[go: up one dir, main page]

JPH06331426A - Instrument difference correction device - Google Patents

Instrument difference correction device

Info

Publication number
JPH06331426A
JPH06331426A JP5117285A JP11728593A JPH06331426A JP H06331426 A JPH06331426 A JP H06331426A JP 5117285 A JP5117285 A JP 5117285A JP 11728593 A JP11728593 A JP 11728593A JP H06331426 A JPH06331426 A JP H06331426A
Authority
JP
Japan
Prior art keywords
viscosity
flow rate
fluid
measured
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5117285A
Other languages
Japanese (ja)
Inventor
Futoshi Takahashi
太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP5117285A priority Critical patent/JPH06331426A/en
Publication of JPH06331426A publication Critical patent/JPH06331426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

(57)【要約】 【目的】 本発明はより精密な器差補正を行い低流量域
から高流量域までの広範囲に高精度な流量計測が可能と
なるよう構成した流量計器差試験装置を提供することを
目的とする。 【構成】 制御回路17は、流量計測手段と器差補正手
段とを有しており、上記磁気センサ14から出力された
流量信号に基づいて流量を演算するとともに、温度セン
サ16からの温度信号より容積変化及び粘度を求め、こ
れに基づいて器差を補正して積算表示器18に計測した
流量を表示させる。制御回路17は、計測単位演算部1
9,瞬時流量演算部20,被測流体粘度演算部21,粘
度補正演算部22,回転子膨張補正演算部23,流体膨
張補正演算部24,器差補正演算部25,データ記憶部
26を有する。
(57) [Summary] [Object] The present invention provides a flow meter instrument difference test device configured to perform more precise instrument difference correction and to enable highly accurate flow rate measurement in a wide range from a low flow rate region to a high flow rate region. The purpose is to do. [Constitution] The control circuit 17 has a flow rate measuring means and a device difference correcting means, calculates the flow rate based on the flow rate signal output from the magnetic sensor 14, and uses the temperature signal from the temperature sensor 16 to calculate the flow rate. The volume change and the viscosity are obtained, and the instrumental error is corrected based on the volume change and the integrated display 18 displays the measured flow rate. The control circuit 17 includes the measurement unit calculator 1
9, an instantaneous flow rate calculation unit 20, a measured fluid viscosity calculation unit 21, a viscosity correction calculation unit 22, a rotor expansion correction calculation unit 23, a fluid expansion correction calculation unit 24, a device difference correction calculation unit 25, and a data storage unit 26. .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は器差補正装置に係り、特
に流量計の器差補正を正確に行い計測精度を高めるよう
構成した器差補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device difference correction device, and more particularly to a device difference correction device configured to accurately correct a device error of a flow meter to improve measurement accuracy.

【0002】[0002]

【従来の技術】例えば、流量計の一つに1回転当たり一
定量を送出する楕円歯車又はまゆ形に形成された一対の
回転子を有し、この回転子の流量に応じた回転数を検出
して流量を計測する容積式流量計がある。この種の容積
式流量計は、計測精度が高く、一般に器差が±0.5%
程度になるように各部品が加工されている。さらに、容
積式流量計においては、器差を±0.2%程度に抑えて
流量計測することも可能であるが、その場合低流量域で
マイナス器差となる傾向を有するため、低流量域を計測
できず流量計測可能範囲が狭くなる。
2. Description of the Related Art For example, one of the flowmeters has a pair of rotors formed in the shape of an elliptical gear or an eyebrow that delivers a fixed amount per one rotation, and detects the number of rotations according to the flow rate of this rotor. There is a positive displacement flow meter that measures the flow rate. This type of volumetric flowmeter has high measurement accuracy and generally has an instrumental error of ± 0.5%.
Each part is machined to a certain extent. Furthermore, in a positive displacement flow meter, it is possible to measure the flow rate while suppressing the instrumental error to about ± 0.2%, but in that case, there is a tendency to have a negative instrumental error in the low flow rate region, so the low flow rate region Cannot be measured and the measurable range of flow rate becomes narrow.

【0003】そこで、従来は容積式流量計により計測さ
れた流量計測値を器差補正装置により補正していた。つ
まり、従来は工場において、組み立てられたばかりの流
量計の器差試験を行っており、流量計にある流量を流し
て当該流量計の実際の器差を数点の流量について測定す
る。そして、流量計が現場の管路に取り付けられた後
は、器差補正装置により予め工場で測定された器差に基
づいて流量計が計測した被測流体の流量計測値を補正し
ていた。これにより、流量計は広範囲に高精度の流量計
測を可能にしていた。
Therefore, conventionally, the flow rate measurement value measured by the positive displacement flow meter is corrected by the instrumental error correction device. That is, conventionally, in a factory, a just-assembled flow meter is subjected to a device difference test, and a flow rate existing in the flow meter is flowed to measure the actual device difference of the flow meter at several flow rates. Then, after the flow meter was attached to the pipeline at the site, the flow rate measurement value of the fluid to be measured, which was measured by the flow meter, was corrected by the device difference correction device based on the device difference measured in the factory in advance. As a result, the flow meter was able to measure the flow rate with high accuracy over a wide range.

【0004】又、従来は、上記器差補正装置とは別の温
度補正装置を設け、これにより、被測流体の温度を検出
して被測流体の温度による容積変化を補正することによ
り流量計測精度を高めていた。
Further, conventionally, a flow rate measurement is performed by providing a temperature correction device different from the instrumental error correction device, by which the temperature of the fluid to be measured is detected and the volume change due to the temperature of the fluid to be measured is corrected. The accuracy was improved.

【0005】[0005]

【発明が解決しようとする課題】しかるに、流量計の器
差は、被測流体の粘度、回転子の温度膨張、流量(回転
子の回転数)によって変化し、特に粘度の影響は図6に
示すように、高粘度の器差(H)に比べて低粘度の器差
(L)は、低流量域で落ち込みが大きくなる。即ち、粘
度による器差の変化量ΔEは、全流量域で一定となら
ず、低流量域になると拡大する傾向にある。
However, the instrumental error of the flow meter changes depending on the viscosity of the fluid to be measured, the temperature expansion of the rotor, and the flow rate (rotational speed of the rotor). In particular, the effect of viscosity is shown in FIG. As shown, the low-viscosity instrumental difference (L) has a larger drop in the low flow rate region than the high-viscosity instrumental difference (H). That is, the variation amount ΔE of the instrumental error due to the viscosity is not constant in the entire flow rate range and tends to increase in the low flow rate range.

【0006】又、従来の器差補正装置は、一定粘度にお
ける器差カーブを±0%の直線に補正するようになって
いる。又、温度補正については流体が温度変化により膨
張・収縮する容積変化を補正するものである。一方前述
の如く、流体は温度変化によって粘度も変化し、流量計
の器差は粘度の影響を受けるため、低流量域から高流量
域までのどの流量でも器差±0.1%程度あるいはこれ
以上の高精度で計測するには無理があり流量計測範囲を
広げることが難しかった。
Further, the conventional instrumental difference correction device is adapted to correct the instrumental error curve at a constant viscosity to a straight line of ± 0%. Further, regarding the temperature correction, the volume change in which the fluid expands and contracts due to the temperature change is corrected. On the other hand, as described above, the viscosity of the fluid also changes with temperature changes, and the instrumental difference of the flowmeter is affected by the viscosity. Therefore, the instrumental error is about ± 0.1% or less at any flow rate from the low flow rate region to the high flow rate region. It was difficult to measure with the above high accuracy, and it was difficult to expand the flow rate measurement range.

【0007】そこで、本発明は上記課題を解決した器差
補正装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a device difference correction device that solves the above problems.

【0008】[0008]

【課題を解決するための手段】本発明は、被測流体の温
度を検出する温度検出手段と、該温度検出手段により検
出された温度に基づいて前記被測流体の粘度を演算する
粘度演算手段と、該温度検出手段により検出された温度
に基づいて基準温度における前記被測流体の容積を演算
する容積演算手段と、前記流量計の仕様温度範囲により
換算された粘度範囲の上限・下限を越える高粘度流体・
低粘度流体を測定したときの器差が記憶されたデータ記
憶手段と、前記粘度演算手段からの現在の被測流体の粘
度と前記データ記憶手段に記憶された器差及び粘度に基
づいて粘度補正値を演算する粘度補正演算手段と、流量
計測値を前記容積演算手段からの前記被測流体の容積変
化及び、前記粘度補正演算手段からの粘度補正値により
器差補正を行う器差補正手段と、よりなることを特徴と
する。
According to the present invention, there is provided temperature detecting means for detecting the temperature of a fluid to be measured, and viscosity calculating means for calculating the viscosity of the fluid to be measured based on the temperature detected by the temperature detecting means. And volume calculation means for calculating the volume of the fluid to be measured at the reference temperature based on the temperature detected by the temperature detection means, and the upper and lower limits of the viscosity range converted by the specified temperature range of the flowmeter are exceeded. High viscosity fluid
Data storage means for storing the instrumental error when measuring a low-viscosity fluid, and viscosity correction based on the current viscosity of the fluid to be measured from the viscosity calculating means and the instrumental error and viscosity stored in the data storage means. A viscosity correction calculation means for calculating a value, and a device difference correction means for performing a device error correction of a flow rate measurement value based on a volume change of the fluid to be measured from the volume calculation means and a viscosity correction value from the viscosity correction calculation means. , And consists of.

【0009】[0009]

【作用】被測流体の温度変化から被測流体の粘度変化や
温度膨張による補正値を求め、これらに基づいて、流量
計測値を器差補正することにより計測可能範囲を広げら
れるとともに計測精度をより高精度にすることが可能に
なる。
[Function] The correction value due to the change in the viscosity of the fluid to be measured or the temperature expansion is obtained from the temperature change of the fluid to be measured, and based on these, the measurable range can be widened and the measurement accuracy can be increased by correcting the flow rate measurement value by instrumental error. It is possible to achieve higher precision.

【0010】[0010]

【実施例】図1乃至図3に本発明になる器差補正装置の
一実施例及び容積式流量計を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 3 show a volumetric flowmeter and an embodiment of the instrument difference correction device according to the present invention.

【0011】両図中、容積式流量計1はケーシング2の
計量室3内に一対の回転子4,5を設けてなる。ケーシ
ング2は計量室3より上流側に位置する流入路6と、計
量室3より下流側に位置する流出路7とを有する。この
流入路6及び流出路7は夫々上,下流側より計量室3に
開口しており、計量室3を介して連通している。
In both figures, a positive displacement flow meter 1 is provided with a pair of rotors 4 and 5 in a measuring chamber 3 of a casing 2. The casing 2 has an inflow path 6 located upstream of the weighing chamber 3 and an outflow path 7 located downstream of the weighing chamber 3. The inflow path 6 and the outflow path 7 open to the measuring chamber 3 from the upper side and the downstream side, respectively, and communicate with each other through the measuring chamber 3.

【0012】回転子4,5は楕円歯車よりなり、互いに
噛合した状態で回転軸8,9に支承されている。一方の
回転子4の上面には、回転検出用の磁石10,11が1
80°間隔で埋設されている。
The rotors 4 and 5 are formed of elliptical gears and are supported by the rotating shafts 8 and 9 in a state of being meshed with each other. On the upper surface of one rotor 4, magnets 10 and 11 for rotation detection are
They are buried at 80 ° intervals.

【0013】流入路6より被測流体が計量室3内に供給
されると、流体の圧力により一対の回転子4,5が回転
軸8,9を中心として回転する。流入路6からの流体は
回転子4,5の回転と共に回転子4,5と計量室3の内
壁12との間の空間13内に導入され、空間13の容積
分の流体が流出路7に排出される。
When the fluid to be measured is supplied from the inflow path 6 into the measuring chamber 3, the pair of rotors 4 and 5 rotate about the rotating shafts 8 and 9 due to the pressure of the fluid. The fluid from the inflow passage 6 is introduced into the space 13 between the rotors 4 and 5 and the inner wall 12 of the measuring chamber 3 as the rotors 4 and 5 rotate, and the fluid corresponding to the volume of the space 13 flows to the outflow passage 7. Is discharged.

【0014】このようにして回転子4,5は流量に比例
した回転数で回転し、その回転は回転検出用の磁気セン
サ14等により検出される。この磁気センサ14は、回
転子4の上面に埋設された磁石10,11が通過する軌
跡の上方に位置するようにケーシング2の計量室3を閉
蓋する蓋15に埋設されている。
In this way, the rotors 4 and 5 rotate at a rotation speed proportional to the flow rate, and the rotation is detected by the magnetic sensor 14 for detecting rotation. The magnetic sensor 14 is embedded in a lid 15 that closes the weighing chamber 3 of the casing 2 so as to be located above a path through which the magnets 10 and 11 embedded in the upper surface of the rotor 4 pass.

【0015】又、ケーシング2の流入路6には、被測流
体の温度を検出する棒状の温度センサ16が挿入されて
いる。この温度センサ16により検出された温度信号及
び上記磁気センサ14より出力された流量信号は、制御
回路17に供給される。尚、温度センサ16の取り付け
位置は、本実施例のようにケーシング2内に挿入する構
成でも良いし、あるいはケーシング2の流入路6又は流
出路7に接続される管路等に温度センサ16を設ける構
成としても良い。
A rod-shaped temperature sensor 16 for detecting the temperature of the fluid to be measured is inserted in the inflow passage 6 of the casing 2. The temperature signal detected by the temperature sensor 16 and the flow rate signal output from the magnetic sensor 14 are supplied to the control circuit 17. The mounting position of the temperature sensor 16 may be such that the temperature sensor 16 is inserted into the casing 2 as in the present embodiment, or the temperature sensor 16 may be installed in a conduit connected to the inflow path 6 or the outflow path 7 of the casing 2. It may be provided.

【0016】制御回路17は、磁気センサ14から出力
された流量パルスを積算して流量計測値を算出する流量
計測手段17Aと、流量計測手段17Aにより算出され
た流量計測値を器差0.1%となるように補正する器差
補正装置としての器差補正手段17Bとを有しており、
上記磁気センサ14から出力された流量信号に基づいて
流量を演算するとともに、温度センサ16からの温度信
号に基づいて後述するように粘度、温度膨張による器差
を補正し、積算表示器18に補正した流量を表示させ
る。
The control circuit 17 integrates the flow rate pulses output from the magnetic sensor 14 to calculate a flow rate measurement value, and the flow rate measurement value calculated by the flow rate measurement means 17A is 0.1. And an instrumental-difference correcting means 17B as an instrumental-difference correcting device for performing correction so that
The flow rate is calculated based on the flow rate signal output from the magnetic sensor 14, and the instrumental difference due to viscosity and temperature expansion is corrected based on the temperature signal from the temperature sensor 16 and is corrected by the integrating display 18 as described later. Display the flow rate.

【0017】制御回路17は、具体的には、図3に示す
ような構成であり、計測単位演算部19,瞬時流量演算
部20,被測流体粘度演算部21,粘度補正演算部2
2,回転子膨張補正演算部23,流体膨張補正演算部2
4,器差補正演算部25,データ記憶部26を有する。
Specifically, the control circuit 17 has a configuration as shown in FIG. 3, and has a measurement unit calculating section 19, an instantaneous flow rate calculating section 20, a measured fluid viscosity calculating section 21, and a viscosity correction calculating section 2.
2, rotor expansion correction calculation unit 23, fluid expansion correction calculation unit 2
4, an instrumental error correction calculation unit 25, and a data storage unit 26.

【0018】尚、データ記憶部26には、予め器差補正
に必要な各データが入力されており、メモリとして機能
する。このデータ記憶部26には、例えば工場出荷前テ
ストの高粘度流体の粘度(μ1 ),工場出荷前テストの
低粘度流体の粘度(μ2 ),工場出荷前テストの高粘度
流体の器差(E1 ),工場出荷前テストの低粘度流体の
器差(E2 ),工場出荷前テスト時のテスト流体温度
(t’),回転子4,5の線膨張係数(β),容積変化
率(V)等の各データが記憶されている。
The data storage unit 26 is preliminarily input with each data necessary for the instrumental error correction and functions as a memory. The data storage unit 26 stores, for example, the viscosity of the high-viscosity fluid in the pre-factory test (μ 1 ), the viscosity of the low-viscosity fluid in the pre-factory test (μ 2 ), and the instrumental error of the high-viscosity fluid in the pre-factory test (E 1 ), instrumental error (E 2 ) of low-viscosity fluid before factory shipment test, test fluid temperature (t ′) at factory shipment test, linear expansion coefficient (β) of rotors 4 and 5, volume change Each data such as the rate (V) is stored.

【0019】上記計測単位演算部19は、磁気センサ1
4から出力された検出信号を整数単位の流量パルス信号
に換算する。又、瞬時流量演算部20は、計測単位演算
部19から出力された流量パルス信号を積算して単位時
間当たりの瞬時流量を演算する。
The measurement unit calculation unit 19 includes the magnetic sensor 1
The detection signal output from 4 is converted into a flow rate pulse signal in integer units. In addition, the instantaneous flow rate calculation unit 20 integrates the flow rate pulse signals output from the measurement unit calculation unit 19 to calculate the instantaneous flow rate per unit time.

【0020】被測流体粘度演算部21は、温度センサ1
6からの温度信号に基づいて被測流体の粘度を演算す
る。又、粘度補正演算部22は、瞬時流量演算部20か
ら出力された瞬時流量、及び被測流体粘度演算部21か
ら出力された粘度、及びデータ記憶部26より読み込ん
だ高粘度流体の粘度(μ1 ),低粘度流体の粘度
(μ2),高粘度流体の器差(E1 ),低粘度流体の器
差(E2 )より被測流体の粘度による流量補正値を演算
する。
The measured fluid viscosity calculation unit 21 includes a temperature sensor 1
The viscosity of the fluid to be measured is calculated based on the temperature signal from 6. The viscosity correction calculation unit 22 also calculates the instantaneous flow rate output from the instantaneous flow rate calculation unit 20, the viscosity output from the measured fluid viscosity calculation unit 21, and the viscosity (μ of the high viscosity fluid read from the data storage unit 26. 1 ), the viscosity of the low viscosity fluid (μ 2 ), the instrumental error of the high viscosity fluid (E 1 ) and the instrumental error of the low viscosity fluid (E 2 ) are used to calculate the flow rate correction value based on the viscosity of the fluid to be measured.

【0021】回転子膨張補正演算部23は、瞬時流量演
算部20から出力された瞬時流量、及び温度センサ16
からの温度信号、及びデータ記憶部26より読み込んだ
器差E’(=E1 ,E2 ),テスト流体温度(t’),
回転子4,5の線膨張係数(β)より回転子4,5の膨
張による流量補正値を演算する。
The rotor expansion correction calculation unit 23 includes the instantaneous flow rate output from the instantaneous flow rate calculation unit 20 and the temperature sensor 16.
, The instrumental error E ′ (= E 1 , E 2 ) read from the data storage unit 26, the test fluid temperature (t ′),
A flow rate correction value due to the expansion of the rotors 4 and 5 is calculated from the linear expansion coefficient (β) of the rotors 4 and 5.

【0022】流体膨張補正演算部24は、温度センサ1
6からの温度信号及びデータ記憶部26より読み込んだ
容積変化率(V)より被測流体の膨張による補正値を演
算する。そして、器差補正演算部25は、上記粘度補正
演算部22からの流量補正値と、回転子膨張補正演算部
23からの流量補正値と、流体膨張補正演算部24から
の流量補正値と、に基づいて計測単位演算部19からの
流量パルスの積算値を器差補正し、補正された流量値を
積算表示器18,パルス出力部27,アナログ出力部2
8に出力する。
The fluid expansion correction calculator 24 is provided with the temperature sensor 1
A correction value due to expansion of the fluid to be measured is calculated from the temperature signal from 6 and the volume change rate (V) read from the data storage unit 26. Then, the instrument difference correction calculation unit 25, the flow rate correction value from the viscosity correction calculation unit 22, the flow rate correction value from the rotor expansion correction calculation unit 23, the flow rate correction value from the fluid expansion correction calculation unit 24, The integrated value of the flow rate pulse from the measurement unit calculation unit 19 is corrected based on the instrument error, and the corrected flow rate value is displayed on the integration display 18, the pulse output unit 27, and the analog output unit 2.
Output to 8.

【0023】尚、本実施例では、一例として被測流体を
エチルアルコールとする。このエチルアルコールは、温
度が0〜40°Cの範囲で変化するものとする。又、被
測流体の粘度は温度の関数として求められ、エチルアル
コールの場合、0°Cで1.78cP,40°Cで0.
825cPとなる。
In this embodiment, the fluid to be measured is ethyl alcohol as an example. The temperature of this ethyl alcohol shall change in the range of 0 to 40 ° C. The viscosity of the fluid to be measured is obtained as a function of temperature. For ethyl alcohol, 1.78 cP at 0 ° C and 0.
It becomes 825 cP.

【0024】そこで、予めこの粘度範囲外となる高粘度
流体,低粘度流体の器差を求めておくことにする。その
場合、例えば約0.5cPのガソリンと、約2cPの軽
油について器差を測定しておく。このときの流体温度と
粘度は、正確に測定しておく必要がある。
Therefore, the difference between the high-viscosity fluid and the low-viscosity fluid outside this viscosity range will be determined in advance. In that case, for example, the instrumental difference is measured for gasoline of about 0.5 cP and light oil of about 2 cP. The fluid temperature and viscosity at this time must be accurately measured.

【0025】従って、データ記憶部26には、エチルア
ルコールの温度と粘度との関係、及びガソリンと軽油に
よる器差を記憶させる。温度センサ16から入力される
エチルアルコールの温度から粘度を求め、以下、次式に
よる内挿法によってこの時の器差を求めて流量計測値を
補正する。 E={E2 +(E1 −E2 )・μ1 (μ−μ2 )}/μ(μ1 −μ2 ) … (1) 但し、Eはエチルアルコール(被測流体)の粘度におけ
る器差(%)、E1 は軽油(高粘度流体)の器差
(%)、E2 はガソリン(低粘度流体)の器差(%)、
μは計測温度から算出されるエチルアルコール(被測流
体)の粘度cP μ1 は軽油(高粘度流体)の粘度cP、μ2 はガソリン
(低粘度流体)の粘度cP、である。
Therefore, the data storage unit 26 stores the relationship between the temperature and the viscosity of ethyl alcohol and the instrumental difference between gasoline and light oil. The viscosity is obtained from the temperature of the ethyl alcohol input from the temperature sensor 16, and the instrumental error at this time is obtained by the interpolation method according to the following equation to correct the flow rate measurement value. In E = viscosity of {E 2 + (E 1 -E 2) · μ 1 (μ-μ 2)} / μ (μ 1 -μ 2) ... (1) where, E is ethyl alcohol (object to be measured on the fluid) Instrument error (%), E 1 is instrumental error (%) of light oil (high viscosity fluid), E 2 is instrumental error (%) of gasoline (low viscosity fluid),
μ is the viscosity cP of ethyl alcohol (fluid to be measured) calculated from the measured temperature, μ 1 is the viscosity cP of light oil (high viscosity fluid), and μ 2 is the viscosity cP of gasoline (low viscosity fluid).

【0026】上記(1)式の演算により、被測流体のあ
る粘度における器差を被測流体よりも高粘度流体及び低
粘度流体の器差を元に算出することができるので、低流
量域から高流量域まで広範囲に被測流体の器差が算出で
きる。従って、流量変化による補正は図4に示すよう
に、2つの測定ポイントとなる測定済み流量2点間を直
線で近似することで全流量域のいずれの流量においても
補正することができる。
By the calculation of the above equation (1), the instrumental error at a certain viscosity of the fluid to be measured can be calculated based on the instrumental error of the fluid having a higher viscosity and the fluid having a lower viscosity than that of the fluid to be measured. It is possible to calculate the instrumental error of the fluid to be measured in a wide range from to high flow rate range. Therefore, as shown in FIG. 4, the correction due to the change in the flow rate can be performed at any flow rate in the entire flow rate range by approximating a straight line between two measured flow rates which are two measurement points.

【0027】又、被測流体の温度が変化すると回転子
4,5が膨張又は収縮し、回転子4,5の1回転当たり
の吐出量が変化することにより器差が変化する。そこ
で、予め測定しておいた器差及びこのときの流体温度
と、回転子4,5の線膨張係数をデータ記憶部26に記
憶しておき、温度センサ16から入力される被測流体温
度から次式より計測中の器差を求めることにより計測単
位換算部19より入力される計測値を補正し、高精度な
計測が可能になる。 E=E1 −3β(t1 −t2 ) … (2) 但し、Eは被測流体計測中の器差(%)、E1 は器差テ
スト時の器差(%)、t1 は器差テスト時の流体温度
(°C)、t2 は被測流体の温度(°C)、βは回転子
の線膨張係数(%/°C) 上記(2)式の演算により、被測流体の温度変化による
容積変化及び回転子4,5の膨張、収縮による器差を算
出することができる。
Further, when the temperature of the fluid to be measured changes, the rotors 4 and 5 expand or contract, and the discharge amount of the rotors 4 and 5 per rotation changes, so that the instrumental error changes. Therefore, the instrumental error measured in advance, the fluid temperature at this time, and the linear expansion coefficient of the rotors 4 and 5 are stored in the data storage unit 26, and the measured fluid temperature input from the temperature sensor 16 is used. By obtaining the instrumental error during measurement from the following equation, the measurement value input from the measurement unit conversion unit 19 is corrected, and highly accurate measurement becomes possible. E = E 1 -3β (t 1 -t 2) ... (2) where, E is instrumental error in the measured fluid measurement (%), E 1 is instrumental error instrumental error of the test (%), t 1 is Fluid temperature (° C) at instrument difference test, t 2 is temperature of measured fluid (° C), β is linear expansion coefficient of rotor (% / ° C) The volume change due to the temperature change of the fluid and the instrumental difference due to the expansion and contraction of the rotors 4 and 5 can be calculated.

【0028】ここで、上記制御回路17が実行する処理
につき図5を併せ参照して説明する。尚、図5に示す処
理は所定の時間間隔(例えば、0.05msec毎)に繰り
返し実行されており、制御回路17は刻々と変化する被
測流体の温度に応じた器差補正を逐次行っている。
The processing executed by the control circuit 17 will be described with reference to FIG. The process shown in FIG. 5 is repeatedly executed at a predetermined time interval (for example, every 0.05 msec), and the control circuit 17 sequentially performs instrumental error correction according to the temperature of the fluid to be measured, which changes every moment. There is.

【0029】図5中、ステップS1(以下、「ステッ
プ」を省略する)において、磁気センサ14から出力さ
れたパルス信号、即ち流量に比例して回転する回転子
4,5の回転検出信号を整数の計測単位(例えばリット
ルに対応する整数)に換算する。
In FIG. 5, in step S1 (hereinafter, "step" is omitted), the pulse signal output from the magnetic sensor 14, that is, the rotation detection signals of the rotors 4 and 5 that rotate in proportion to the flow rate is an integer. Is converted to the unit of measurement (for example, an integer corresponding to liter).

【0030】次のS2では、上記S1で換算された数値
より瞬時流量を換算する。
In the next S2, the instantaneous flow rate is converted from the numerical value converted in S1.

【0031】続いて、予めデータ記憶部26に記憶され
た瞬時流量における工場出荷前にテスト済みの器差と、
テスト時のテスト流体の粘度(本実施例では、軽油とガ
ソリンの粘度μ1 ,μ2 )を読み出す(S3)。尚、テ
スト流体は、被測流体であるエチルアルコールの粘度
(μ)に対して高粘度、低粘度の2種類の物性を有する
流体でなければならない。
Next, the instrumental difference which has been tested before shipment from the factory at the instantaneous flow rate stored in the data storage section 26 in advance,
The viscosity of the test fluid at the time of the test (in this embodiment, the viscosities of light oil and gasoline μ 1 , μ 2 ) is read (S3). The test fluid must be a fluid having two types of physical properties, high viscosity and low viscosity with respect to the viscosity (μ) of ethyl alcohol, which is the fluid to be measured.

【0032】次のS4では、温度センサ16から入力さ
れる被測流体の温度に基づいて被測流体の粘度を算出す
る。尚、温度と粘度との相関関係は、予め当該被測流体
個有の物性であり、予めデータ記憶部26に記憶されて
いる。
In step S4, the viscosity of the fluid to be measured is calculated based on the temperature of the fluid to be measured input from the temperature sensor 16. The correlation between the temperature and the viscosity is a physical property unique to the fluid to be measured and is stored in the data storage unit 26 in advance.

【0033】続いて、上記S3,S4で得られたデータ
つまり、テスト流体の粘度(μ1 ,μ2 )及び被測流体
の粘度(μ)を前述した式(1)に代入して現在の粘
度、流量における器差Eを求める(S5)。
Subsequently, the data obtained in the above S3 and S4, that is, the viscosity (μ 1 , μ 2 ) of the test fluid and the viscosity (μ) of the fluid to be measured are substituted into the above equation (1) to obtain the current value. The instrumental difference E in viscosity and flow rate is obtained (S5).

【0034】さらに、瞬時流量と、工場出荷前テストに
よる器差と、温度及び回転子4,5の線膨張係数βとを
読み込む(S6)。そして、温度センサ16による入力
温度と上記S6で読み込んだデータを前述した式(2)
に代入して回転子4,5の温度膨張による器差を求める
(S7)。
Further, the instantaneous flow rate, the instrumental error due to the test before factory shipment, the temperature and the linear expansion coefficient β of the rotors 4 and 5 are read (S6). Then, the input temperature from the temperature sensor 16 and the data read in the above S6 are used to obtain the equation (2) described above.
By substituting into (4) to obtain the instrumental difference due to the temperature expansion of the rotors 4 and 5 (S7).

【0035】続いて、予め記憶された被測流体の容積変
化率Vを読み込む(S8)。尚、容積変化率Vは被測流
体固有の物性であり、例えば石油類の場合JIS規格に
より定められている。
Then, the volume change rate V of the fluid to be measured, which is stored in advance, is read (S8). The volume change rate V is a physical property peculiar to the fluid to be measured, and is defined by the JIS standard in the case of petroleum, for example.

【0036】次のS9では、温度センサによる入力温度
と容積変化率Vから基準温度における容積を求め、被測
流体の温度膨張による器差を演算する。そして、前述し
たS1で整数の計測単位に換算した流量計測値を、上記
S5で演算した現在の粘度、流量における器差Eと、S
7で演算した回転子4,5の温度膨張による器差と、被
測流体の温度膨張による器差とにより補正する(S1
0)。
In the next step S9, the volume at the reference temperature is obtained from the input temperature from the temperature sensor and the volume change rate V, and the instrumental difference due to the temperature expansion of the fluid to be measured is calculated. Then, the flow rate measurement value converted into the integer measurement unit in S1 described above is calculated as the current viscosity and the instrumental difference E in the flow rate calculated in S5, and S
It is corrected by the instrumental difference due to the temperature expansion of the rotors 4 and 5 calculated in 7 and the instrumental difference due to the temperature expansion of the fluid to be measured (S1).
0).

【0037】次のS11では、S10で補正した計測値
を積算表示器18,パルス出力部27,アナログ出力部
28に出力する。
In the next S11, the measured value corrected in S10 is output to the integration display 18, the pulse output section 27, and the analog output section 28.

【0038】このように、制御回路17は刻々と変化す
る被測流体の温度に応じた器差補正を逐次行っており、
現在の粘度、流量における器差Eと、回転子4,5の温
度膨張による器差と、被測流体の温度膨張による器差と
により流量計測値を補正するため、従来計測できなかっ
た低流量域における器差ばかりでなく高流量域の器差ま
で精密に補正することができる。従って、従来から使用
されている温度補正装置は、温度変化による被測流体の
容積変化を補正するものであったが、これに上記(1)
(2)式の器差補正を組み合わせて使用することにより
低流量域から高流量域までの広範囲に器差0.1%程度
に高精度な流量計測が可能になる。
As described above, the control circuit 17 sequentially corrects the instrumental error according to the temperature of the fluid to be measured, which changes every moment.
Since the flow rate measurement value is corrected by the instrumental difference E in the current viscosity and the flow rate, the instrumental difference due to the temperature expansion of the rotors 4 and 5, and the instrumental difference due to the temperature expansion of the fluid to be measured, a low flow rate that cannot be conventionally measured. It is possible to precisely correct not only the instrumental error in the region but also the instrumental error in the high flow rate region. Therefore, the temperature correction device used conventionally corrects the volume change of the fluid to be measured due to the temperature change.
By combining and using the instrumental error correction of the equation (2), highly accurate flow rate measurement with an instrumental error of about 0.1% is possible in a wide range from the low flow rate region to the high flow rate region.

【0039】尚、上記実施例では、楕円歯車よりなる回
転子が組み込まれた容積式流量計を一例として挙げた
が、これに限らず、例えばルーツ形の回転子が組み込ま
れた容積式流量計の器差を補正するようにしても良い
し、あるいは他の形式の流量計にも適用することができ
るのは勿論である。
In the above embodiment, the volumetric flowmeter in which the rotor made of an elliptical gear is incorporated is taken as an example, but the present invention is not limited to this, and the volumetric flowmeter in which, for example, a roots type rotor is incorporated. Of course, the instrumental difference may be corrected, or the invention can be applied to other types of flow meters.

【0040】又、上記実施例では、制御回路17に器差
補正手段が含まれた構成としたが、これに限らず、例え
ば流量計測を行う制御回路17とは別体な器差補正装置
を設けるようにしても良いのは勿論である。
Further, in the above embodiment, the control circuit 17 is configured to include the instrumental difference correction means, but the invention is not limited to this. For example, an instrumental error correction device separate from the control circuit 17 for measuring the flow rate may be provided. Of course, it may be provided.

【0041】[0041]

【発明の効果】上述の如く、本発明になる器差補正装置
によれば、刻々と変化する被測流体の温度に応じた器差
補正を逐次行うことができ、しかも現在の粘度、流量に
おける器差と、温度膨張による器差とにより流量計測値
を補正するため、従来計測できなかった低流量域におけ
る器差ばかりでなく高流量域の器差まで精密に補正する
ことができる。従って、低流量域から高流量域までの広
範囲に高精度な流量計測を行うことができ、被測流体の
温度変化に応じて流量計測値を器差補正することにより
計測可能範囲を広げられるとともに計測精度をより高め
ることができる等の特長を有する。
As described above, according to the instrumental difference correction device of the present invention, instrumental error compensation can be sequentially performed according to the temperature of the fluid to be measured, which is constantly changing, and at the present viscosity and flow rate. Since the flow rate measurement value is corrected by the instrumental error and the instrumental error due to the temperature expansion, not only the instrumental error in the low flow rate region that could not be conventionally measured but also the instrumental error in the high flow rate region can be precisely corrected. Therefore, highly accurate flow rate measurement can be performed in a wide range from low flow rate range to high flow rate range, and the measurable range can be expanded by correcting the flow rate measurement value according to the temperature change of the fluid to be measured. It has features such as higher measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる器差補正装置の一実施例が適用さ
れた容積式流量計の縦断面図である。
FIG. 1 is a vertical cross-sectional view of a positive displacement flow meter to which an embodiment of the instrument difference correction device according to the present invention is applied.

【図2】容積式流量計の横断面図である。FIG. 2 is a cross-sectional view of a positive displacement flow meter.

【図3】制御回路の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a control circuit.

【図4】制御回路が実行する器差補正処理により演算さ
れた器差と流量との関係を示す線図である。
FIG. 4 is a diagram showing a relationship between a device difference calculated by a device difference correction process executed by a control circuit and a flow rate.

【図5】制御回路が実行する器差補正処理を説明するた
めのフローチャートである。
FIG. 5 is a flowchart for explaining instrumental difference correction processing executed by a control circuit.

【図6】従来の器差補正装置による器差変化を説明する
ための器差と流量との関係を示す線図である。
FIG. 6 is a diagram showing a relationship between a device difference and a flow rate for explaining a device difference change by a conventional device difference correction device.

【符号の説明】[Explanation of symbols]

1 容積式流量計 2 ケーシング 4,5 回転子 14 磁気センサ 16 温度センサ 17 制御回路 19 計測単位換算部 20 瞬時流量演算部 21 被測流体粘度演算部 22 粘度補正演算部 23 回転子膨張補正演算部 24 流体膨張補正演算部 25 器差補正演算部 26 データ記憶部 1 Volumetric Flowmeter 2 Casing 4,5 Rotor 14 Magnetic Sensor 16 Temperature Sensor 17 Control Circuit 19 Measurement Unit Converter 20 Instantaneous Flow Rate Calculator 21 Measured Fluid Viscosity Calculator 22 Viscosity Correction Calculator 23 Rotor Expansion Correction Calculator 24 Fluid Expansion Correction Calculation Unit 25 Instrumental Difference Correction Calculation Unit 26 Data Storage Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測流体の温度を検出する温度検出手段
と、 該温度検出手段により検出された温度に基づいて前記被
測流体の粘度を演算する粘度演算手段と、 該温度検出手段により検出された温度に基づいて基準温
度における前記被測流体の容積を演算する容積演算手段
と、 前記流量計の仕様温度範囲により換算された粘度範囲の
上限・下限を越える高粘度流体・低粘度流体を測定した
ときの器差が記憶されたデータ記憶手段と、 前記粘度演算手段からの現在の被測流体の粘度と前記デ
ータ記憶手段に記憶された器差及び粘度に基づいて粘度
補正値を演算する粘度補正演算手段と、 流量計測値を前記容積演算手段からの前記被測流体の容
積変化及び、前記粘度補正演算手段からの粘度補正値に
より器差補正を行う器差補正手段と、 よりなることを特徴とする器差補正装置。
1. A temperature detecting means for detecting the temperature of a fluid to be measured, a viscosity calculating means for calculating the viscosity of the fluid to be measured based on the temperature detected by the temperature detecting means, and a temperature detecting means for detecting the viscosity. A volume calculation means for calculating the volume of the fluid to be measured at a reference temperature based on the measured temperature, and a high-viscosity fluid / low-viscosity fluid exceeding the upper and lower limits of the viscosity range converted by the specification temperature range of the flowmeter. A data storage unit that stores the instrumental error at the time of measurement, and a viscosity correction value is calculated based on the current viscosity of the fluid to be measured from the viscosity operation unit and the instrumental error and viscosity stored in the data storage unit. A viscosity correction calculation means, and a device difference correction means for performing a device difference correction of the flow rate measurement value by the volume change of the fluid to be measured from the volume calculation means and the viscosity correction value from the viscosity correction calculation means. An instrumental error correction device characterized by the above.
JP5117285A 1993-05-19 1993-05-19 Instrument difference correction device Pending JPH06331426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117285A JPH06331426A (en) 1993-05-19 1993-05-19 Instrument difference correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5117285A JPH06331426A (en) 1993-05-19 1993-05-19 Instrument difference correction device

Publications (1)

Publication Number Publication Date
JPH06331426A true JPH06331426A (en) 1994-12-02

Family

ID=14707964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117285A Pending JPH06331426A (en) 1993-05-19 1993-05-19 Instrument difference correction device

Country Status (1)

Country Link
JP (1) JPH06331426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517167A (en) * 2007-01-25 2010-05-20 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Process variable transmitter validation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517167A (en) * 2007-01-25 2010-05-20 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Process variable transmitter validation

Similar Documents

Publication Publication Date Title
US7827844B2 (en) Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and Coriolis flowmeters and calibration validation
US7366625B1 (en) Method, apparatus and computer medium for correcting transient flow errors in flowmeter proving data
EP1782026B1 (en) A method and apparatus for proving flow meters
EP3032230B1 (en) Flow meter and a method of calibration
CN1165753C (en) liquid measuring device and method
EP1668322B1 (en) Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and coriolis flowmeters and calibration validation
JP2023511744A (en) Flow meter variable compensation method
US11169016B2 (en) Standards traceable verification of a vibratory meter
US4996869A (en) System for selecting valid K-factor data points based upon selected criteria
JPH06331426A (en) Instrument difference correction device
JPH07174607A (en) Instrument difference correction device
JPH0650738Y2 (en) Reference tank
JPH0915019A (en) Flow compensator for flow meter
JPH0318135B2 (en)
JPH0319492B2 (en)
JPS6370119A (en) Flow rate measuring apparatus
JPH0650796A (en) Position sensor of prover
EP4257934A1 (en) Method and device for determining a flow rate
JPH0523369B2 (en)
RU2641505C1 (en) Information and measuring system for measurement of flow and quantity of gas
JPH06241865A (en) Method and apparatus for correcting meter error of flowmeter
RU2024824C1 (en) Method of determining flow rate
JPH0658788A (en) Flow rate measuring method and device
JPS6326735Y2 (en)
RU1795287C (en) Method of measuring gas mass flow rate