9に示すように上下方向で非対称とな
る。Generally, the screens shown in FIGS.
As shown in FIG. 0, rubbing alignment treatment is performed on the front substrate 31 in the direction of arrow 32 and on the opposing substrate 33 in the direction of arrow 34. Reference numeral 35 indicates the vertical direction. Since the liquid crystal molecules 36 have a pretilt angle 38 with respect to the rubbing direction 37 as shown in FIG. 10, the major axis direction of the liquid crystal molecules near the center of the liquid crystal layer is
The lines are aligned in a plane perpendicular to the substrates 31 and 33, and therefore, the direction in which the change in the viewing angle characteristics is large is the vertical direction 35 of the screen, which is symmetrical with respect to the left and right. Reference numeral 39 indicates an alignment film. That is, the viewing angle characteristics of the light transmittance of this panel when a voltage is applied (when displaying black) are asymmetric in the vertical direction as shown in FIG.
【0007】この上下方向視角特性の非対称性を解決
し、視角特性を改良する方法として、発明者等は次のよ
うな液晶表示装置を提案している(特願平4−262
2)。これは上方向と下方向のいずれかの主視角方向を
有する微小領域を近接させてパネル内に形成し、互いに
視角特性を補償し合うことで、上下方向視角特性の非対
称性を解消し、対称な視角特性を得ようとするものであ
る。このような液晶表示装置の製造方法として、発明者
等は印刷法で液晶のプレチルト角が異なる配向膜を塗り
分ける方法および配向膜上にフォトレジストを塗布し、
フォトリソグラフ工程で配向膜をパターニングし、プレ
チルト角を変化させる方法を提案した。As a method for solving the asymmetry of the vertical viewing angle characteristics and improving the viewing angle characteristics, the inventors have proposed the following liquid crystal display device (Japanese Patent Application No. 4-262).
2). This is because the minute areas having either the upward or downward main viewing angle direction are formed close to each other in the panel, and the viewing angle characteristics are compensated for each other, thereby eliminating the asymmetry of the vertical viewing angle characteristics and symmetry. It is intended to obtain a wide viewing angle characteristic. As a method for manufacturing such a liquid crystal display device, the inventors have applied a method of separately coating alignment films having different pretilt angles of liquid crystal by a printing method and applying a photoresist on the alignment film,
We proposed a method to change the pretilt angle by patterning the alignment film in the photolithography process.
【0008】[0008]
【発明が解決しようとする課題】しかし、印刷法でプレ
チルト角の異なる配向膜を塗り分ける方法では、寸法精
度および位置合わせ精度が悪く、高精細表示に対応しに
くいという問題がある。配向膜上にフォトレジストを塗
布し、フォトリソグラフ工程で配向膜をパターニング
し、プレチルト角を変化させる方法は、高精細表示に対
応できるが、工程が複雑でプロセスコストが高くなる問
題がある。また、配向膜表面への工程ダメージによる液
晶配向特性の劣化も問題である。さらに、これらの方法
では、プレチルト角の異なる3種類の配向膜を用いる必
要があり、配向膜の塗布工程が複雑になってしまう問題
もある。However, the method of separately coating the alignment films having different pretilt angles by the printing method has a problem that the dimensional accuracy and the positioning accuracy are poor and it is difficult to cope with high-definition display. The method of applying a photoresist on the alignment film and patterning the alignment film by a photolithography process to change the pretilt angle can be applied to high-definition display, but there is a problem that the process is complicated and the process cost becomes high. Further, deterioration of liquid crystal alignment characteristics due to process damage to the alignment film surface is also a problem. Further, in these methods, it is necessary to use three types of alignment films having different pretilt angles, and there is a problem that the process of applying the alignment film becomes complicated.
【0009】本発明の目的は上記のような問題点を解消
し、容易に製造でき寸法精度に優れたプレチルト領域パ
ターニング法を実現し、対称的な視角特性を有する液晶
表示装置の製造法を提供しようとするものである。An object of the present invention is to solve the above problems, to realize a pretilt region patterning method which can be easily manufactured and has excellent dimensional accuracy, and to provide a manufacturing method of a liquid crystal display device having symmetrical viewing angle characteristics. Is what you are trying to do.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、第1発明では、一方の基板には所定のプレチルト角
を有する配向処理が施され、他方の基板には前記所定の
プレチルト角よりも低い角度のプレチルト角を有する部
分と、前記所定のプレチルト角よりも高い角度のプレチ
ルト角を有する部分とが、所望の形状で配置されて配向
処理が施されており、かつ2つの前記基板間に、ねじれ
力を持たぬネマティック液晶材料では、前記プレチルト
角によって規定される所定の方向の螺旋構造をとりなが
ら配向する液晶パネルであって、前記液晶パネルに前記
所定の方向と反対の螺旋構造をとるようなねじれ力を有
するネマティック液晶が封入されている液晶表示装置の
製造工程において、他方の基板上に高分子配向膜を形成
し、ラビング処理を行なった後、所定のパターンを有す
るマスクを介して紫外光を照射することによって、配向
膜のプレチルト角を部分的に非照射部と変化させる工程
を有する液晶表示装置の製造法とした。In order to achieve the above object, in the first invention, one substrate is subjected to an alignment treatment having a predetermined pretilt angle, and the other substrate is subjected to an alignment treatment more than the predetermined pretilt angle. A portion having a low pretilt angle and a portion having a pretilt angle higher than the predetermined pretilt angle are arranged in a desired shape and subjected to alignment treatment, and between the two substrates. In the nematic liquid crystal material having no twisting force, the liquid crystal panel is oriented while taking a spiral structure in a predetermined direction defined by the pretilt angle, and the liquid crystal panel has a spiral structure opposite to the predetermined direction. In a manufacturing process of a liquid crystal display device in which a nematic liquid crystal having such a twisting force is sealed, a polymer alignment film is formed on the other substrate and a rubbing treatment is performed. After becoming, by irradiating ultraviolet light through a mask having a predetermined pattern, and a method for producing a liquid crystal display device having a step of changing a partially non-irradiated portion pretilt angle of the alignment layer.
【0011】第2発明では、液晶表示装置の製造工程に
おいて、他方の基板上に高分子配向膜を形成し、所定の
パターンを有するマスクを介して紫外光を照射した後、
ラビング処理を行なうことによって、配向膜のプレチル
ト角を部分的に非照射部と変化させる。第3発明では、
両方の基板に同一材料から成る高分子配向膜を形成し、
一方の基板には全面に紫外光を照射し、他方の基板には
所定のパターンを有するマスクを介して紫外光の照射を
行なう。According to the second aspect of the invention, in the manufacturing process of the liquid crystal display device, a polymer alignment film is formed on the other substrate and irradiated with ultraviolet light through a mask having a predetermined pattern.
By performing the rubbing process, the pretilt angle of the alignment film is partially changed from the non-irradiated portion. In the third invention,
Polymer alignment film made of the same material is formed on both substrates,
One surface of the substrate is irradiated with ultraviolet light, and the other substrate is irradiated with ultraviolet light through a mask having a predetermined pattern.
【0012】第4発明では、紫外光を照射した後、配向
膜表面を溶剤で処理する。第5発明では、高分子配向膜
としてポリイミド系材料を用いた。In the fourth invention, after irradiating with ultraviolet light, the surface of the alignment film is treated with a solvent. In the fifth invention, a polyimide material is used as the polymer alignment film.
【0013】[0013]
【作用】本発明の第1発明では、配向膜形成工程におい
て、どちらか一方の基板の配向膜に適当なフォトマスク
を介して紫外光を照射することにより、紫外光照射部と
非照射部との間でプレチルト角の値を異にすることがで
きる。これは紫外線照射によって、配向膜高分子表面が
架橋反応や酸化反応等、なんらかの化学反応を起こすこ
とによって、液晶との相互作用が変化するためと考えら
れる。一般に、配向膜の表面エネルギーが高くなると、
液晶のプレチルト角は小さくなる傾向があることが知ら
れている。紫外光照射によって、配向膜高分子表面で架
橋反応や酸化反応が起これば、表面エネルギーは増大
し、プレチルト角は小さくなると考えられる。これによ
って、非常に容易に、低コストで、しかも配向劣化を引
き起こすこともなく、視角範囲の広い液晶ディスプレイ
を製造することができる。According to the first aspect of the present invention, in the alignment film forming step, the alignment film of either one of the substrates is irradiated with ultraviolet light through an appropriate photomask, whereby an ultraviolet light irradiation portion and a non-irradiation portion are formed. The value of the pretilt angle can be made different. It is considered that this is because the irradiation with ultraviolet rays causes some chemical reaction such as a crosslinking reaction or an oxidation reaction on the polymer surface of the alignment film, thereby changing the interaction with the liquid crystal. Generally, when the surface energy of the alignment film becomes high,
It is known that the pretilt angle of liquid crystal tends to be small. It is considered that when the cross-linking reaction or the oxidation reaction occurs on the polymer surface of the alignment film by the irradiation of ultraviolet light, the surface energy increases and the pretilt angle decreases. This makes it possible to manufacture a liquid crystal display with a wide viewing angle range very easily, at low cost, and without causing alignment deterioration.
【0014】第2発明では、紫外光照射後にラビング処
理をしたので、プレチルト角の変化がより明らかにな
る。第3発明では、紫外光照射に変化をもたせてプレチ
ルト角の変化を形成した。また、第4発明では、紫外光
を照射後に配向膜表面を適当な溶剤で処理することによ
り、表面がさらに改質され、紫外光照射によるプレチル
ト角変化をさらに大きくすることができる。In the second invention, since the rubbing treatment is performed after the irradiation of ultraviolet light, the change in the pretilt angle becomes more apparent. In the third invention, the change of the pretilt angle is formed by changing the irradiation of ultraviolet light. Further, in the fourth invention, the surface of the alignment film is treated with a suitable solvent after irradiation with ultraviolet light, whereby the surface is further modified, and the change in pretilt angle due to irradiation with ultraviolet light can be further increased.
【0015】[0015]
【実施例】以下、本発明の液晶表示装置の製造方法の実
施例について説明する。本発明は図1に示したように、
上下基板表面での液晶のプレチルト角を制御して、上下
視角特性の補償された液晶パネルを実現するものであ
る。図1は、この液晶表示装置の断面図を示すもので、
一方の基板1Aと、他方の基板1Bと、一方の基板1A
と他方の基板1Bの内面に設けられた透明電極2A,2
Bと、さらに、透明電極2A上のパネル内面に設けられ
た配向膜3と、透明電極2B上に設けられた配向膜3よ
りプレチルト角4が大きい配向膜5と、透明電極2B上
に設けられた配向膜3よりプレチルト角6が小さい配向
膜7と、液晶分子9とから構成されている。そして、1
0は液晶層中央部、11は液晶層中央部の液晶分子プレ
チルトφ1、12は液晶層中央部の液晶分子プレチルト
φ2、13は上視角方向、14は下視角方向を示してい
る。EXAMPLES Examples of the method for manufacturing a liquid crystal display device of the present invention will be described below. The present invention, as shown in FIG.
The liquid crystal panel in which the vertical viewing angle characteristics are compensated is realized by controlling the pretilt angle of the liquid crystal on the upper and lower substrate surfaces. FIG. 1 shows a cross-sectional view of this liquid crystal display device.
One substrate 1A, the other substrate 1B, and one substrate 1A
And transparent electrodes 2A, 2 provided on the inner surface of the other substrate 1B
B, an alignment film 3 provided on the inner surface of the panel on the transparent electrode 2A, an alignment film 5 having a pretilt angle 4 larger than that of the alignment film 3 provided on the transparent electrode 2B, and provided on the transparent electrode 2B. The alignment film 7 has a pretilt angle 6 smaller than that of the alignment film 3 and liquid crystal molecules 9. And 1
Reference numeral 0 denotes the central portion of the liquid crystal layer, 11 denotes the liquid crystal molecule pretilt φ1 at the central portion of the liquid crystal layer, 12 denotes the liquid crystal molecule pretilt φ2 at the central portion of the liquid crystal layer, 13 denotes the upper viewing angle direction, and 14 denotes the lower viewing angle direction.
【0016】上記の構成において、一方の基板1Aには
θのプレチルト角15を持つような配向処理を施し、他
方の基板1Bにはθ+φ1 のプレチルト角4と、θ−φ
2 のプレチルト角6(φ1 >0、θ>φ2 >0)の2つ
の配向処理領域を持たせたものである。このような配向
処理を施すと、θ+φ1 のプレチルト角を持つ領域での
液晶層中央部10の液晶分子9は約φ1 の角度のプレチ
ルト11を持ち、θ−φ2 のプレチルト角4を持つ領域
での液晶層中央部10の液晶分子9は約−φ2の角度の
プレチルト12を持つように配向する。In the above structure, one substrate 1A is subjected to an alignment treatment so as to have a pretilt angle 15 of θ, and the other substrate 1B is subjected to a pretilt angle 4 of θ + φ1 and θ-φ.
It has two pre-tilt angles of 6 (φ1> 0, θ>φ2> 0) and two alignment treatment regions. When such an alignment treatment is performed, the liquid crystal molecules 9 in the central portion 10 of the liquid crystal layer in the region having the pretilt angle of θ + φ1 have the pretilt 11 of about φ1 and in the region having the pretilt angle 4 of θ−φ2. The liquid crystal molecules 9 in the central portion 10 of the liquid crystal layer are oriented so as to have a pretilt 12 of an angle of about -φ2.
【0017】したがって、この液晶パネルに電圧を印加
すると、液晶層中央部10の液晶分子9が約−φ2 の角
度のプレチルト12を持っていた領域では主視角が下方
向14の特性であり、液晶層中央部10の液晶分子9が
約φ1 の角度のプレチルト11を持っていた領域では主
視角が上視角13の特性となる。このように上下両方の
視角特性を持つ領域を、人間が見る場合の解像度以上に
近接して配置した場合、液晶パネルの視角特性は2つの
領域の特性が合成され、上下方向においても基板法線方
向を中心として、図5に示すような、ほぼ対称な特性を
得ることが可能となる。Therefore, when a voltage is applied to this liquid crystal panel, the main viewing angle has the characteristic of the downward direction 14 in the region where the liquid crystal molecules 9 in the central portion 10 of the liquid crystal layer had the pretilt 12 of an angle of about -φ 2. In a region where the liquid crystal molecules 9 in the central portion 10 of the layer have a pretilt 11 of an angle of about φ1, the main viewing angle has a characteristic of an upper viewing angle 13. In this way, when the regions having both the upper and lower viewing angle characteristics are arranged closer to each other than the resolution that a human sees, the viewing angle characteristics of the liquid crystal panel are a combination of the characteristics of the two regions, and the normal to the substrate in the vertical direction as well. It is possible to obtain a substantially symmetrical characteristic as shown in FIG. 5 about the direction.
【0018】このような構成をもつ液晶パネルを作製す
る方法として、本発明では紫外光を利用する。配向膜と
しては、製造の容易さから、高分子のラビング膜が好ま
しいが、プレチルトのパターニングを必要としない基板
側では、無機蒸着膜などを用いることもできる。高分子
材料の中では、一般にガラス転移温度が高く、鎖状の分
子構造をもつものが、液晶配向膜として適していること
が知られている。本発明においても、基本的にこのよう
な条件を満たしておれば、配向膜高分子として使用する
ことが可能である。たとえば配向膜として用いることが
できる高分子材料の例を挙げれば、ポリエステル、ポリ
スルホン、ポリアミド、ポリイミド、ポリアミドイミ
ド、ポリエステルイミド、ポリ(p−キシレン)、フェ
ノキシ樹脂、ポリフェニレンオキシド、ポリフェニレン
スルフィド、ポリフェニレン、ポリベンズイミダゾー
ル、ポリアミン、ポリイミンなどがある。これらのう
ち、ポリイミドは膜形成が容易で、信頼性的にもすぐれ
ていることから、配向膜材料としてとくに好ましい。In the present invention, ultraviolet light is used as a method for producing a liquid crystal panel having such a structure. As the alignment film, a polymer rubbing film is preferable from the viewpoint of easy production, but an inorganic vapor deposition film or the like can be used on the substrate side that does not require pretilt patterning. It is known that among polymer materials, those having a high glass transition temperature and a chain-like molecular structure are generally suitable as a liquid crystal alignment film. Also in the present invention, basically, if such a condition is satisfied, the polymer can be used as an alignment film polymer. For example, examples of the polymer material that can be used as the alignment film include polyester, polysulfone, polyamide, polyimide, polyamideimide, polyesterimide, poly (p-xylene), phenoxy resin, polyphenylene oxide, polyphenylene sulfide, polyphenylene, and polyphenylene. Examples include benzimidazole, polyamine and polyimine. Of these, polyimide is particularly preferable as an alignment film material because it is easy to form a film and has excellent reliability.
【0019】以下、本発明の液晶表示装置の具体的な製
造法について、図1〜図5を参照しながら説明する。Hereinafter, a specific method for manufacturing the liquid crystal display device of the present invention will be described with reference to FIGS.
【0020】(実施例1)まず、透明な行電極2Aの形
成されたガラスの一方の基板1A上に、日本合成ゴム社
製のJALS−199ポリイミド配向膜をオフセット印
刷した。配向膜はこの印刷により、全画面に均一に形成
されている。Example 1 First, a JALS-199 polyimide alignment film manufactured by Japan Synthetic Rubber Co., Ltd. was offset-printed on one substrate 1A made of glass on which transparent row electrodes 2A were formed. The alignment film is formed uniformly on the entire screen by this printing.
【0021】次に透明な列電極2Bの形成された他方の
基板1B上に、同様に日本合成ゴム社製のポリイミドJ
ALS−194を印刷した。両基板を180℃で30分
加熱した後、レーヨン布により、行電極基板(一方の基
板)1Aと列電極基板(他方の基板)1Bに、それぞれ
図2のような方向16、17でラビング処理を施した。
18は螺旋を示す。Next, on the other substrate 1B on which the transparent column electrodes 2B are formed, a polyimide J made by Nippon Synthetic Rubber Co., Ltd. is also used.
ALS-194 was printed. After heating both substrates at 180 ° C. for 30 minutes, a row electrode substrate (one substrate) 1A and a column electrode substrate (other substrate) 1B are rubbed with rayon cloth in directions 16 and 17 as shown in FIG. 2, respectively. Was applied.
18 indicates a spiral.
【0022】次いで、図3のような200μmのピッチ
でストライプ状にパターン化されたフォトマスク19を
用いて、基板1Bに高圧水銀ランプにより紫外光を照射
した。照射エネルギーは55mW/cm2 で照射時間は
5分であった。これによって、図4のように光照射領域
20と非照射領域21が、ほぼ100μmの幅でストラ
イプ状に形成された。Next, the substrate 1B was irradiated with ultraviolet light from a high-pressure mercury lamp using the photomask 19 patterned in stripes at a pitch of 200 μm as shown in FIG. The irradiation energy was 55 mW / cm 2 and the irradiation time was 5 minutes. As a result, as shown in FIG. 4, the light irradiation region 20 and the non-irradiation region 21 were formed in stripes with a width of approximately 100 μm.
【0023】この行電極基板1Aと列電極基板1Bと
を、電極2A,2B側が向かい合うように対向して貼り
合わせた。このような配向処理を施したパネルでは、ね
じれ力を持たないネマティック液晶を注入すると、左回
りの螺旋18をえがいて、配向する方がプレチルトの影
響によりエネルギー的に安定となる。このようなパネル
に、メルク社製の液晶材料ZLI−4792に、右回り
のねじれ力を有するカイラル材料R−811を添加し
て、カイラルピッチが約80μmとなるように調合され
た液晶を注入した。The row electrode substrate 1A and the column electrode substrate 1B were bonded to each other so that the electrodes 2A and 2B face each other. When a nematic liquid crystal having no twisting force is injected into a panel subjected to such an alignment treatment, the counterclockwise spiral 18 is picked up, and the orientation becomes more stable in terms of energy due to the influence of pretilt. To such a panel, a liquid crystal material ZLI-4792 manufactured by Merck & Co., Ltd. was added with a chiral material R-811 having a clockwise twisting force, and a liquid crystal prepared so that a chiral pitch was about 80 μm was injected. .
【0024】以上の配向膜材料、液晶材料を用いた場合
のプレチルト角を知るために、クリスタルローテーショ
ン法による測定を行った。測定には同じ配向膜を塗布し
て、ラビング処理を施した2枚の透明基板を、セル厚2
0μmでホモジニアス配向になるように貼り合わせ、液
晶材料を注入した測定用のセルを用いた。測定の結果、
JALS−199はプレチルト角が約3°、JALS−
194に紫外光を照射しない場合は約5°、JALS−
194に上記条件で紫外光を照射した場合は約1°であ
ることが判明した。つまり、本実施例の製造方法により
作製したパネルの液晶配向が、図1のような構成をとる
ことが確認できた。In order to know the pretilt angle in the case of using the above alignment film material and liquid crystal material, measurement by the crystal rotation method was performed. For the measurement, the same alignment film was applied, and two transparent substrates that had been rubbed were used to measure the cell thickness 2
A cell for measurement was used in which the cells were bonded so as to have a homogeneous orientation at 0 μm and a liquid crystal material was injected. As a result of the measurement,
JALS-199 has a pre-tilt angle of about 3 °, JALS-
If you do not irradiate 194 with ultraviolet light, about 5 °, JALS-
It was found to be about 1 ° when 194 was irradiated with ultraviolet light under the above conditions. That is, it was confirmed that the liquid crystal orientation of the panel manufactured by the manufacturing method of the present example has the configuration shown in FIG.
【0025】上記のようにして作製された液晶パネルの
両側に偏光板をクロスニコルとなるように貼り付け、液
晶表示装置が得られた。この液晶パネルに電圧を印加し
て、パネルの上下方向での、透過率に対する視角依存性
を測定したところ、図5のような特性を示し、パネルの
基板法線に対して上下方向で対称な特性を得ることがで
きた。Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to form a crossed nicols to obtain a liquid crystal display device. When a voltage was applied to this liquid crystal panel and the viewing angle dependence on the transmittance in the vertical direction of the panel was measured, it showed the characteristics shown in FIG. 5 and was symmetrical in the vertical direction with respect to the substrate normal line of the panel. The characteristics could be obtained.
【0026】(実施例2)まず、透明な行電極2Aの形
成されたガラスの一方の基板1A上に、日本合成ゴム社
製のJALS−199ポリイミド配向膜をオフセット印
刷した。配向膜はこの印刷により、全画面に均一に形成
されている。Example 2 First, a JALS-199 polyimide alignment film manufactured by Japan Synthetic Rubber Co., Ltd. was offset-printed on one glass substrate 1A on which transparent row electrodes 2A were formed. The alignment film is formed uniformly on the entire screen by this printing.
【0027】次に透明な列電極2Bの形成された他方の
基板1B上に、同様に日本合成ゴム社製のポリイミドJ
ALS−194を印刷した。両基板を180℃で30分
加熱した後、レーヨン布により、行電極基板(一方の基
板)1Aと列電極基板(他方の基板)1Bに、それぞれ
図2のような方向16、17でラビング処理を施した。Next, on the other substrate 1B on which the transparent column electrodes 2B are formed, a polyimide J made by Nippon Synthetic Rubber Co., Ltd. is also used.
ALS-194 was printed. After heating both substrates at 180 ° C. for 30 minutes, a row electrode substrate (one substrate) 1A and a column electrode substrate (other substrate) 1B are rubbed with rayon cloth in directions 16 and 17 as shown in FIG. 2, respectively. Was applied.
【0028】次いで、図3のような200μmのピッチ
でストライプ状にパターン化されたフォトマスク19を
用いて、基板1Bに低圧水銀ランプにより紫外光を照射
した。照射エネルギーは27mW/cm2 で照射時間は
1分であった。これによって、光照射領域20と非照射
領域21が、図4のように、ほぼ100μmの幅でスト
ライプ状に形成された。Then, the substrate 1B was irradiated with ultraviolet light from a low-pressure mercury lamp using the photomask 19 patterned in stripes at a pitch of 200 μm as shown in FIG. The irradiation energy was 27 mW / cm 2 and the irradiation time was 1 minute. As a result, the light irradiation region 20 and the non-irradiation region 21 were formed in stripes with a width of about 100 μm as shown in FIG.
【0029】この行電極基板1Aと列電極基板1Bと
を、電極2A,2B側が向かい合うように対向して貼り
合わせた。このような配向処理を施したパネルでは、ね
じれ力を持たないネマティック液晶を注入すると、左回
りの螺旋18をえがいて、配向する方がプレチルトの影
響によりエネルギー的に安定となる。このようなパネル
に、メルク社製の液晶材料ZLI−4792に、右回り
のねじれ力を有するカイラル材料R−811を添加し
て、カイラルピッチが約80μmとなるように調合され
た液晶を注入した。The row electrode substrate 1A and the column electrode substrate 1B were bonded to each other so that the electrodes 2A and 2B face each other. When a nematic liquid crystal having no twisting force is injected into a panel subjected to such an alignment treatment, the counterclockwise spiral 18 is picked up, and the orientation becomes more stable in terms of energy due to the influence of pretilt. To such a panel, a liquid crystal material ZLI-4792 manufactured by Merck & Co., Ltd. was added with a chiral material R-811 having a clockwise twisting force, and a liquid crystal prepared so that a chiral pitch was about 80 μm was injected. .
【0030】以上の配向膜材料、液晶材料を用いた場合
のプレチルト角を知るために、クリスタルローテーショ
ン法による測定を行った。測定には、同じ配向膜を塗布
して、ラビング処理を施した2枚の透明基板を、セル厚
20μmでホモジニアス配向になるように貼り合わせ、
液晶材料を注入した測定用のセルを用いた。測定の結
果、JALS−199はプレチルト角が約3°、JAL
S−194に紫外光を照射しない場合は約5°、JAL
S−194に上記条件で紫外光を照射した場合は約1°
であることが判明した。つまり、本実施例の製造方法に
より作製したパネルの液晶配向が、図1のような構成を
とることが確認できた。In order to know the pretilt angle in the case of using the above alignment film material and liquid crystal material, the measurement by the crystal rotation method was performed. For the measurement, the same alignment film is applied and two rubbing-processed transparent substrates are attached to each other so as to have a homogeneous alignment with a cell thickness of 20 μm.
A measurement cell filled with a liquid crystal material was used. As a result of measurement, JALS-199 has a pretilt angle of about 3 °,
About 5 ° when S-194 is not irradiated with UV light, JAL
Approximately 1 ° when S-194 is irradiated with UV light under the above conditions
It turned out to be That is, it was confirmed that the liquid crystal orientation of the panel manufactured by the manufacturing method of the present example has the configuration shown in FIG.
【0031】上記のようにして作製された液晶パネルの
両側に偏光板をクロスニコルとなるように貼り付け、液
晶表示装置が得られた。この液晶パネルに電圧を印加し
て、パネルの上下方向での、透過率に対する視角依存性
を測定したところ、図5のような特性を示し、パネルの
基板法線に対して上下方向で対称な特性を得ることがで
きた。Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to form a crossed Nicols, whereby a liquid crystal display device was obtained. When a voltage was applied to this liquid crystal panel and the viewing angle dependence on the transmittance in the vertical direction of the panel was measured, it showed the characteristics shown in FIG. 5 and was symmetrical in the vertical direction with respect to the substrate normal line of the panel. The characteristics could be obtained.
【0032】(実施例3)まず、透明な行電極2Aの形
成されたガラスの一方の基板1A上に、日本合成ゴム社
製のJALS−199ポリイミド配向膜をオフセット印
刷した。配向膜はこの印刷により、全画面に均一に形成
されている。Example 3 First, a JALS-199 polyimide alignment film manufactured by Japan Synthetic Rubber Co., Ltd. was offset-printed on one glass substrate 1A on which transparent row electrodes 2A were formed. The alignment film is formed uniformly on the entire screen by this printing.
【0033】次に透明な列電極2Bの形成された他方の
基板1B上に、同様に日本合成ゴム社製のポリイミドJ
ALS−194を印刷した。両基板を180℃で30分
加熱した。次いで、図3のような200μmのピッチで
ストライプ状にパターン化されたフォトマスク19を用
いて、基板1Bに超高圧水銀ランプにより紫外光を照射
した。照射エネルギーは55mW/cm2 で照射時間は
5分であった。これによって、光照射領域5と非照射領
域7が、図4のように、ほぼ100μmの幅でストライ
プ状に形成された。これらの基板にレーヨン布により、
行電極基板(一方の基板)1Aと列電極基板(他方の基
板)1Bに、それぞれ図2のような方向16、17でラ
ビング処理を施した。Next, on the other substrate 1B on which the transparent column electrodes 2B are formed, a polyimide J manufactured by Nippon Synthetic Rubber Co., Ltd. is also used.
ALS-194 was printed. Both substrates were heated at 180 ° C. for 30 minutes. Then, the substrate 1B was irradiated with ultraviolet light from an ultra-high pressure mercury lamp using a photomask 19 patterned in a stripe shape at a pitch of 200 μm as shown in FIG. The irradiation energy was 55 mW / cm 2 and the irradiation time was 5 minutes. As a result, the light-irradiated region 5 and the non-irradiated region 7 were formed in stripes with a width of about 100 μm as shown in FIG. With rayon cloth on these substrates,
The row electrode substrate (one substrate) 1A and the column electrode substrate (other substrate) 1B were rubbed in directions 16 and 17 as shown in FIG. 2, respectively.
【0034】この行電極基板1Aと列電極基板1Bと
を、電極2A,2B側が向かい合うように対向して貼り
合わせた。このような配向処理を施したパネルでは、ね
じれ力を持たないネマティック液晶を注入すると、左回
りの螺旋18をえがいて、配向する方がプレチルトの影
響によりエネルギー的に安定となる。このようなパネル
に、メルク社製の液晶材料ZLI−4792に、右回り
のねじれ力を有するカイラル材料R−811を添加し
て、カイラルピッチが約80μmとなるように調合され
た液晶を注入した。The row electrode substrate 1A and the column electrode substrate 1B were attached to each other so that the electrodes 2A and 2B face each other. When a nematic liquid crystal having no twisting force is injected into a panel subjected to such an alignment treatment, the counterclockwise spiral 18 is picked up, and the orientation becomes more stable in terms of energy due to the influence of pretilt. To such a panel, a liquid crystal material ZLI-4792 manufactured by Merck & Co., Ltd. was added with a chiral material R-811 having a clockwise twisting force, and a liquid crystal prepared so that a chiral pitch was about 80 μm was injected. .
【0035】以上の配向膜材料、液晶材料を用いた場合
のプレチルト角を知るために、クリスタルローテーショ
ン法による測定を行った。測定には、同じ配向膜を塗布
して、ラビング処理を施した2枚の透明基板を、セル厚
20μmでホモジニアス配向になるように貼り合わせ、
液晶材料を注入した測定用のセルを用いた。測定の結
果、JALS−199はプレチルト角が約3°、JAL
S−194に紫外光を照射しない場合は約5°、JAL
S−194に上記条件で紫外光を照射した場合は約1°
であることが判明した。つまり、本実施例の製造方法で
作製したパネルの液晶配向が、図1のような構成をとる
ことが確認できた。In order to know the pretilt angle when the above alignment film material and liquid crystal material are used, measurement by the crystal rotation method was performed. For the measurement, the same alignment film is applied and two rubbing-processed transparent substrates are attached to each other so as to have a homogeneous alignment with a cell thickness of 20 μm.
A measurement cell filled with a liquid crystal material was used. As a result of measurement, JALS-199 has a pretilt angle of about 3 °,
About 5 ° when S-194 is not irradiated with UV light, JAL
Approximately 1 ° when S-194 is irradiated with UV light under the above conditions
It turned out to be That is, it was confirmed that the liquid crystal orientation of the panel manufactured by the manufacturing method of this example had the configuration shown in FIG.
【0036】上記のようにして作製された液晶パネルの
両側に偏光板をクロスニコルとなるように貼り付け、液
晶表示装置が得られた。この液晶パネルに電圧を印加し
て、パネルの上下方向での透過率に対する視角依存性を
測定したところ、実施例1と同様、図5のような特性を
示し、パネルの基板法線に対して上下方向で対称な特性
を得ることができた。Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to form a crossed nicols to obtain a liquid crystal display device. A voltage was applied to this liquid crystal panel, and the viewing angle dependence of the transmittance in the vertical direction of the panel was measured. As a result, similar to Example 1, the characteristics as shown in FIG. It was possible to obtain symmetrical characteristics in the vertical direction.
【0037】本実施例のように、紫外光を照射後にラビ
ング配向処理を行っても、ラビング後に紫外光を照射す
るのと、ほぼ同様な結果が得られた。Even when the rubbing alignment treatment was performed after the irradiation of the ultraviolet light as in this example, almost the same result as the irradiation of the ultraviolet light after the rubbing was obtained.
【0038】(実施例4)まず、透明な行電極2Aの形
成されたガラスの一方の基板1A上に、日本合成ゴム社
製のJALS−194ポリイミド配向膜をオフセット印
刷した。配向膜はこの印刷により、全画面に均一に形成
されている。Example 4 First, a JALS-194 polyimide alignment film manufactured by Japan Synthetic Rubber Co., Ltd. was offset-printed on one substrate 1A made of glass on which transparent row electrodes 2A were formed. The alignment film is formed uniformly on the entire screen by this printing.
【0039】次に透明な列電極2Bの形成された他方の
基板1B上に、同様に日本合成ゴム社製のポリイミドJ
ALS−194を印刷した。両基板を180℃で30分
加熱した。次いで、基板1Aに高圧水銀ランプにより紫
外光を照射した。照射エネルギーは55mW/cm2 で
照射時間は3分であった。さらに、図3のような200
μmのピッチでストライプ状にパターン化されたフォト
マスク19を用いて、基板1Bに高圧水銀ランプにより
紫外光を照射した。照射エネルギーは55mW/cm2
で照射時間は5分であった。これによって、光照射領域
20と非照射領域21が、図4のように、ほぼ100μ
mの幅でストライプ状に形成された。これらの基板にレ
ーヨン布により、行電極基板(一方の基板)1Aと列電
極基板(他方の基板)1Bに、それぞれ図2のような方
向16、17でラビング処理を施した。Next, on the other substrate 1B on which the transparent column electrodes 2B are formed, a polyimide J made by Nippon Synthetic Rubber Co., Ltd. is also used.
ALS-194 was printed. Both substrates were heated at 180 ° C. for 30 minutes. Then, the substrate 1A was irradiated with ultraviolet light from a high pressure mercury lamp. The irradiation energy was 55 mW / cm 2 and the irradiation time was 3 minutes. Furthermore, as shown in FIG.
Using a photomask 19 patterned in stripes at a pitch of μm, the substrate 1B was irradiated with ultraviolet light from a high pressure mercury lamp. Irradiation energy is 55 mW / cm 2
The irradiation time was 5 minutes. As a result, the light irradiation area 20 and the non-irradiation area 21 are almost 100 μm as shown in FIG.
It was formed in a stripe shape with a width of m. These substrates were rubbed with a rayon cloth on the row electrode substrate (one substrate) 1A and the column electrode substrate (other substrate) 1B in directions 16 and 17 as shown in FIG.
【0040】この行電極基板1Aと列電極基板1Bと
を、電極2A,2B側が向かい合うように対向して貼り
合わせた。このような配向処理を施したパネルでは、ね
じれ力を持たないネマティック液晶を注入すると、左回
りの螺旋18をえがいて、配向する方がプレチルトの影
響によりエネルギー的に安定となる。このようなパネル
に、メルク社製の液晶材料ZLI−4792に、右回り
のねじれ力を有するカイラル材料R−811を添加し
て、カイラルピッチが約80μmとなるように調合され
た液晶を注入した。The row electrode substrate 1A and the column electrode substrate 1B were bonded to each other so that the electrodes 2A and 2B face each other. When a nematic liquid crystal having no twisting force is injected into a panel subjected to such an alignment treatment, the counterclockwise spiral 18 is picked up, and the orientation becomes more stable in terms of energy due to the influence of pretilt. To such a panel, a liquid crystal material ZLI-4792 manufactured by Merck & Co., Ltd. was added with a chiral material R-811 having a clockwise twisting force, and a liquid crystal prepared so that a chiral pitch was about 80 μm was injected. .
【0041】以上の配向膜材料、液晶材料を用いた場合
のプレチルト角を知るために、クリスタルローテーショ
ン法による測定を行った。測定には、同じ配向膜を塗布
して、ラビング処理を施した2枚の透明基板を、セル厚
20μmでホモジニアス配向になるように貼り合わせ、
液晶材料を注入した測定用のセルを用いた。測定の結
果、JALS−194に紫外光を照射しない場合は約5
°、紫外光を3分照射した場合は約3゜、紫外光を5分
照射した場合は約1°であることが判明した。つまり、
本実施例の製造方法で作製したパネルの液晶配向が、図
1のような構成をとることが確認できた。In order to know the pretilt angle in the case of using the above alignment film material and liquid crystal material, measurement by the crystal rotation method was performed. For the measurement, the same alignment film is applied and two rubbing-processed transparent substrates are attached to each other so as to have a homogeneous alignment with a cell thickness of 20 μm.
A measurement cell filled with a liquid crystal material was used. As a result of the measurement, when the JALS-194 is not irradiated with ultraviolet light, it is about 5
It was found that the temperature was about 3 ° when irradiated with ultraviolet light for 3 minutes, and about 1 ° when irradiated with ultraviolet light for 5 minutes. That is,
It was confirmed that the liquid crystal orientation of the panel manufactured by the manufacturing method of the present example had the configuration shown in FIG.
【0042】上記のようにして作製された液晶パネルの
両側に偏光板をクロスニコルとなるように貼り付け、液
晶表示装置が得られた。この液晶パネルに電圧を印加し
て、パネルの上下方向での透過率に対する視角依存性を
測定したところ、図5のような特性を示し、パネルの基
板法線に対して上下方向で対称な特性を得ることができ
た。Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to form a crossed nicols to obtain a liquid crystal display device. When a voltage was applied to this liquid crystal panel and the viewing angle dependence of the transmittance in the vertical direction of the panel was measured, the characteristics shown in FIG. 5 were exhibited, and the characteristics were symmetrical in the vertical direction with respect to the panel normal to the panel. I was able to get
【0043】本実施例のように、紫外光の照射エネルギ
ーを適当にコントロールすることによって、一種類の配
向膜材料を用いるだけで、プレチルト角を変化させ、目
的の液晶表示素子が得られることが確認できた。By appropriately controlling the irradiation energy of ultraviolet light as in this example, the pretilt angle can be changed and the intended liquid crystal display device can be obtained by using only one kind of alignment film material. It could be confirmed.
【0044】(実施例5)まず、透明な行電極2Aの形
成されたガラスの一方の基板1A上に、日本合成ゴム社
製のJALS−199ポリイミド配向膜をオフセット印
刷した。配向膜はこの印刷により、全画面に均一に形成
されている。Example 5 First, a JALS-199 polyimide alignment film manufactured by Japan Synthetic Rubber Co., Ltd. was offset printed on one substrate 1A made of glass on which transparent row electrodes 2A were formed. The alignment film is formed uniformly on the entire screen by this printing.
【0045】次に透明な列電極2Bの形成された他方の
基板1B上に、同様に日本合成ゴム社製のポリイミドJ
ALS−194を印刷した。両基板を180℃で30分
加熱した後、レーヨン布により、行電極基板(一方の基
板)1Aと列電極基板(他方の基板)1Bに、それぞれ
図2のような方向16、17でラビング処理を施した。Next, on the other substrate 1B on which the transparent column electrodes 2B are formed, a polyimide J made by Nippon Synthetic Rubber Co., Ltd. is also used.
ALS-194 was printed. After heating both substrates at 180 ° C. for 30 minutes, a row electrode substrate (one substrate) 1A and a column electrode substrate (other substrate) 1B are rubbed with rayon cloth in directions 16 and 17 as shown in FIG. 2, respectively. Was applied.
【0046】次いで、図3のような200μmのピッチ
でストライプ状にパターン化されたフォトマスク17を
用いて、基板1Bに高圧水銀ランプにより紫外光を照射
した。照射エネルギーは55mW/cm2 で照射時間は
3分であった。これによって、光照射領域20と非照射
領域21が、図4のように、ほぼ100μmの幅でスト
ライプ状に形成された。基板1Bをイソプロピルアルコ
ール中に浸漬処理し、120℃で30分乾燥させた。Next, the substrate 1B was irradiated with ultraviolet light from a high-pressure mercury lamp using the photomask 17 patterned in stripes at a pitch of 200 μm as shown in FIG. The irradiation energy was 55 mW / cm 2 and the irradiation time was 3 minutes. As a result, the light irradiation region 20 and the non-irradiation region 21 were formed in stripes with a width of about 100 μm as shown in FIG. Substrate 1B was immersed in isopropyl alcohol and dried at 120 ° C. for 30 minutes.
【0047】この行電極基板1Aと列電極基板1Bと
を、電極2A,2B側が向かい合うように対向して貼り
合わせた。このような配向処理を施したパネルでは、ね
じれ力を持たないネマティック液晶を注入すると、左回
りの螺旋18をえがいて、配向する方がプレチルトの影
響によりエネルギー的に安定となる。このようなパネル
に、メルク社製の液晶材料ZLI−4792に、右回り
のねじれ力を有するカイラル材料R−811を添加し
て、カイラルピッチが約80μmとなるように調合され
た液晶を注入した。The row electrode substrate 1A and the column electrode substrate 1B were bonded to each other so that the electrodes 2A and 2B face each other. When a nematic liquid crystal having no twisting force is injected into a panel subjected to such an alignment treatment, the counterclockwise spiral 18 is picked up, and the orientation becomes more stable in terms of energy due to the influence of pretilt. To such a panel, a liquid crystal material ZLI-4792 manufactured by Merck & Co., Ltd. was added with a chiral material R-811 having a clockwise twisting force, and a liquid crystal prepared so that a chiral pitch was about 80 μm was injected. .
【0048】以上の配向膜材料、液晶材料を用いた場合
の、プレチルト角を知るために、クリスタルローテーシ
ョン法による測定を行った。測定には、同じ配向膜を塗
布して、ラビング処理を施した2枚の透明基板を、セル
厚20μmでホモジニアス配向になるように貼り合わ
せ、液晶材料を注入した測定用のセルを用いた。測定の
結果、JALS−199はプレチルト角が約3°、イソ
プロピルアルコールで処理したJALS−194では、
紫外光を照射しない場合は約5°、紫外光を照射した場
合は約1°であることが判明した。イソプロピルアルコ
ールで処理することによって、より短時間の紫外光照射
で、大きなプレチルト変化を達成することができた。In order to know the pretilt angle in the case of using the above alignment film material and liquid crystal material, measurement by the crystal rotation method was performed. In the measurement, a measurement cell in which the same alignment film was applied and two rubbing-processed transparent substrates were attached to each other so as to have a homogeneous alignment with a cell thickness of 20 μm and a liquid crystal material was injected was used. As a result of the measurement, JALS-199 has a pretilt angle of about 3 °, and JALS-194 treated with isopropyl alcohol
It was found that it was about 5 ° when not irradiated with ultraviolet light, and about 1 ° when irradiated with ultraviolet light. By treating with isopropyl alcohol, a large pretilt change could be achieved by irradiation with ultraviolet light for a shorter time.
【0049】本実施例の製造方法により作製したパネル
の液晶配向が、図1のような構成をとることが確認でき
た。以上のようにして作製された液晶パネルの両側に偏
光板をクロスニコルとなるように貼り付け、液晶表示装
置が得られた。この液晶パネルに電圧を印加して、パネ
ルの上下方向での、透過率に対する視角依存性を測定し
たところ、図5のような特性を示し、パネルの基板法線
に対して上下方向で対称な特性を得ることができた。It was confirmed that the liquid crystal orientation of the panel manufactured by the manufacturing method of this example had a structure as shown in FIG. Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to form a crossed Nicols, whereby a liquid crystal display device was obtained. When a voltage was applied to this liquid crystal panel and the viewing angle dependence on the transmittance in the vertical direction of the panel was measured, it showed the characteristics shown in FIG. 5 and was symmetrical in the vertical direction with respect to the substrate normal line of the panel. The characteristics could be obtained.
【0050】本実施例では、処理溶剤としてイソプロピ
ルアルコールを用いたが、メタノール、エタノール、プ
ロパノール、ブタノールなどのアルコール系溶媒、ジエ
チルエーテルや、メチルエチルエーテルなどのエーテル
系溶媒、アセトン、メチルエチルケトンなどのケトン系
溶剤、ジクロルメタン、クロロホルム、ジクロルエタン
などのハロゲン系溶剤、水(温水)等の極性溶剤がプレ
チルト角変化に効果がある。In this embodiment, isopropyl alcohol was used as the treatment solvent, but alcohol solvents such as methanol, ethanol, propanol and butanol, ether solvents such as diethyl ether and methyl ethyl ether, and ketones such as acetone and methyl ethyl ketone. A system solvent, a halogen solvent such as dichloromethane, chloroform, and dichloroethane, and a polar solvent such as water (warm water) are effective in changing the pretilt angle.
【0051】一方の基板には所定のプレチルト角を有す
る配向処理が施され、他方の基板には前記所定のプレチ
ルト角よりも低い角度のプレチルト角を有する部分と、
前記所定のプレチルト角よりも高い角度のプレチルト角
を有する部分を有する液晶パネルを得るためには、一方
の基板側に紫外光照射するだけでは、2種類の配向膜材
料を用いる必要がある。一方の基板上に形成した配向膜
には全面に紫外光を照射し、他方の基板上に形成した配
向膜には所定のパターンを有するマスクを介してそれよ
り強い表面改質効果をもつ紫外光の照射を行なうことに
より、同一の配向膜材料を使って、必要なプレチルト関
係を達成することが可能になる。One of the substrates is subjected to an alignment treatment having a predetermined pretilt angle, and the other substrate is provided with a portion having a pretilt angle lower than the predetermined pretilt angle.
In order to obtain a liquid crystal panel having a portion having a pretilt angle higher than the predetermined pretilt angle, it is necessary to use two kinds of alignment film materials only by irradiating one substrate with ultraviolet light. The alignment film formed on one substrate is irradiated with ultraviolet light over the entire surface, and the alignment film formed on the other substrate is exposed to ultraviolet light having a stronger surface modification effect through a mask having a predetermined pattern. By performing the irradiation of 1), it becomes possible to achieve the required pretilt relationship using the same alignment film material.
【0052】(実施例6)次に本発明の他実施例につい
て図6、図7を参照しながら説明する。(Embodiment 6) Next, another embodiment of the present invention will be described with reference to FIGS.
【0053】まず、透明な電極の形成されたガラス基板
(一方の基板)1A’上に、配向膜JALS−199を
オフセット印刷した。配向膜はこの印刷により、全画面
に均一に形成されていた。次にマトリクス状に絵素22
が配列されており、各絵素22に薄膜トランジスタ素子
23が形成されているアクティブマトリクスアレイ基板
1B’に、同様にJALS−194配向膜24を画面全
体に印刷した。これら両基板を190℃で30分加熱
し、配向膜を硬化させた。次に、レーヨン布により、電
極基板とアクティブマトリクスアレイ基板1B’に、そ
れぞれ図7に示す方向27、28でラビング処理を施し
た。First, an alignment film JALS-199 was offset-printed on a glass substrate (one substrate) 1A 'on which transparent electrodes were formed. The alignment film was uniformly formed on the entire screen by this printing. Next, the picture elements 22 are arranged in a matrix.
Similarly, on the active matrix array substrate 1B ′ in which the thin film transistor elements 23 are formed in each picture element 22, the JALS-194 alignment film 24 is similarly printed on the entire screen. Both of these substrates were heated at 190 ° C. for 30 minutes to cure the alignment film. Then, the electrode substrate and the active matrix array substrate 1B ′ were rubbed with rayon cloth in directions 27 and 28 shown in FIG. 7, respectively.
【0054】さらに、アクティブマトリクスアレイ基板
1B’に形成されたJALS−194配向膜24に、図
6(c)のように基板上の各絵素22の上半分が遮光さ
れているマスク26を用いて、紫外光を露光した。超高
圧水銀ランプから照射した紫外光は、55mW/cm2
で照射時間は5分であった。このような工程を経て、図
6(d)のように絵素の上半分には光非照射領域29
が、絵素の下半分には光照射領域30がアクティブマト
リクス基板1B’の表面に形成された。この両基板を、
電極側が向かい合うように対向させて貼り合わせた。各
配向膜表面でのプレチルト角は、実施例1で述べたとお
りである。Further, as shown in FIG. 6C, a mask 26 in which the upper half of each pixel 22 on the substrate is shielded is used for the JALS-194 orientation film 24 formed on the active matrix array substrate 1B '. And exposed to ultraviolet light. The ultraviolet light emitted from the ultra-high pressure mercury lamp was 55 mW / cm 2
The irradiation time was 5 minutes. Through these steps, a light non-irradiated region 29 is formed in the upper half of the picture element as shown in FIG.
However, a light irradiation region 30 was formed on the surface of the active matrix substrate 1B ′ in the lower half of the picture element. Both these boards,
The electrodes were attached so that the electrode sides face each other. The pretilt angle on the surface of each alignment film is as described in Example 1.
【0055】このようなパネルに、メルク社製の液晶材
料ZLI−4792に、右回りのねじれ力を有するカイ
ラル材料R−811を添加して、カイラルピッチが約8
0μmとなるように調合された液晶を注入した。以上の
ようにして作製された液晶パネルの両側に偏光板をクロ
スニコルとなるように貼り付け、液晶表示装置が得られ
た。この液晶パネルに電圧を印加して、パネルの上下方
向での、透過率に対する視角依存性を測定したところ、
実施例1と同様な視角特性を得ることができ、上下方向
視角特性の非対称性を解消することができた。To such a panel, a liquid crystal material ZLI-4792 manufactured by Merck & Co., Ltd. was added with a chiral material R-811 having a clockwise twisting force to obtain a chiral pitch of about 8.
A liquid crystal prepared to have a thickness of 0 μm was injected. Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to form a crossed Nicols, whereby a liquid crystal display device was obtained. By applying a voltage to this liquid crystal panel and measuring the viewing angle dependence on the transmittance in the vertical direction of the panel,
The same viewing angle characteristics as in Example 1 could be obtained, and the asymmetry of the vertical viewing angle characteristics could be eliminated.
【0056】さらに、この液晶表示装置を投写機に組み
込んで、スクリーン上に画像を拡大投写したところ、均
一で良好な表示を得ることができた。なお、アクティブ
マトリクス型液晶表示パネルにおいては、パネルのイン
ピーダンスが高くないと、表示性能が劣化する。パネル
のインピーダンスには、配向膜の影響が大きいことが知
られているが、本発明の液晶表示装置の製造方法におい
て、紫外光照射によって、パネルのインピーダンスの劣
化はほとんど起こらず、高インピーダンスが保持でき
る。したがって、本製造方法により作製した液晶表示装
置は、視角特性に優れるのみならず、コントラスト低下
や表示ムラが発生せず、非常に表示品位が高い。Further, when this liquid crystal display device was incorporated into a projector and an image was enlarged and projected on a screen, a uniform and excellent display could be obtained. In the active matrix type liquid crystal display panel, the display performance is degraded unless the impedance of the panel is high. It is known that the influence of the alignment film is large on the impedance of the panel, but in the method for manufacturing the liquid crystal display device of the present invention, the deterioration of the impedance of the panel is hardly caused by the irradiation of ultraviolet light, and the high impedance is maintained. it can. Therefore, the liquid crystal display device manufactured by the present manufacturing method is not only excellent in viewing angle characteristics, but also does not cause a decrease in contrast or display unevenness, and has a very high display quality.
【0057】[0057]
【発明の効果】上記のように本発明液晶表示装置の製造
方法によれば、紫外光を照射することによってプレチル
ト角を制御でき、液晶パネルの近接した微小領域間で、
上下方向において逆の視角特性を有するような配向処理
が施された構成の液晶パネルを、容易に作製することが
できる。これによって、画面のいかなる部分でも、パネ
ルの上下方向に対する視角特性をほぼ対称にすることが
できるので、画面内で不均一な輝度ムラの生じない、安
定した高画質な液晶表示装置を製造することが可能とな
った。As described above, according to the method of manufacturing a liquid crystal display device of the present invention, the pretilt angle can be controlled by irradiating with ultraviolet light, and between the adjacent minute regions of the liquid crystal panel,
It is possible to easily manufacture a liquid crystal panel that has been subjected to an alignment treatment so as to have opposite viewing angle characteristics in the vertical direction. This makes it possible to make the viewing angle characteristics in the vertical direction of the panel almost symmetrical in any part of the screen, and thus to manufacture a stable, high-quality liquid crystal display device without uneven brightness in the screen. Became possible.
【図1】本発明で製造する液晶表示装置の液晶分子の配
向を表す構成断面図FIG. 1 is a structural cross-sectional view showing the alignment of liquid crystal molecules of a liquid crystal display device manufactured by the present invention.
【図2】実施例1〜5におけるラビング処理方向を示し
た平面図FIG. 2 is a plan view showing a rubbing processing direction in Examples 1 to 5;
【図3】実施例1〜5で用いるフォトマスクの一部を表
す平面図FIG. 3 is a plan view showing a part of a photomask used in Examples 1 to 5.
【図4】実施例1〜5で形成される紫外光照射領域と非
照射領域のパターンを示す平面図FIG. 4 is a plan view showing patterns of an ultraviolet light irradiation region and a non-irradiation region formed in Examples 1 to 5.
【図5】本発明の実施例1で製造した液晶表示装置の電
圧印加時における光透過率の視角特性図FIG. 5 is a view angle characteristic diagram of light transmittance when a voltage is applied to the liquid crystal display device manufactured in Example 1 of the present invention.
【図6】(a)(b)(c)(d)は実施例6における
各配向膜形成工程図6 (a), (b), (c), and (d) are process diagrams of forming each alignment film in Example 6.
【図7】実施例6におけるラビング処理方向を示した平
面図FIG. 7 is a plan view showing the rubbing processing direction in the sixth embodiment.
【図8】従来の液晶表示装置におけるラビング処理方向
を示した平面図FIG. 8 is a plan view showing a rubbing processing direction in a conventional liquid crystal display device.
【図9】従来の液晶表示装置の電圧印加時における光透
過率の視角特性図FIG. 9 is a view angle characteristic diagram of light transmittance when a voltage is applied to a conventional liquid crystal display device.
【図10】液晶表示装置におけるラビング方向と液晶分
子の配向方向との関係説明図FIG. 10 is an explanatory diagram of a relationship between a rubbing direction and an alignment direction of liquid crystal molecules in a liquid crystal display device.
1A,1A’ 一方の基板 1B,1B’ 他方の基板 2A,2B 透明電極 3,5,7 配向膜 4,6,15 プレチルト角 18 螺旋 1A, 1A 'One substrate 1B, 1B' Other substrate 2A, 2B Transparent electrode 3, 5, 7 Alignment film 4, 6, 15 Pretilt angle 18 Spiral
Claims (5)
する配向処理が施され、他方の基板には前記所定のプレ
チルト角よりも低い角度のプレチルト角を有する部分
と、前記所定のプレチルト角よりも高い角度のプレチル
ト角を有する部分とが、所望の形状で配置されて配向処
理が施されており、かつ2つの前記基板間に、ねじれ力
を持たぬネマティック液晶材料では、前記プレチルト角
によって規定される所定の方向の螺旋構造をとりながら
配向する液晶パネルであって、前記液晶パネルに前記所
定の方向と反対の螺旋構造をとるようなねじれ力を有す
るネマティック液晶が封入されている液晶表示装置の製
造工程において、他方の基板上に高分子配向膜を形成
し、ラビング処理を行なった後、所定のパターンを有す
るマスクを介して紫外光を照射することによって、配向
膜のプレチルト角を部分的に非照射部と変化させる工程
を有することを特徴とする液晶表示装置の製造法。1. One of the substrates is subjected to an alignment treatment having a predetermined pretilt angle, and the other substrate is provided with a portion having a pretilt angle lower than the predetermined pretilt angle and the predetermined pretilt angle. And a portion having a high pretilt angle are arranged in a desired shape and subjected to alignment treatment, and a nematic liquid crystal material having no twisting force between the two substrates is defined by the pretilt angle. A liquid crystal panel which is oriented while having a spiral structure in a predetermined direction, wherein a nematic liquid crystal having a twisting force having a spiral structure opposite to the predetermined direction is enclosed in the liquid crystal panel. In the manufacturing process of, the polymer alignment film is formed on the other substrate, and after rubbing treatment, ultraviolet light is passed through a mask having a predetermined pattern. And a step of partially changing the pretilt angle of the alignment film to a non-irradiated portion by irradiating the liquid crystal display device.
において、他方の基板上に高分子配向膜を形成し、所定
のパターンを有するマスクを介して紫外光を照射した
後、ラビング処理を行なうことによって、配向膜のプレ
チルト角を部分的に非照射部と変化させる工程を有する
ことを特徴とする液晶表示装置の製造法。2. The process of manufacturing a liquid crystal display device according to claim 1, wherein a polymer alignment film is formed on the other substrate, and ultraviolet rays are radiated through a mask having a predetermined pattern, followed by rubbing treatment. A method for manufacturing a liquid crystal display device, comprising the step of partially changing the pretilt angle of the alignment film to a non-irradiated portion by carrying out.
において、両方の基板に同一材料から成る高分子配向膜
を形成し、一方の基板には全面に紫外光を照射し、他方
の基板には所定のパターンを有するマスクを介して紫外
光の照射を行なう工程を有することを特徴とする請求項
1又は2に記載の液晶表示装置の製造法。3. A process for manufacturing a liquid crystal display device according to claim 1, wherein a polymer alignment film made of the same material is formed on both substrates, one substrate is irradiated with ultraviolet light, and the other substrate is irradiated. 3. The method for manufacturing a liquid crystal display device according to claim 1, further comprising the step of irradiating ultraviolet light through a mask having a predetermined pattern.
で処理する工程を有することを特徴とする請求項1、2
又は3に記載の液晶表示装置の製造法。4. The method according to claim 1, further comprising the step of treating the surface of the alignment film with a solvent after irradiating with ultraviolet light.
Or the method for manufacturing the liquid crystal display device according to item 3.
ことを特徴とする請求項1、2、3又は4に記載の液晶
表示装置の製造法。5. The method for manufacturing a liquid crystal display device according to claim 1, wherein the polymer alignment film is a polyimide material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5127264A JPH06337420A (en) | 1993-05-28 | 1993-05-28 | Manufacture of liquid crystal display device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5127264A JPH06337420A (en) | 1993-05-28 | 1993-05-28 | Manufacture of liquid crystal display device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06337420A true JPH06337420A (en) | 1994-12-06 |
Family
ID=14955729
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5127264A Pending JPH06337420A (en) | 1993-05-28 | 1993-05-28 | Manufacture of liquid crystal display device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06337420A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005321486A (en) * | 2004-05-07 | 2005-11-17 | National Institute Of Advanced Industrial & Technology | Liquid crystal alignment film, liquid crystal display device and manufacturing method thereof |
| JP2006003917A (en) * | 2005-08-12 | 2006-01-05 | Sharp Corp | Liquid crystal display panel and manufacturing method thereof |
| CN111781774A (en) * | 2020-07-13 | 2020-10-16 | 深圳市华星光电半导体显示技术有限公司 | Liquid crystal display panel preparation method and liquid crystal display panel |
-
1993
- 1993-05-28 JP JP5127264A patent/JPH06337420A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005321486A (en) * | 2004-05-07 | 2005-11-17 | National Institute Of Advanced Industrial & Technology | Liquid crystal alignment film, liquid crystal display device and manufacturing method thereof |
| JP2006003917A (en) * | 2005-08-12 | 2006-01-05 | Sharp Corp | Liquid crystal display panel and manufacturing method thereof |
| CN111781774A (en) * | 2020-07-13 | 2020-10-16 | 深圳市华星光电半导体显示技术有限公司 | Liquid crystal display panel preparation method and liquid crystal display panel |
| US11513397B2 (en) | 2020-07-13 | 2022-11-29 | Shenzhen China Stor Optoelectronics Semiconductor Display Technology Co., Ltd. | Manufacturing method of liquid crystal display panel and liquid crystal display panel |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102069822B1 (en) | Liquid crystal display and manufacturing method thereof | |
| JP2877601B2 (en) | Liquid crystal display device and its manufacturing method | |
| JP2693368B2 (en) | Liquid crystal display device and method of manufacturing the same | |
| US6593986B2 (en) | Method for manufacturing a multi-domain liquid crystal cell | |
| US8133409B2 (en) | Liquid crystal display device and method of fabricating the same | |
| US20060280880A1 (en) | Liquid crystal display device and method of fabricating the same | |
| US20020033442A1 (en) | Light controlling device using liquid crystal and method of producing the same | |
| US8830427B2 (en) | Liquid crystal display | |
| US7365817B2 (en) | Multi-domain liquid crystal display and method for manufacturing the same | |
| JPH06175133A (en) | Production of liquid crystal display element | |
| JPH11305256A (en) | Active matrix type liquid crystal display | |
| US7442494B2 (en) | Method for forming alignment layer and method for manufacturing liquid crystal display device using the same | |
| JP4546586B2 (en) | Liquid crystal display element and manufacturing method thereof | |
| JPH1062788A (en) | Liquid crystal display element | |
| JP3107534B2 (en) | Liquid crystal display device and method of manufacturing the same | |
| JP3500547B2 (en) | Method of manufacturing liquid crystal display panel and liquid crystal display panel | |
| JPH06337420A (en) | Manufacture of liquid crystal display device | |
| JPH05281558A (en) | Liquid crystal display element | |
| JP3796050B2 (en) | Liquid crystal electro-optical device and manufacturing method thereof | |
| JPH08262446A (en) | Production of liquid crystal display | |
| JP3860872B2 (en) | Control method of alignment direction of liquid crystal cell | |
| JP3067958B2 (en) | LCD panel | |
| JPH11202338A (en) | Liquid crystal display | |
| JPH07140466A (en) | Pretilt angle control method and liquid crystal display manufacturing method | |
| KR100244025B1 (en) | A method of liquid crystal display device |