JPH0633202A - Manufacture of aluminum alloy sheet for di forming - Google Patents
Manufacture of aluminum alloy sheet for di formingInfo
- Publication number
- JPH0633202A JPH0633202A JP21222392A JP21222392A JPH0633202A JP H0633202 A JPH0633202 A JP H0633202A JP 21222392 A JP21222392 A JP 21222392A JP 21222392 A JP21222392 A JP 21222392A JP H0633202 A JPH0633202 A JP H0633202A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- less
- aluminum alloy
- annealing
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000005097 cold rolling Methods 0.000 claims abstract description 17
- 238000005098 hot rolling Methods 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000000137 annealing Methods 0.000 claims description 26
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000000265 homogenisation Methods 0.000 claims description 3
- 229910019064 Mg-Si Inorganic materials 0.000 abstract description 8
- 229910019406 Mg—Si Inorganic materials 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 230000008021 deposition Effects 0.000 abstract 2
- 239000002244 precipitate Substances 0.000 description 19
- 238000010409 ironing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910019086 Mg-Cu Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910018672 Mn—F Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は成形用アルミニウム合金
板の製造方法に関するものであり、特にDI缶等しごき
加工を施して成形する用途に用いるDI成形用アルミニ
ウム合金板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet for forming, and more particularly to a method for producing an aluminum alloy sheet for DI forming used for forming by ironing a DI can and the like. .
【0002】[0002]
【従来の技術とその課題】アルミニウム製ビール缶ある
いは一般飲料缶の胴材としてこれまでAA3004合金
(Al−1.25wt%Mn−1.05wt%Mg合金)が
使用されている。本合金は本来高い加工度の冷間圧延に
よりある程度成形性に優れかつ胴材として必要な強度を
有しているために使用されているものである。しかしな
がら近年さらなるコストダウンを目的として材料の薄肉
化が求められており、これに対応して飲食缶の胴材に要
求される強度は従来よりも高くなって来ている。この強
度向上のために開発されたものとしては、特開昭52−
105509号公報のようにMg2 Siの析出を利用し
たもの、あるいは特開昭57−120648号公報のよ
うにAl−Cu−Mg系の析出物による析出硬化を利用
したアルミニウム合金板の製造方法が知られている。ま
た一方コストダウンの方法として成形工程での不具合を
低減することによる生産性の向上も大きな課題となって
いる。特に薄肉化かつ高強度化が進むことによりしごき
加工時の割れの発生が問題となる。このため析出物と冷
延との相互作用について検討した特公昭63−6574
5号公報が知られている。従来までの検討では強度の向
上と成形性の向上とが相反する結果をもたらし、高強度
が得られる材料は一般的に成形性が劣る結果となってお
り、充分な成果は得られていない。2. Description of the Related Art AA3004 alloy (Al-1.25 wt% Mn-1.05 wt% Mg alloy) has hitherto been used as a body material for aluminum beer cans or general beverage cans. This alloy is originally used because it is excellent in formability to some extent by cold rolling with a high workability and has the strength required as a body material. However, in recent years, there has been a demand for thinner materials for the purpose of further cost reduction, and in response to this, the strength required for the body material of food and drink cans has become higher than before. As one developed to improve the strength, Japanese Patent Laid-Open No. 52-
No. 105509, which utilizes precipitation of Mg 2 Si, or Japanese Patent Application Laid-Open No. 57-120648, which uses a precipitation hardening method using an Al—Cu—Mg-based precipitate, there is a method for producing an aluminum alloy sheet. Are known. On the other hand, improving the productivity by reducing defects in the molding process as a method of cost reduction is also a major issue. In particular, cracking during ironing becomes a problem due to the progress of thinner and higher strength. Therefore, the interaction between precipitates and cold rolling was examined.
No. 5 publication is known. In the studies up to now, the improvement in strength and the improvement in moldability are in conflict with each other, and a material capable of obtaining high strength is generally inferior in moldability, and sufficient results have not been obtained.
【0003】[0003]
【課題を解決するための手段】本発明はこのような状況
に鑑み強度および成形性にそれぞれ影響する分散相につ
いて検討を加えた結果、強度を高いレベルで維持しつつ
DI成形性、特にしごき加工性を改善したDI成形用ア
ルミニウム合金板の製造方法を開発したものである。In the present invention, in consideration of such a situation, as a result of investigating a dispersed phase which respectively influences strength and formability, as a result, DI formability, particularly ironing, while maintaining the strength at a high level. This is to develop a method for producing an aluminum alloy sheet for DI molding with improved properties.
【0004】即ち請求項1記載の発明は、Mn0.8〜
1.5%、Mg0.7〜1.3%、Cu0.15〜0.
3%、Si0.25%未満、Fe0.3〜0.7%を含
み、残部がAlと不可避的不純物とからなるAl合金鋳
塊に、均質化処理、熱間圧延を施した後、直ちに、10
0℃未満の温度で冷間圧延を施すことにより最終板厚と
し、100℃/分以上の昇温速度で130〜280℃の
温度の焼鈍を10分以内行うことを特徴とするDI成形
用アルミニウム合金板の製造方法であり、請求項2記載
の発明は、Mn0.8〜1.5%、Mg0.7〜1.3
%、Cu0.15〜0.3%、Si0.25%未満、F
e0.3〜0.7%を含み、残部がAlと不可避的不純
物とからなるアルミニウム合金鋳塊に、均質化処理、熱
間圧延を施した後、300〜400℃の温度で中間焼鈍
を行った後、100℃未満の温度で冷間圧延を施すこと
により最終板厚とし、100℃/分以上の昇温速度で1
30〜280℃の温度の焼鈍を10分以内行うことを特
徴とするDI成形用アルミニウム合金板の製造方法であ
る。また請求項3記載の発明は、Mn0.8〜1.5
%、Mg0.7〜1.3%、Cu0.15〜0.3%、
Si0.25%未満、Fe0.3〜0.7%を含み、残
部がAlと不可避的不純物とからなるアルミニウム合金
鋳塊に、均質化処理、熱間圧延を施した後、直ちに40
0℃を超え600℃以下の温度の中間焼鈍を行い、10
℃/分以上の冷却速度にて100℃未満に冷却し、10
0℃未満の温度で冷間圧延を施して最終板厚とし、10
0℃/分以上の昇温速度で130〜280℃の温度の焼
鈍を10分以内行うことを特徴とするDI成形用アルミ
ニウム合金板の製造方法であり、請求項4記載の発明
は、Mn0.8〜1.5%、Mg0.7〜1.3%、C
u0.15〜0.3%、Si0.25%未満、Fe0.
3〜0.7%を含み、残部がAlと不可避的不純物とか
らなるアルミニウム合金鋳塊に、均質化処理、熱間圧延
を施した後、冷間圧延を施し、400℃を超え600℃
以下の温度の中間焼鈍を行い、10℃/分以上の冷却速
度にて100℃未満に冷却し、100℃未満の温度で冷
間圧延を施して最終板厚とし、100℃/分以上の昇温
速度で130〜280℃の温度の焼鈍を10分以内行う
ことを特徴とするDI成形用アルミニウム合金板の製造
方法である。That is, according to the invention of claim 1, Mn 0.8 to
1.5%, Mg 0.7 to 1.3%, Cu 0.15 to 0.
Immediately after homogenizing and hot rolling an Al alloy ingot containing 3%, less than 0.25% Si, and 0.3 to 0.7% Fe, and the balance consisting of Al and unavoidable impurities. 10
Aluminum for DI forming, which is characterized by performing cold rolling at a temperature of less than 0 ° C. to obtain a final plate thickness and performing annealing at a temperature of 130 to 280 ° C. within 10 minutes at a temperature rising rate of 100 ° C./min or more. It is a manufacturing method of an alloy plate, and the invention according to claim 2 has Mn 0.8 to 1.5% and Mg 0.7 to 1.3.
%, Cu 0.15-0.3%, Si less than 0.25%, F
The aluminum alloy ingot containing 0.3 to 0.7% of e and the balance of Al and unavoidable impurities is homogenized and hot-rolled, and then subjected to intermediate annealing at a temperature of 300 to 400 ° C. After that, cold rolling is performed at a temperature of less than 100 ° C. to obtain the final plate thickness, and the temperature is raised at a rate of 100 ° C./min or more to
It is a method for producing an aluminum alloy sheet for DI forming, characterized in that annealing at a temperature of 30 to 280 ° C. is performed within 10 minutes. The invention according to claim 3 has Mn of 0.8 to 1.5.
%, Mg 0.7 to 1.3%, Cu 0.15 to 0.3%,
Immediately after applying homogenization treatment and hot rolling to an aluminum alloy ingot containing Si of less than 0.25% and Fe of 0.3 to 0.7%, and the balance of Al and unavoidable impurities, 40
Intermediate annealing is performed at a temperature of more than 0 ° C and 600 ° C or less, and 10
Cool to less than 100 ° C at a cooling rate of ℃ / min or more, and
Cold-rolled to a final thickness of less than 0 ° C, 10
A method for producing an aluminum alloy sheet for DI forming, characterized in that annealing at a temperature of 130 to 280 ° C. is performed within 10 minutes at a temperature rising rate of 0 ° C./min or more. The invention according to claim 4 provides Mn0. 8-1.5%, Mg 0.7-1.3%, C
u 0.15-0.3%, Si less than 0.25%, Fe0.
An aluminum alloy ingot containing 3 to 0.7%, the balance of which is Al and inevitable impurities, is homogenized and hot-rolled, and then cold-rolled to over 400 ° C and 600 ° C.
Perform intermediate annealing at the following temperatures, cool to less than 100 ° C at a cooling rate of 10 ° C / min or more, and perform cold rolling at a temperature of less than 100 ° C to obtain the final plate thickness, and increase the temperature to 100 ° C / min or more. It is a method for producing an aluminum alloy sheet for DI forming, characterized in that annealing at a temperature of 130 to 280 ° C. is performed within 10 minutes.
【0005】[0005]
【作用】本発明は種々ある分散相の中で特に成形性に悪
影響を及ぼす第2相の存在を見極め、これらを規制する
ことにより優れた特性を有するDI成形用アルミニウム
合金板の製造を可能としたものである。本発明合金の場
合、微細な第2相としては主に板製造時あるいは製缶時
の材料の温度が高くなる工程において生じる析出物が上
げられる。析出物は通常微細高密度ほど強度向上の効果
が大きい、特に特開昭57−120648号公報に記載
されているような100〜200nmのサイズのAl−
Mg−Cu系析出物(S相の準安定相)は強度向上に大
きく貢献するとされる。しかし100nm以下のサイズ
のQ相(Al−Cu−Mg−Si系)の準安定相(Q′
相)は強度の向上にも貢献するが、一方成形性、特にし
ごき成形性を著しく低下させることが分かった。この析
出物の発生を抑えることにより強度を維持したままで、
成形性を向上させるという本発明の目的を達成できるも
のである。The present invention makes it possible to produce an aluminum alloy sheet for DI molding having excellent properties by identifying the presence of a second phase, which has a bad influence on the formability, among various dispersed phases, and controlling these. It was done. In the case of the alloy of the present invention, as the fine second phase, precipitates mainly generated in the step of increasing the temperature of the material during plate production or can manufacturing are raised. Precipitates generally have a greater effect of improving the strength as the density becomes finer. In particular, Al-having a size of 100 to 200 nm as described in JP-A-57-120648.
It is said that the Mg-Cu based precipitate (metastable phase of S phase) greatly contributes to the strength improvement. However, a metastable phase (Q 'of a Q phase (Al-Cu-Mg-Si system) having a size of 100 nm or less is used.
It was found that the phase) also contributes to the improvement of strength, but on the other hand, it significantly reduces the formability, especially the ironing formability. By suppressing the generation of this precipitate, while maintaining the strength,
The object of the present invention of improving moldability can be achieved.
【0006】本化合物(S相およびQ相)は転位セル上
あるいはアルミニウムの母相に生じる。前者は主に球状
または塊状をしており、後者は針状あるいは棒状を呈し
ている。ここでの析出物のサイズは針状析出物の場合、
長手方向の長さをさすものとした。また本析出物(Al
−Cu−Mg−Si系)は化合物を形成する前段階とし
て構成元素であるCu、Mg、Siが特定の位置に集積
するクラスタ状態あるいはGPゾーンを形成する。DI
成形性には本系クラスタ状態あるいはGPゾーンから悪
影響を生じる。本系の析出物の初期状態か否かの判断方
法として冷間圧延温度あるいは最終焼鈍を施す場合には
その温度で長時間保持し、上記Q′相を生じるかにより
容易に判断できる。The present compounds (S phase and Q phase) occur on the dislocation cells or in the aluminum parent phase. The former is mainly spherical or lump-shaped, and the latter is needle-shaped or rod-shaped. In the case of needle-shaped precipitates, the size of the precipitates here is
It refers to the length in the longitudinal direction. The precipitate (Al
-Cu-Mg-Si system) forms a cluster state or GP zone in which the constituent elements Cu, Mg, and Si are integrated at specific positions as a pre-stage of forming a compound. DI
Formability is adversely affected by the present cluster state or GP zone. When a cold rolling temperature or final annealing is applied as a method for determining whether the precipitates of this system are in the initial state, it can be easily determined by maintaining the temperature for a long time and generating the above Q'phase.
【0007】本発明における製造条件は上記Al−Cu
−Mg−Si系化合物あるいはそのクラスタ、GPゾー
ンをDI成形前に生じないような製造条件を設定するこ
とにより、高い強度と成形性を有する製造方法を提供す
るものである。The manufacturing conditions in the present invention are the above Al--Cu.
The present invention provides a manufacturing method having high strength and moldability by setting manufacturing conditions such that an Mg-Si compound or its cluster or GP zone does not occur before DI molding.
【0008】次に本発明における合金組成の限定理由に
ついて述べる。MnはFeおよびSiとともに金属間化
合物を形成し、しごき加工時のダイスへの焼き付きを防
止するために必要な元素である。0.8%未満ではこの
効果が少なく、長時間におよぶ成形には不向きとなる。
また1.5%を超えると通常の鋳造条件では巨大な化合
物を形成し易くなり、後述する成形時の亀裂発生の起点
となる大きな第2相となる可能性が高い。Feは上記効
果とともに後述する成形性を害する化合物を形成するS
iを取り込み、固定する効果を有する。後者の効果を生
じるためには0.3%以上の添加を必要とする。しかし
0.7%を超える添加ではMn元素と同様、巨大化合物
の形成をもたらす。ここで鋳造時の冷却速度が著しく速
い連続鋳造法等を行う場合には上記化合物の大きさを小
さく抑えることが可能になるためMn、Feの添加量を
さらに2倍まで多くすることができる。MgはCuと同
様、主に固溶することにより本系合金の強度を向上させ
る重要な元素である。また溶体化処理および焼き入れに
より過飽和の固溶状態とすることにより缶成形後の塗装
焼き付けにおける200℃前後の熱処理時にMg2 Si
あるいはAl−Mg−Cu系析出物を形成し、さらに強
度向上を図ることができる。Mg添加量が0.7%未満
では必要な強度を維持できず、1.3%を超えるとスコ
ーリングが発生し易くなる。凝固速度の速い特別な鋳造
方法を用いることにより、耐焼き付き性の高いMn系の
析出物の密度を上げることで、さらにMg添加量を2.
5%まで増すことは可能である。CuはMgと同様の効
果が期待できる。そして0.15%未満では強度の向上
効果が期待できず、0.3%を超えると成形性を害する
とともに耐食性の点においても問題を生じる。Siはそ
れ自体の固溶硬化性は低いが熱処理の初期段階において
形成される微細化合物が他の元素の析出物の核生成場所
となることによって他の元素の析出を促進する。そのた
めSi添加はFe、Mnの固溶量を下げるとともに析出
硬化をもたらすAl−Mg−Cu系化合物の析出を促進
する。またさらに多いSiの添加によりさらに微細なA
l−Cu−Mg−Si系化合物(Al5 Cu2 Mg8 S
i6 のQ相の準安定相)を新たに生じる。これら析出物
は強度の向上に有効であるが後者の化合物は前者と比較
してより微細であり、成形性を著しく低下させる。その
ためSiの添加量は0.25%未満とする必要がある。Next, the reasons for limiting the alloy composition in the present invention will be described. Mn is an element necessary to form an intermetallic compound with Fe and Si and prevent seizure on the die during ironing. If it is less than 0.8%, this effect is small and it is not suitable for molding for a long time.
On the other hand, if it exceeds 1.5%, a huge compound is likely to be formed under normal casting conditions, and there is a high possibility that a large second phase will be a starting point of crack generation during molding described later. Fe forms S, which forms a compound that impairs the moldability described later, in addition to the above effects.
It has the effect of taking in and fixing i. In order to bring about the latter effect, addition of 0.3% or more is required. However, addition of more than 0.7% leads to formation of a giant compound, like the Mn element. Here, when performing a continuous casting method or the like in which the cooling rate during casting is remarkably high, the size of the above compound can be suppressed to a small value, so that the addition amounts of Mn and Fe can be further doubled. Similar to Cu, Mg is an important element that improves the strength of the present alloy by mainly forming a solid solution. In addition, by making it a supersaturated solid solution state by solution heat treatment and quenching, Mg 2 Si can be used at the time of heat treatment at about 200 ° C. in coating baking after can forming.
Alternatively, an Al-Mg-Cu based precipitate can be formed to further improve the strength. If the added amount of Mg is less than 0.7%, the required strength cannot be maintained, and if it exceeds 1.3%, scoring tends to occur. By using a special casting method with a fast solidification rate, the density of Mn-based precipitates having high seizure resistance can be increased, and the amount of added Mg can be increased to 2.
It is possible to increase up to 5%. Cu can be expected to have the same effect as Mg. If it is less than 0.15%, the effect of improving the strength cannot be expected, and if it exceeds 0.3%, the formability is impaired and a problem occurs in terms of corrosion resistance. Although Si has a low solid solution hardening property by itself, the fine compound formed in the initial stage of heat treatment serves as a nucleation site for precipitates of other elements, thereby promoting precipitation of other elements. Therefore, the addition of Si reduces the solid solution amount of Fe and Mn and promotes the precipitation of Al-Mg-Cu-based compound that causes precipitation hardening. Also, by adding more Si, finer A
l-Cu-Mg-Si-based compound (Al 5 Cu 2 Mg 8 S
a new metastable phase of the Q phase of i 6 ) is generated. These precipitates are effective in improving the strength, but the latter compound is finer than the former compound and remarkably reduces the formability. Therefore, the amount of Si added needs to be less than 0.25%.
【0009】本発明の製造方法について述べると、本発
明合金は耐スコーリング性を向上させるAl−Mn−F
e−Si系化合物の形成や強制固溶したMnの析出処理
による耳率の安定化を目的とした均質化処理および熱延
を必要とする。熱延後、直ちに、または冷間圧延を施し
た後耳率向上あるいは強度向上を目的とした中間焼鈍を
行う場合がある。ここで本発明が問題とする微細なAl
−Cu−Mg−Si系析出物は通常の熱処理では200
℃以上で、また加工中の析出の場合は100℃以上の温
度において顕著に生じ、300℃以上であると粗大化す
るために成形性への影響は小さくなる。従って中間焼鈍
温度は300℃以上とする。さらに中間焼鈍温度が40
0℃を超えた場合にはMgやCuの固溶量が増すために
その中間焼鈍後のQ′相の析出は促進される。したがっ
て中間焼鈍温度が400℃を超える場合にはその後の冷
却時のQ′相の析出も問題となる。冷却速度が10℃/
分未満では冷却途中にQ′相の析出をともなう。600
℃を超えるとQ′相の析出は抑えられない。従って中間
焼鈍温度が400℃を超え600℃以下の場合冷却速度
を前記のように限定する。The production method of the present invention will be described. The alloy of the present invention is Al-Mn-F which improves scoring resistance.
A homogenization treatment and hot rolling for the purpose of stabilizing the ear rate by forming an e-Si-based compound or precipitating the solid solution Mn are required. Immediate annealing may be performed immediately after hot rolling or after cold rolling for the purpose of improving the ear ratio or the strength. Here, fine Al which is a problem of the present invention
-Cu-Mg-Si-based precipitate is 200 in normal heat treatment.
When the temperature is 100 ° C. or higher, or in the case of precipitation during processing, it occurs remarkably at a temperature of 100 ° C. or higher, and when it is 300 ° C. or higher, coarsening occurs and the influence on the formability is reduced. Therefore, the intermediate annealing temperature is set to 300 ° C or higher. Furthermore, the intermediate annealing temperature is 40
When the temperature exceeds 0 ° C., the solid solution amount of Mg or Cu increases, so that the precipitation of the Q ′ phase after the intermediate annealing is promoted. Therefore, when the intermediate annealing temperature exceeds 400 ° C., precipitation of the Q ′ phase during subsequent cooling also poses a problem. Cooling rate 10 ℃ /
If it is less than a minute, Q'phase is precipitated during cooling. 600
If the temperature exceeds ℃, the precipitation of Q'phase cannot be suppressed. Therefore, when the intermediate annealing temperature is higher than 400 ° C and lower than 600 ° C, the cooling rate is limited as described above.
【0010】また最終板厚までに冷間圧延した後、低温
の焼鈍を行うことにより、転位の部分的回復をもたらす
ことにより深絞り性あるいは張り出し性が向上する。こ
こで130℃未満ではこの効果が得られず、280℃を
超えると強度の低下が著しくなる。上記効果をもたらす
転位の部分的回復に必要な処理時間は熱処理により生じ
るQ′相の生成に必要な時間よりも著しく短い。そのた
め100℃/分以上の昇温速度でかつ10分以下の短時
間の処理を行うことによりDI成形性を害することなく
絞りおよび張り出し性の向上が図れるようになる。Further, after cold rolling to the final plate thickness, low temperature annealing is performed to bring about partial recovery of dislocations, thereby improving deep drawing property or overhanging property. If the temperature is lower than 130 ° C, this effect cannot be obtained, and if the temperature exceeds 280 ° C, the strength is remarkably reduced. The processing time required for the partial recovery of dislocations that bring about the above effects is significantly shorter than the time required for the formation of the Q'phase produced by the heat treatment. Therefore, by performing the treatment at a temperature rising rate of 100 ° C./minute or more and for a short time of 10 minutes or less, it is possible to improve the squeezing and projecting properties without impairing the DI moldability.
【0011】以上述べた合金組成、製造条件により、サ
イズが100nm未満のAl−Cu−Mg−Si系析出物
の生成が抑えられ、成形性、特にしごき成形性のよいア
ルミニウム合金板を得ることができる。By the alloy composition and the manufacturing conditions described above, it is possible to suppress the formation of Al-Cu-Mg-Si based precipitates having a size of less than 100 nm, and to obtain an aluminum alloy sheet having good formability, especially ironing formability. it can.
【0012】[0012]
【実施例】次に本発明を実施例により、更に詳細に説明
する。 〔実施例1〕表1に示す合金組成の500mm厚の水冷鋳
造鋳塊を用いて表2に示す製造実験を行った。すなわ
ち、600℃で5時間の均質化処理を行い、通常の熱間
圧延にて厚さ3mmの板とした後、直ちに、または300
〜400℃の温度での中間焼鈍を2時間施した後、圧延
速度を変えることにより圧延時の温度を制御した冷間圧
延により板厚0.30mmの圧延板とした。さらにこれら
圧延板に各種条件にて最終焼鈍を行って、供試材を得
た。これら供試材に対して以下の組織観察、機械的性能
試験および成形性の評価を行った。組織観察としては微
細析出物について、透過型の電子顕微鏡を用いて1万〜
10万倍の倍率にて観察して析出物の平均長さを測定す
るとともに、エネルギー分散型の元素分析および電子線
回折による析出物の同定を行った。また通常の成形体の
場合、塗装焼き付け処理を施された後の材料の耐力値が
特に問題となる。そこで供試材の機械的性能として焼き
付け処理に対応する200℃で15分間の熱処理後の耐
力値を測定した。また成形性評価方法として、しごき加
工性は板厚減少率を64%と一定にした条件にて内容量
が350mlの標準的な缶を1000缶連続成形し、この
時の割れ発生缶数により評価した。評価基準としては割
れ無し:優れる、1〜4缶割れ:現行並、5缶以上割
れ:劣るとした。一方絞り成形性についてはエリクセン
社製万能絞り試験機によりパンチ直径33mmにて限界絞
り比(LDR)にて評価した。(LDR=1.95より
大:優れる、1.9〜1.95:現行並、1.9未満:
劣る)。表3にこれらの結果を示す。EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 A manufacturing experiment shown in Table 2 was conducted using a water-cooled casting ingot having a thickness of 500 mm and an alloy composition shown in Table 1. That is, after homogenizing treatment at 600 ° C. for 5 hours and making a plate with a thickness of 3 mm by ordinary hot rolling, immediately or at 300
After performing intermediate annealing at a temperature of up to 400 ° C. for 2 hours, cold rolling in which the temperature during rolling was controlled by changing the rolling speed was performed to obtain a rolled sheet having a sheet thickness of 0.30 mm. Further, these rolled sheets were subjected to final annealing under various conditions to obtain test materials. The following microstructure observations, mechanical performance tests, and moldability evaluations were performed on these test materials. As for the microstructure observation, about a fine precipitate, using a transmission electron microscope,
The average length of the precipitate was measured by observing at a magnification of 100,000 times, and the precipitate was identified by energy dispersive elemental analysis and electron diffraction. Further, in the case of an ordinary molded body, the proof stress value of the material after the baking treatment is a particular problem. Therefore, as the mechanical performance of the test material, the proof stress value after heat treatment for 15 minutes at 200 ° C. corresponding to the baking treatment was measured. As a method for evaluating formability, ironing workability was evaluated by the number of cracked cans by continuously forming 1000 standard cans with a capacity of 350 ml under the condition that the plate thickness reduction rate was kept constant at 64%. did. As evaluation criteria, no cracks: excellent, 1 to 4 cans cracked: current level, 5 or more cans cracked: inferior. On the other hand, the drawability was evaluated by a universal drawing tester manufactured by Erichsen Co., Ltd. with a punch diameter of 33 mm and a limiting drawing ratio (LDR). (LDR = greater than 1.95: excellent, 1.9 to 1.95: current level, less than 1.9:
Inferior). Table 3 shows these results.
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【表2】 [Table 2]
【0015】[0015]
【表3】 [Table 3]
【0016】表3から明らかなように本発明品No.1〜
4は従来品No.8と比較して熱処理後の耐力値は遜色な
く、絞り成形性、しごき加工性に優れている。これに対
し合金組成、あるいは製造条件が本発明の範囲を外れる
比較品No.5〜7はしごき加工性が劣ることが判る。As is clear from Table 3, the product No. 1 to
No. 4 is the conventional product No. Compared with No. 8, the yield value after heat treatment was comparable, and it was excellent in draw formability and ironing workability. On the other hand, the alloy composition or the manufacturing condition is out of the range of the present invention, the comparative product No. It is understood that the ironing workability of 5 to 7 is poor.
【0017】〔実施例2〕表1に示す組成の500mm厚
の水冷鋳造鋳塊を用いて表4に示す製造実験を行った。
すなわち600℃で5時間の均質化処理を行い、通常の
熱間圧延により厚さ3mmの板とした後、直ちに、または
冷間圧延した後、400℃を超え600℃以下の温度で
2時間の中間焼鈍を施し、冷却速度を制御して冷却し、
圧延速度を変えることにより圧延時の温度を制御した冷
間圧延により厚さ0.30mmの圧延板とした。さらにこ
れら圧延板に各種条件にて最終焼鈍を行って、供試材を
得た。これら供試材に対して実施例1と同様な方法によ
り、組織観察、機械的性能試験、および成形性の評価を
行った。表5にこれらの結果を示す。Example 2 A manufacturing experiment shown in Table 4 was conducted using a water-cooled casting ingot having a composition shown in Table 1 and having a thickness of 500 mm.
That is, after homogenizing treatment at 600 ° C. for 5 hours and making a plate having a thickness of 3 mm by normal hot rolling, immediately or after cold rolling, the temperature is more than 400 ° C. and 600 ° C. or less for 2 hours. Intermediate annealing is applied, cooling is performed by controlling the cooling rate,
A cold rolled sheet having a thickness of 0.30 mm was obtained by cold rolling in which the rolling temperature was controlled by changing the rolling speed. Further, these rolled sheets were subjected to final annealing under various conditions to obtain test materials. Microstructure observation, mechanical performance test, and moldability evaluation were performed on these test materials by the same method as in Example 1. Table 5 shows these results.
【0018】[0018]
【表4】 [Table 4]
【0019】[0019]
【表5】 [Table 5]
【0020】表5から明らかなように本発明品No.11
〜14は従来品No.18と比較して熱処理後の耐力値は
遜色なく、絞り成形性、しごき加工性に優れている。こ
れに対し、合金組成あるいは製造条件が本発明の範囲を
外れる比較品No.15〜17はしごき加工性が劣ってい
ることが判る。As is apparent from Table 5, the product No. of the present invention is 11
Nos. 14 to 14 are conventional products. Compared with No. 18, the yield value after heat treatment was comparable, and it was excellent in draw formability and ironing workability. On the other hand, the comparative product No. whose alloy composition or manufacturing conditions are out of the range of the present invention. It can be seen that the ironing workability of 15 to 17 is inferior.
【0021】[0021]
【発明の効果】以上述べたように本発明によれば強度に
優れ、かつDI成形性、特にしごき加工性に優れたアル
ミニウム合金板を得ることができ工業上顕著な効果を奏
するものである。As described above, according to the present invention, it is possible to obtain an aluminum alloy sheet having excellent strength and DI formability, especially ironing workability, and it is possible to achieve a remarkable effect industrially.
Claims (4)
じ)、Mg0.7〜1.3%、Cu0.15〜0.3
%、Si0.25%未満、Fe0.3〜0.7%を含
み、残部がAlと不可避的不純物とからなるAl合金鋳
塊に、均質化処理、熱間圧延を施した後、直ちに、10
0℃未満の温度で冷間圧延を施すことにより最終板厚と
し、100℃/分以上の昇温速度で130〜280℃の
温度の焼鈍を10分以内行うことを特徴とするDI成形
用アルミニウム合金板の製造方法。1. Mn 0.8-1.5% (weight% or less same), Mg 0.7-1.3%, Cu 0.15-0.3
%, Si less than 0.25%, Fe 0.3 to 0.7%, and the balance of 10% immediately after the homogenization treatment and the hot rolling of the Al alloy ingot, the balance of which is Al and inevitable impurities.
Aluminum for DI forming, which is characterized by performing cold rolling at a temperature of less than 0 ° C. to obtain a final plate thickness and performing annealing at a temperature of 130 to 280 ° C. within 10 minutes at a temperature rising rate of 100 ° C./min or more. Method for manufacturing alloy plate.
1.3%、Cu0.15〜0.3%、Si0.25%未
満、Fe0.3〜0.7%を含み、残部がAlと不可避
的不純物とからなるアルミニウム合金鋳塊に、均質化処
理、熱間圧延を施した後、300〜400℃の温度で中
間焼鈍を行った後、100℃未満の温度で冷間圧延を施
すことにより最終板厚とし、100℃/分以上の昇温速
度で130〜280℃の温度の焼鈍を10分以内行うこ
とを特徴とするDI成形用アルミニウム合金板の製造方
法。2. Mn 0.8-1.5%, Mg 0.7-
Homogenizing treatment to an aluminum alloy ingot containing 1.3%, Cu 0.15 to 0.3%, Si less than 0.25%, Fe 0.3 to 0.7%, and the balance Al and unavoidable impurities. After performing hot rolling, intermediate annealing was performed at a temperature of 300 to 400 ° C., and then cold rolling was performed at a temperature of less than 100 ° C. to obtain the final plate thickness, and a heating rate of 100 ° C./min or more. The method for producing an aluminum alloy sheet for DI molding, comprising: annealing at a temperature of 130 to 280 ° C. for 10 minutes or less.
1.3%、Cu0.15〜0.3%、Si0.25%未
満、Fe0.3〜0.7%を含み、残部がAlと不可避
的不純物とからなるアルミニウム合金鋳塊に、均質化処
理、熱間圧延を施した後、直ちに400℃を超え600
℃以下の温度の中間焼鈍を行い、10℃/分以上の冷却
速度にて100℃未満に冷却し、100℃未満の温度で
冷間圧延を施して最終板厚とし、100℃/分以上の昇
温速度で130〜280℃の温度の焼鈍を10分以内行
うことを特徴とするDI成形用アルミニウム合金板の製
造方法。3. Mn 0.8-1.5%, Mg 0.7-
Homogenizing treatment to an aluminum alloy ingot containing 1.3%, Cu 0.15 to 0.3%, Si less than 0.25%, Fe 0.3 to 0.7%, and the balance Al and unavoidable impurities. Immediately after hot rolling, the temperature exceeds 400 ℃ and 600
Perform intermediate annealing at a temperature of ℃ or less, cool to less than 100 ° C at a cooling rate of 10 ° C / min or more, and perform cold rolling at a temperature of less than 100 ° C to obtain a final plate thickness of 100 ° C / min or more. A method for producing an aluminum alloy sheet for DI forming, which comprises performing annealing at a temperature rising rate of 130 to 280 ° C. within 10 minutes.
1.3%、Cu0.15〜0.3%、Si0.25%未
満、Fe0.3〜0.7%を含み、残部がAlと不可避
的不純物とからなるアルミニウム合金鋳塊に、均質化処
理、熱間圧延を施した後、冷間圧延を施し、400℃を
超え600℃以下の温度の中間焼鈍を行い、10℃/分
以上の冷却速度にて100℃未満に冷却し、100℃未
満の温度で冷間圧延を施して最終板厚とし、100℃/
分以上の昇温速度で130〜280℃の温度の焼鈍を1
0分以内行うことを特徴とするDI成形用アルミニウム
合金板の製造方法。4. Mn 0.8-1.5%, Mg 0.7-
Homogenizing treatment to an aluminum alloy ingot containing 1.3%, Cu 0.15 to 0.3%, Si less than 0.25%, Fe 0.3 to 0.7%, and the balance Al and unavoidable impurities. After hot rolling, cold rolling is performed, intermediate annealing is performed at a temperature higher than 400 ° C and lower than 600 ° C, cooled to less than 100 ° C at a cooling rate of 10 ° C / minute or higher, and lower than 100 ° C. Cold rolling at the temperature of
Annealing at a temperature of 130-280 ° C for 1 minute or more at a heating rate of 1 minute or more
A method for producing an aluminum alloy plate for DI molding, which is performed within 0 minutes.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21222392A JPH0633202A (en) | 1992-07-16 | 1992-07-16 | Manufacture of aluminum alloy sheet for di forming |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21222392A JPH0633202A (en) | 1992-07-16 | 1992-07-16 | Manufacture of aluminum alloy sheet for di forming |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0633202A true JPH0633202A (en) | 1994-02-08 |
Family
ID=16618991
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21222392A Pending JPH0633202A (en) | 1992-07-16 | 1992-07-16 | Manufacture of aluminum alloy sheet for di forming |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0633202A (en) |
-
1992
- 1992-07-16 JP JP21222392A patent/JPH0633202A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8951371B2 (en) | Copper alloy | |
| JP4229307B2 (en) | Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same | |
| JPH0635644B2 (en) | Manufacturing method of aluminum alloy hard plate for forming | |
| JP4257135B2 (en) | Aluminum alloy hard plate for can body | |
| JP2004027253A (en) | Aluminum alloy sheet for forming and method of manufacturing the same | |
| JP6467154B2 (en) | Manufacturing method of high strength and high ductility aluminum alloy sheet | |
| JP2001262265A (en) | Hot rolling stock of high formability aluminum alloy sheet | |
| JPH11350058A (en) | Aluminum alloy sheet excellent in formability and baking hardenability and its production | |
| JPH07166285A (en) | Hardened al alloy sheet by baking and production thereof | |
| JP3278119B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability | |
| JP2000001730A (en) | Aluminum alloy plate for can body and method for producing the same | |
| JPS6254183B2 (en) | ||
| JPH0633202A (en) | Manufacture of aluminum alloy sheet for di forming | |
| JPH0533107A (en) | Manufacturing method of aluminum alloy hard plate excellent in strength and formability | |
| JP2613522B2 (en) | Aluminum alloy plate for stay tub | |
| JP2858069B2 (en) | Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same | |
| JPH062089A (en) | Manufacture of aluminum alloy sheet for di forming | |
| JPH07228957A (en) | Production of aluminum alloy sheet having excellent formability and quench-hardenability | |
| JPH08333644A (en) | Aluminum alloy foil and its production | |
| JPH07150282A (en) | Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production | |
| JP4190674B2 (en) | Aluminum-based alloy sheet having excellent strength and formability and method for producing the same | |
| JP3156549B2 (en) | Hard Al alloy sheet for can body with excellent formability and its manufacturing method | |
| JPH07238355A (en) | Manufacturing method of Al alloy hard plate for forming | |
| JP4060460B2 (en) | Method for producing aluminum alloy plate for can body | |
| JPH0633177A (en) | Aluminum alloy sheet for di forming |