[go: up one dir, main page]

JPH06333841A - Method and apparatus for forming non-single crystal silicon semiconductor film - Google Patents

Method and apparatus for forming non-single crystal silicon semiconductor film

Info

Publication number
JPH06333841A
JPH06333841A JP5118244A JP11824493A JPH06333841A JP H06333841 A JPH06333841 A JP H06333841A JP 5118244 A JP5118244 A JP 5118244A JP 11824493 A JP11824493 A JP 11824493A JP H06333841 A JPH06333841 A JP H06333841A
Authority
JP
Japan
Prior art keywords
film
temperature
wall member
space
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5118244A
Other languages
Japanese (ja)
Inventor
Shotaro Okabe
正太郎 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5118244A priority Critical patent/JPH06333841A/en
Publication of JPH06333841A publication Critical patent/JPH06333841A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【目的】 連続して移動する帯状基体上に形成される非
単結晶シリコン系半導体膜の諸特性を均一化しかつ向上
する。 【構成】 帯状の被堆積用基体(103)と該被堆積用
基体以外の成膜空間用壁部材(111)により成膜空間
を形成し、該成膜空間内に原料ガスを導入し且つプラズ
マを生起して、被堆積用基体(103)を移動させつつ
該被堆積用基体上に非単結晶シリコン系半導体膜を形成
する方法において、膜形成時の壁部材(111)の温度
を、被堆積用基体(103)の温度よりも低く保持する
ことを特徴とする非単結晶シリコン系半導体膜を形成す
る方法。
(57) [Abstract] [Purpose] To homogenize and improve various characteristics of a non-single-crystal silicon semiconductor film formed on a continuously moving strip-shaped substrate. A film-forming space is formed by a strip-shaped substrate for deposition (103) and a wall member (111) for film-forming space other than the substrate for deposition, and a source gas is introduced into the film-forming space and plasma is formed. In the method of forming a non-single crystal silicon based semiconductor film on the deposition target substrate while moving the deposition target substrate (103), the temperature of the wall member (111) during film formation is controlled by A method for forming a non-single crystal silicon based semiconductor film, characterized in that the temperature is kept lower than the temperature of the deposition substrate (103).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非単結晶シリコン系半
導体膜の形成方法および形成装置に関し、特に大面積の
薄膜であって、光起電力素子等の積層素子に用いる機能
性堆積膜を帯状基体上に連続的に形成する方法および形
成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a non-single crystal silicon semiconductor film, and particularly to a thin film having a large area, which is a functional deposition film used for a laminated element such as a photovoltaic element. The present invention relates to a method and an apparatus for continuously forming on a belt-shaped substrate.

【0002】[0002]

【従来の技術】基板上に光起電力素子等に用いる半導体
機能性堆積膜を連続的に形成する方法として、各種半導
体層を形成するための独立した成膜室を設け、これらの
各成膜室はゲートバルブを介したロードロック方式にて
連結され、基板を各成膜室へ順次移動して各種半導体層
を形成する方法が知られている。そして、この量産性を
著しく向上させる方法として、米国特許第4,400,
409号明細書にロール・ツー・ロール(Roll t
o Roll)方式を採用した連続プラズマCVD法が
開示されている。この方法によれば、長尺の帯状部材を
基板として、複数のグロー放電領域において必要とされ
る導電型の半導体層を堆積形成しつつ、基板をその長手
方向に連続的に搬送することによって、半導体接合を有
する素子を連続形成することができるとされている。
2. Description of the Related Art As a method for continuously forming a semiconductor functionally deposited film used for a photovoltaic element or the like on a substrate, an independent film forming chamber for forming various semiconductor layers is provided and each of these film forming films is formed. A method is known in which the chambers are connected by a load lock method via a gate valve, and the substrate is sequentially moved to each film forming chamber to form various semiconductor layers. Then, as a method for remarkably improving the mass productivity, US Pat.
No. 409 describes roll-to-roll (roll t roll).
The continuous plasma CVD method employing the o Roll) method is disclosed. According to this method, by using the long strip-shaped member as a substrate, while depositing and forming the conductive type semiconductor layers required in the plurality of glow discharge regions, by continuously transporting the substrate in its longitudinal direction, It is said that elements having a semiconductor junction can be continuously formed.

【0003】しかし、数百メートルにも及ぶ基板上に半
導体層を形成するには数時間に及ぶ成膜時間を要するこ
とがあり、さらに高品位な半導体堆積膜を収率良く形成
するためには、その間、放電状態や基板温度を精密に維
持制御しなければならない。例えば、成膜中の基板温度
は、半導体堆積膜の電気的特性を保証するためにはプラ
スマイナス5℃以内の変動に抑えなくてはならない。
However, it may take several hours to form a semiconductor layer on a substrate having a length of several hundred meters, and in order to form a high quality semiconductor deposited film with a high yield. During that time, the discharge state and the substrate temperature must be precisely maintained and controlled. For example, the substrate temperature during film formation must be controlled within a range of plus or minus 5 ° C. in order to guarantee the electrical characteristics of the semiconductor deposited film.

【0004】基板温度は、ランプヒーターやシースヒー
ター、熱浴による熱輻射や熱伝導、プラズマからの熱伝
導、基板の周囲にある部材からの熱輻射、基板表面反応
による熱の出入りによって決まる。長時間にわたる成膜
では、基板の周囲にある部材の温度管理に対して十分に
注意を払う必要がある。すなわち、成膜時間の経過に対
して基板周囲部材の温度及び温度分布を一定に制御し、
基板がそれら部材からうける熱量を一定にしなければな
らない。放電状態を制御するパラメータは、ガス流量、
圧力、高周波やマイクロ波の供給電力、バイアス電力、
プラズマの接する部材の温度等である。直流または高周
波バイアスを印加する場合、バイアス印加状態の制御方
法としてバイアスを印加電極に流れる電流を一定に制御
する方法がある。この際、プラズマに接する部材からの
2次電子放出係数を一定にしなければならず、該部材の
温度制御は特に精密性を要求されるのである。
The substrate temperature is determined by heat radiation and heat conduction by a lamp heater, a sheath heater, a heat bath, heat conduction from plasma, heat radiation from a member around the substrate, and heat input and output by substrate surface reaction. When forming a film over a long period of time, it is necessary to pay sufficient attention to temperature control of members around the substrate. That is, the temperature and temperature distribution of the substrate surrounding member are controlled to be constant with respect to the film formation time,
The amount of heat that the substrate receives from these components must be constant. The parameters that control the discharge state are the gas flow rate,
Pressure, high frequency or microwave power supply, bias power,
It is the temperature of the member in contact with the plasma. When applying a DC or high frequency bias, there is a method of controlling the bias application state by controlling the current flowing through the application electrode to a constant bias. At this time, the secondary electron emission coefficient from the member in contact with the plasma must be kept constant, and the temperature control of the member requires particularly high precision.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の如き
従来の大面積機能性堆積膜の方法及び装置における諸問
題を克服して、例えば連続して移動する帯状基体等、基
体上に形成される非単結晶シリコン系半導体膜の諸特性
を均一化しかつ向上できる形成方法および形成装置を提
供することにある。
SUMMARY OF THE INVENTION The present invention overcomes the problems associated with the conventional large area functionally deposited film methods and apparatus as described above and is formed on a substrate, such as a continuously moving strip substrate. It is an object of the present invention to provide a forming method and an forming apparatus which can make various characteristics of a non-single crystal silicon semiconductor film uniform and improved.

【0006】[0006]

【課題を解決するための手段】上記目的は、以下に述べ
る本発明により達成できる。
The above object can be achieved by the present invention described below.

【0007】本発明の方法は、被堆積用基体と該被堆積
用基体以外の成膜空間用壁部材により成膜空間を形成
し、該成膜空間内に原料ガスを導入し且つプラズマを生
起して、被堆積用基体を移動させつつ該被堆積用基体上
に非単結晶シリコン系半導体膜を形成する方法におい
て、膜形成時の前記壁部材の温度を、前記被堆積用基体
の温度よりも低く保持することを特徴とする非単結晶シ
リコン系半導体膜を形成する方法である。
According to the method of the present invention, a deposition space is formed by a deposition base and a deposition space wall member other than the deposition base, a source gas is introduced into the deposition space, and plasma is generated. Then, in the method of forming the non-single-crystal silicon-based semiconductor film on the substrate for deposition while moving the substrate for deposition, the temperature of the wall member at the time of film formation is higher than the temperature of the substrate for deposition. It is also a method of forming a non-single-crystal silicon-based semiconductor film, characterized in that

【0008】本発明の方法においては、特に、膜形成時
の前記壁部材の温度を、前記堆積用基体の移動方向に向
って低くなる温度分布となるよう調整する態様が有効で
ある。
In the method of the present invention, it is particularly effective to adjust the temperature of the wall member during film formation so that the temperature distribution becomes lower in the moving direction of the deposition substrate.

【0009】また本発明の装置は、被堆積用基体と該被
堆積用基体以外の壁部材により成膜空間を形成し、該成
膜空間内に原料ガスを導入し且つプラズマを生起して、
被堆積用基体を移動させつつ該被堆積用基体上に非単結
晶シリコン系半導体膜を形成する装置において、膜形成
時の前記壁部材の温度を、前記被堆積用基体の温度より
も低く保持する手段を有することを特徴とする非単結晶
シリコン系半導体膜形成装置である。
In the apparatus of the present invention, a deposition space is formed by a deposition base and a wall member other than the deposition base, a source gas is introduced into the deposition space, and plasma is generated.
In a device for forming a non-single crystal silicon semiconductor film on a substrate for deposition while moving the substrate for deposition, the temperature of the wall member during film formation is kept lower than the temperature of the substrate for deposition. It is a non-single-crystal silicon-based semiconductor film forming apparatus characterized by having a means for

【0010】[0010]

【作用】一般に、基体の温度は、ランプヒーター等によ
る熱輻射または基体に接する部材からの熱伝達により所
望の温度に制御される。本発明においては、放電に接
し、かつ成膜空間を囲む成膜空間用壁部材の温度を基体
の温度よりも低く保持することで、該部材からの基体へ
の熱輻射の影響が小さくなり、前記ランプヒーター等に
よる該基体の温度制御が容易になる。
In general, the temperature of the substrate is controlled to a desired temperature by heat radiation from a lamp heater or the like or heat transfer from a member in contact with the substrate. In the present invention, by keeping the temperature of the film forming space wall member that is in contact with the discharge and that surrounds the film forming space lower than the temperature of the substrate, the effect of heat radiation from the member to the substrate is reduced, The temperature control of the substrate by the lamp heater or the like becomes easy.

【0011】特に、高品位なアモルファスSi,SiG
e膜の形成には、成膜条件に応じて基体の温度を250
〜380℃の間の一定温度に制御する必要がある。本発
明においては、基体への熱輻射がある前記放電に接しか
つ放電空間を仕切る成膜空間用壁部材の温度を200〜
300℃とすることで、基体の上記250〜380℃の
温度の制御が容易になる。
Particularly, high-quality amorphous Si and SiG
For forming the e film, the temperature of the substrate is set to 250 depending on the film forming conditions.
It is necessary to control to a constant temperature between 380 ° C. In the present invention, the temperature of the film forming space wall member that is in contact with the discharge having heat radiation to the substrate and partitions the discharge space is set to 200 to
By setting the temperature to 300 ° C., it becomes easy to control the temperature of the substrate at 250 to 380 ° C.

【0012】また、長尺にわたって設けた成膜空間にそ
って帯状基体を搬送させながら堆積膜を形成すると、該
帯状基体はプラズマにより、また成膜空間を囲む部材か
らの熱輻射により温度が上昇する。そこで本発明におい
ては、膜形成時の前記壁部材の温度を、前記堆積用基体
の移動方向に向って低くなる温度分布となるよう調整す
る態様によって、壁部材からの熱輻射量を減少させて基
体の温度制御を容易化できる。
Further, when a deposited film is formed while the strip-shaped substrate is conveyed along a long film-forming space, the temperature of the strip-shaped substrate rises due to plasma and heat radiation from a member surrounding the film-forming space. To do. Therefore, in the present invention, the amount of heat radiation from the wall member is reduced by a mode in which the temperature of the wall member during film formation is adjusted to have a temperature distribution that decreases toward the moving direction of the deposition substrate. The temperature control of the substrate can be facilitated.

【0013】以下、本発明の実施態様について詳細に説
明する。
The embodiments of the present invention will be described in detail below.

【0014】本発明において、被堆積用基体は、その表
面に堆積膜を形成するため基体であり、その形状は移動
による連続的膜形成に適した形状、例えば帯形状等であ
る。この被堆積用基体は成膜空間を囲む部材の一つ(一
面)である。成膜空間用壁部材は、被堆積用基体以外の
部材であって、成膜空間を囲む部材(導電性部材等)で
ある。この被堆積用基体と成膜空間用壁部材により囲ま
れた空間が成膜空間となる。この成膜空間の形状は特に
限定されないが、直方体様形状が代表的である。成膜空
間用壁部材は、通常位置が固定されている。一方、成膜
時において被堆積用基体は所望の方向、例えば帯形状の
場合は長手方向に移動する。成膜時においては、成膜空
間にはガス導入手段により該成膜空間の外部より原料ガ
スが導入され、さらに高周波またはマイクロ波電力の投
入により放電が生起、維持される。例えば成膜空間用壁
部材には、前記成膜空間に導入したガスを該成膜空間の
外に排出する排気孔が設けられていて、装置外部のポン
プによってガスが排気される。ここで、成膜時の成膜空
間の圧力は、10-4〜1(Torr)程度が望ましく、後に
詳述する成膜外空間の圧力は1(Torr)以上が望まし
い。
In the present invention, the substrate for deposition is a substrate for forming a deposited film on its surface, and its shape is a shape suitable for continuous film formation by movement, for example, a band shape. This substrate for deposition is one (one surface) of the member that surrounds the film formation space. The film forming space wall member is a member other than the deposition target substrate and is a member (a conductive member or the like) that surrounds the film forming space. The space surrounded by the deposition substrate and the film forming space wall member becomes the film forming space. The shape of the film forming space is not particularly limited, but a rectangular parallelepiped-like shape is typical. The normal position of the film forming space wall member is fixed. On the other hand, the substrate to be deposited moves in a desired direction during film formation, for example, in the longitudinal direction in the case of a strip shape. During film formation, a raw material gas is introduced into the film formation space from the outside of the film formation space by a gas introduction means, and further high-frequency or microwave power is input to cause and maintain discharge. For example, the film forming space wall member is provided with an exhaust hole for discharging the gas introduced into the film forming space to the outside of the film forming space, and the gas is exhausted by a pump outside the apparatus. Here, the pressure in the film formation space during film formation is preferably about 10 −4 to 1 (Torr), and the pressure in the outer space for film formation, which will be described in detail later, is preferably 1 (Torr) or higher.

【0015】成膜時における基体は、ランプヒーター等
による熱輻射または基体に接する部材からの熱伝達によ
り所望の温度に制御される。更に、本発明においては、
膜形成時の壁部材の温度を基体の温度よりも低く制御す
る。
The substrate during film formation is controlled to a desired temperature by heat radiation from a lamp heater or the like or heat transfer from a member in contact with the substrate. Furthermore, in the present invention,
The temperature of the wall member during film formation is controlled to be lower than the temperature of the substrate.

【0016】この制御方法としては、成膜空間用壁部材
の成膜空間に接しない面(成膜空間の外側の面)に収納
可能なフィンを備え、このフィンの突出長を調整して外
部に出ている表面積を加減する方法、このフィンに接す
るガス雰囲気の圧力および/またはガス流量を調整する
方法などがある。すなわち、壁部材の成膜空間の外側の
面にフィンを設けることで、該部材から熱を放射させ
て、温度の上昇を抑制することができ、フィンの突出量
を調整可能として表面積を変えると熱の放射量を制御す
ることができる。このフィンに接するガス雰囲気の圧力
を高くすると対流によりガスに熱が伝達され、成膜空間
を囲む部材の温度上昇の抑制効果が大きくなる。さら
に、前記ガスの流速を早くするか、ガスを置換すると効
果はさらに増大する。
As this control method, there is provided a fin that can be housed on the surface of the wall member for film formation space that is not in contact with the film formation space (the surface outside the film formation space), and the projection length of this fin is adjusted to the outside. There is a method of adjusting the surface area exposed at, and a method of adjusting the pressure and / or the gas flow rate of the gas atmosphere in contact with the fin. That is, by providing the fin on the outer surface of the film forming space of the wall member, it is possible to radiate heat from the member and suppress an increase in temperature, and to adjust the protrusion amount of the fin to change the surface area. The amount of heat emitted can be controlled. When the pressure of the gas atmosphere in contact with the fins is increased, heat is transferred to the gas by convection, and the effect of suppressing the temperature rise of the member surrounding the film formation space is increased. Further, the effect is further enhanced by increasing the flow velocity of the gas or replacing the gas.

【0017】また別の制御方法としては、成膜空間用壁
部材の成膜空間に接しない面側に熱浴を備え、この熱浴
と壁部材との接触の有無により調整する方法がある。す
なわち、壁部材に熱浴を接触させて熱を交換させる方法
である。例えば、壁部材にヒーターを埋め込み温度をコ
ントロールすると該部材の大きな熱容量と高いヒーター
温度により、その制御応答速度の遅さが問題となる。ヒ
ーターとともに冷却用の水冷管を埋め込むことは100
℃以上の高温では困難である。そこで、本発明の態様に
おいては、壁部材の表面温度を熱浴を接触させたり離し
たりして熱を交換する。この熱浴は、例えば熱伝導率が
高く熱容量の大きなブロック状の部材により形成し、内
部には水やガス等の冷却媒体が流れる冷却管またはヒー
ター等が装着され、熱浴の温度はヒーターの出力コント
ローラーまたは冷却媒体の流量制御器によって一定に制
御される。また、この熱浴は機械式の駆動機構により移
動し、壁部材に接触しまたは離れる。壁部材の成膜空間
側表面温度が熱電対によりモニターされ、熱浴の駆動制
御回路にフィードバックされる。この場合、壁部材の肉
厚を薄くし、熱容量を小さくして制御の応答速度を早く
することが望ましい。
As another control method, there is a method in which a heat bath is provided on the surface side of the wall member for film formation space which is not in contact with the film formation space, and the heat bath is adjusted according to the presence or absence of contact between the wall member and the wall member. That is, it is a method of contacting the wall member with a heat bath to exchange heat. For example, when the heater is embedded in the wall member and the temperature is controlled, the control response speed becomes slow due to the large heat capacity of the member and the high heater temperature. Embedding a water cooling tube for cooling with a heater is 100
It is difficult at high temperatures above ℃. Therefore, in the aspect of the present invention, heat is exchanged by bringing the surface temperature of the wall member into contact with or away from the heat bath. This heat bath is formed of, for example, a block-shaped member having a high thermal conductivity and a large heat capacity, and a cooling pipe or a heater through which a cooling medium such as water or gas flows is attached to the inside of the heat bath. It is constantly controlled by an output controller or a cooling medium flow controller. Also, the hot bath is moved by a mechanical drive mechanism to contact or leave the wall member. The surface temperature of the wall member on the film formation space side is monitored by a thermocouple and fed back to the drive control circuit of the heat bath. In this case, it is desirable to reduce the wall thickness of the wall member to reduce the heat capacity and increase the control response speed.

【0018】さらに本発明の方法を、DCバイアスを印
加するマイクロ波プラズマCVD法による成膜法の態様
により行なう場合は、バイアス印加電極、基体、成膜空
間用壁部材の温度を一定に制御することで、放電空間に
投入される実効的なマイクロ波電力をバイアス電流値で
モニターする精度を向上できる。したがって、基体、バ
イアス電極はもちろんのこと、成膜空間用壁部材の温度
を一定に制御しつつ、バイアス電流が一定になるように
マイクロ波電力を調整することで、成膜条件の制御精度
が向上し、しいては膜質のいっそうの向上を達成するこ
とができる。同様に、RFバイアスを印加するマイクロ
波プラズマCVD法による成膜法の態様により行なう場
合も、成膜空間を囲む部材の温度を一定に制御しつつ、
バイアス電流が一定になるようにマイクロ波電力また
は、RF電力を調整することで、成膜条件の制御精度が
向上し、しいては膜質のいっそうの向上を達成すること
ができる。
Further, when the method of the present invention is carried out by a film forming method by a microwave plasma CVD method in which a DC bias is applied, the temperatures of the bias applying electrode, the substrate and the wall member for the film forming space are controlled to be constant. As a result, it is possible to improve the accuracy of monitoring the effective microwave power supplied to the discharge space with the bias current value. Therefore, by controlling the microwave power so that the bias current becomes constant while controlling the temperature of the substrate and the bias electrode as well as the temperature of the wall member for the film formation space to be constant, the control accuracy of the film formation conditions can be improved. It is possible to improve, and thus further improve the film quality. Similarly, in the case of performing the film formation method by the microwave plasma CVD method in which the RF bias is applied, while controlling the temperature of the member surrounding the film formation space to be constant,
By adjusting the microwave power or the RF power so that the bias current becomes constant, the control accuracy of the film forming conditions is improved, and thus the film quality can be further improved.

【0019】図1は、本発明の特徴を良く表すマイクロ
波プラズマCVD法による機能性堆積膜形成装置を示し
た断面図である。同図において、101は成膜容器、1
02は成膜容器の壁部材、103は成膜容器101を貫
いて移動するする帯状基体(被堆積用基体)、104,
105は成膜容器と隣接する不図示の帯状基体の繰り出
し容器または帯状基体の巻き取り容器とを繋ぐガスゲー
トである。106は帯状基体を加熱するランプヒータ
ー、107,108,109は帯状基体の温度を測定す
る熱電対、110は帯状基体に接触した熱を交換する熱
浴である。111は、放電に接して成膜空間を囲む部材
(成膜空間用壁部材)、112はフィン、113はベー
キングヒーター、114,115,116は成膜空間用
壁部材の温度を測定する熱電対、117は成膜空間であ
る。また、118は堆積膜形成用原料ガスの供給手段、
119は成膜空間のガス排気配管、120はマイクロ波
を成膜空間に導入するマイクロ波アプリケータ及びマイ
クロ波透過性部材、121はバイアスロッドである。1
22は成膜空間とは隔てられた成膜外空間、123は成
膜外空間にガスを供給する手段、124は成膜外空間1
22のガスの排気管である。
FIG. 1 is a sectional view showing a functional deposited film forming apparatus by a microwave plasma CVD method, which is a characteristic of the present invention. In the figure, 101 is a film forming container, 1
Reference numeral 02 denotes a wall member of the film forming container, 103 denotes a strip-shaped substrate (deposition substrate) that moves through the film forming container 101, 104,
Reference numeral 105 denotes a gas gate which connects the film forming container and a feed-out container for a strip-shaped substrate (not shown) or a winding container for the strip-shaped substrate, which is not shown. Reference numeral 106 is a lamp heater for heating the strip-shaped substrate, 107, 108 and 109 are thermocouples for measuring the temperature of the strip-shaped substrate, and 110 is a heat bath for exchanging heat in contact with the strip-shaped substrate. 111 is a member that surrounds the film formation space in contact with the discharge (wall member for film formation space), 112 is a fin, 113 is a baking heater, and 114, 115 and 116 are thermocouples that measure the temperature of the wall member for film formation space. 117 is a film forming space. Further, 118 is a means for supplying a raw material gas for forming a deposited film,
Reference numeral 119 is a gas exhaust pipe of the film forming space, 120 is a microwave applicator and a microwave permeable member for introducing microwaves into the film forming space, and 121 is a bias rod. 1
Reference numeral 22 denotes a film-forming outer space separated from the film-forming space, 123 denotes a means for supplying a gas to the film-forming outer space, and 124 denotes a film-forming outer space 1.
22 is a gas exhaust pipe.

【0020】この装置においては、成膜空間117は帯
状基体103に沿って帯状基体の長手方向、すなわち搬
送方向に配置される。成膜空間117は、帯状基体10
3を一面として他の面を導電性部材(位置の固定された
成膜空間用壁部材111)によって囲まれた直方体様形
状をしている。この成膜空間117にはガス導入手段に
より該成膜空間の外部より原料ガスが導入され、さらに
マイクロ波電力の投入により放電が生起、維持される。
In this apparatus, the film forming space 117 is arranged along the strip-shaped substrate 103 in the longitudinal direction of the strip-shaped substrate, that is, in the transport direction. The film forming space 117 is formed by the strip-shaped substrate 10
It has a rectangular parallelepiped shape in which 3 is one surface and the other surface is surrounded by a conductive member (the film forming space wall member 111 whose position is fixed). A raw material gas is introduced into the film forming space 117 from the outside of the film forming space by a gas introducing means, and electric power is further applied to the microwave to generate and maintain a discharge.

【0021】また、この装置では、不図示の図面左側の
帯状基体送り出し機構を有する繰り出し容器に帯状基体
103の巻き付けられたボビンをセットし、該帯状基体
103をガスゲート104、成膜容器101、ガスゲー
ト105を通して不図示の図面右側の帯状基体巻き取り
機構を有する巻き取り容器に渡して、張力調整し、また
一定速度で搬送する。
Further, in this apparatus, a bobbin around which the strip-shaped substrate 103 is wound is set in a feeding container having a strip-shaped substrate feeding mechanism (not shown) on the left side of the drawing, and the strip-shaped substrate 103 is set to the gas gate 104, the film forming container 101, and the gas gate. The film is passed through 105 to a winding container having a belt-shaped substrate winding mechanism (not shown) on the right side of the drawing, tension is adjusted, and the film is conveyed at a constant speed.

【0022】ランプヒーター106の出力及び熱浴11
0の温度は、不図示の出力制御器によって、熱電対10
7,108,109により測定した帯状基体103の温
度が一定になるように制御する。熱浴110の温度は熱
浴中に埋め込まれたヒーター、冷却水により調整する。
成膜容器101は排気管119,124に連なる不図示
のロータリーポンプ、メカニカルブースターポンプ、拡
散ポンプにより減圧に排気することができる。また、排
気管119,124上にある不図示のスロットルバルブ
により、成膜空間117と成膜外空間122を所定の圧
力に調整することができる。成膜空間117には、ガス
供給手段118により堆積膜形成用原料ガスまたは、不
活性ガスを導入することができる。成膜空間117に
は、マイクロ波を不図示のマイクロ波電源から不図示の
導波管、マイクロ波アプリケータおよびマイクロ波透過
性部材120を通して導入し、放電を生起することがで
きる。
Output of lamp heater 106 and heat bath 11
The temperature of 0 is controlled by the thermocouple 10 by an output controller (not shown).
The temperature of the strip-shaped substrate 103 measured by 7, 108 and 109 is controlled to be constant. The temperature of the heat bath 110 is adjusted by a heater and cooling water embedded in the heat bath.
The film forming container 101 can be evacuated to a reduced pressure by a rotary pump, a mechanical booster pump, and a diffusion pump (not shown) connected to the exhaust pipes 119 and 124. Further, the film forming space 117 and the film forming outside space 122 can be adjusted to a predetermined pressure by a throttle valve (not shown) provided on the exhaust pipes 119 and 124. Into the film forming space 117, a deposited film forming raw material gas or an inert gas can be introduced by the gas supply means 118. Microwaves can be introduced into the film formation space 117 from a microwave power source (not shown) through a waveguide (not shown), a microwave applicator, and a microwave transparent member 120 to generate a discharge.

【0023】バイアスロッド121は、外部電源からD
C電圧、またはRF電力を印加することができ、不図示
のフィードバック回路により、バイアスロッド121か
らアースに流れる電流が一定になるようにマイクロ波電
力を制御することができる。ベーキングヒーター113
により、放電に接して成膜空間を囲む部材111を、加
熱、脱ガスすることができる。放電に接して成膜空間用
壁部材111に設置されたフィン112によって、壁部
材111の熱は成膜外空間に放射される。また、フィン
112の突出長を調整して壁部材111の温度を制御す
ることができる。成膜外空間122にはガス供給手段1
23によって不活性ガスまたは水素ガスを導入すること
ができる。排気管124上の不図示のスロットルバルブ
の開口度を調節することにより成膜外空間の圧力を上げ
て、前記フィン112から成膜外空間のガスに熱を伝達
する効率を上げることができる。
The bias rod 121 is connected to the D
C voltage or RF power can be applied, and the microwave power can be controlled by a feedback circuit (not shown) so that the current flowing from the bias rod 121 to the ground is constant. Baking heater 113
Thus, the member 111 that is in contact with the discharge and surrounds the film formation space can be heated and degassed. The heat of the wall member 111 is radiated to the space outside the film formation by the fins 112 installed on the film forming space wall member 111 in contact with the discharge. Further, the temperature of the wall member 111 can be controlled by adjusting the protruding length of the fin 112. Gas supply means 1 is provided in the outer space 122 for film formation.
An inert gas or hydrogen gas can be introduced according to 23. By adjusting the opening degree of a throttle valve (not shown) on the exhaust pipe 124, it is possible to increase the pressure in the outer space for film formation and increase the efficiency of transferring heat from the fins 112 to the gas in the outer space for film formation.

【0024】図2は、本発明の特徴を良く表す高周波プ
ラズマCVD法による機能性堆積膜形成装置を示した断
面図である。同図において、201は成膜容器、202
は成膜容器の壁部材、203は成膜容器201を貫いて
移動するする帯状基体(被堆積用基体)、204,20
5は成膜容器201と隣接する不図示の成膜容器または
帯状基体の繰り出し容器または帯状基体の巻き取り容器
とを繋ぐガスゲートである。206は帯状基体を加熱す
るランプヒーター、207,208は帯状基体の温度を
測定する熱電対である。209は放電に接して成膜空間
を囲む部材(成膜空間用壁部材)、210はフィン、2
11はベーキングヒーター、212は部材211の温度
を測定する熱電対、213は成膜空間である。214は
堆積膜形成用原料ガスの供給手段、215は成膜空間の
ガス排気配管、216は高周波電極である。218は成
膜外空間、219は成膜外空間218のガスの排気管で
ある。
FIG. 2 is a sectional view showing an apparatus for forming a functional deposited film by a high frequency plasma CVD method, which shows the features of the present invention well. In the figure, 201 is a film forming container, and 202
Is a wall member of the film deposition container, 203 is a strip-shaped substrate (deposited substrate) that moves through the film deposition container 201, 204, 20
Reference numeral 5 denotes a gas gate which connects the film forming container 201 to a film forming container (not shown) adjacent to the film forming container, a container for feeding the belt-shaped substrate, or a container for winding the belt-shaped substrate. Reference numeral 206 is a lamp heater for heating the strip-shaped substrate, and 207 and 208 are thermocouples for measuring the temperature of the strip-shaped substrate. 209 is a member that is in contact with the discharge and surrounds the film formation space (wall member for film formation space), 210 is a fin, 2
Reference numeral 11 is a baking heater, 212 is a thermocouple for measuring the temperature of the member 211, and 213 is a film forming space. Reference numeral 214 is a means for supplying a raw material gas for forming a deposited film, 215 is a gas exhaust pipe for the film forming space, and 216 is a high-frequency electrode. Reference numeral 218 is an outer space for film formation, and 219 is an exhaust pipe for gas in the outer space 218 for film formation.

【0025】この装置においては、不図示の図面左側の
帯状基体送り出し機構を有する繰り出し容器に帯状基体
203の巻き付けられたボビンをセットし、該帯状基体
203をガスゲート204、成膜容器201、ガスゲー
ト205を通して不図示の図面右側の帯状基体巻き取り
機構を有する巻き取り容器に渡して、張力調整すること
ができ、また、一定速度で搬送することができる。ラン
プヒーター206の出力は、不図示の出力制御器によっ
て、熱電対207,208により測定した帯状基体20
3の温度が一定になるように制御される。成膜容器20
1は排気管215,219に連なる不図示のロータリー
ポンプ、メカニカルブースターポンプにより減圧に排気
することができる。また、排気管115,219上にあ
る不図示のスロットルバルブにより、成膜空間と成膜外
空間を所定の圧力に調整することができる。成膜空間2
13には、ガス供給手段214により堆積膜形成用原料
ガスまたは、不活性ガスを導入することができる。
In this apparatus, a bobbin around which the belt-shaped substrate 203 is wound is set in a feeding container having a belt-shaped substrate feeding mechanism (not shown) on the left side of the drawing, and the belt-shaped substrate 203 is set to the gas gate 204, the film forming container 201, and the gas gate 205. The tension can be adjusted by passing it through a winding container having a strip-shaped substrate winding mechanism on the right side of the drawing (not shown), and it can be conveyed at a constant speed. The output of the lamp heater 206 is measured by thermocouples 207 and 208 by an output controller (not shown).
The temperature of 3 is controlled to be constant. Film forming container 20
1 can be evacuated to a reduced pressure by a rotary pump or a mechanical booster pump (not shown) connected to the exhaust pipes 215 and 219. Further, the film forming space and the film forming outside space can be adjusted to a predetermined pressure by a throttle valve (not shown) provided on the exhaust pipes 115 and 219. Film formation space 2
A raw material gas for forming a deposited film or an inert gas can be introduced into 13 by a gas supply means 214.

【0026】成膜空間213には、高周波電力を成膜容
器201外の不図示の高周波電源から高周波電極216
に印加して、放電を生起することができる。不図示のフ
ィードバック回路により、高周波電極216からアース
に流れる電流が一定になるようにマイクロ波電力を制御
することができる。ベーキングヒーター211により壁
部材209を加熱、脱ガスすることができる。また壁部
材209に設置されたフィン210によって、該部材の
熱は成膜外空間218に放射される。またフィン210
の突出長を調整して放電に接して成膜空間を囲む部材2
09の温度を制御することができる。さらには排気管2
19上の不図示のスロットルバルブの開口度を調節する
ことにより成膜外空間218の圧力を上げて、前記フィ
ン210から成膜外空間218のガスに熱を伝達する効
率を上げることができる。
In the film formation space 213, high frequency power is supplied from a high frequency power source (not shown) outside the film formation container 201 to the high frequency electrode 216.
Can be applied to generate a discharge. The microwave power can be controlled by a feedback circuit (not shown) so that the current flowing from the high frequency electrode 216 to the ground is constant. The wall member 209 can be heated and degassed by the baking heater 211. In addition, the fins 210 installed on the wall member 209 radiate the heat of the member to the outside film formation space 218. Also fin 210
2 for adjusting the protrusion length of the film to contact the discharge and enclose the film formation space
The temperature of 09 can be controlled. Furthermore, the exhaust pipe 2
By adjusting the opening degree of a throttle valve (not shown) on 19, it is possible to raise the pressure of the film-deposition outer space 218 and increase the efficiency of transferring heat from the fins 210 to the gas of the film-deposition outer space 218.

【0027】図3は、本発明の特徴を良く表すマイクロ
波プラズマCVD法による機能性堆積膜形成装置を示し
た断面図である。同図において、301は成膜容器、3
02は成膜容器の壁部材、303は成膜容器301を貫
いて移動する帯状基体(被堆積用基体)、304,30
5は成膜容器と隣接する不図示の成膜容器または帯状基
体の繰り出し容器または帯状基体の巻き取り容器とを繋
ぐガスゲートである。306は帯状基体を加熱するラン
プヒーター、307,308,309は帯状基体の温度
を測定する熱電対である。310は放電に接して成膜空
間を囲む部材(成膜空間用壁部材)、311は放電に接
して成膜空間を囲む部材のベーキングヒーター、312
〜318は部材310の温度を測定する熱電対、319
〜325は部材310を温度制御するための熱浴、32
6〜332は熱浴の温度制御用冷却管、333〜339
は熱浴319〜325を成膜空間を囲む部材310に接
触させたり離したりする直線導入機、340は放電に接
して位置の固定された成膜空間を囲む部材の温度コント
ローラー、341は成膜空間である。346は堆積膜形
成用原料ガスの供給手段、347は成膜空間のガス排気
配管、342、344はマイクロ波を成膜空間に導入す
るマイクロ波アプリケータ及びマイクロ波透過性部材、
343、345はバイアスロッドである。348は成膜
外空間である。
FIG. 3 is a sectional view showing a functional deposited film forming apparatus by the microwave plasma CVD method, which is a characteristic of the present invention. In the figure, 301 is a film forming container, 3
Reference numeral 02 denotes a wall member of the film forming container, 303 denotes a belt-shaped substrate (deposition substrate) that moves through the film forming container 301, 304 and 30.
Reference numeral 5 denotes a gas gate that connects the film forming container and a film forming container (not shown) adjacent to the film forming container, a container for feeding the belt-shaped substrate, or a container for winding the belt-shaped substrate. Reference numeral 306 is a lamp heater for heating the strip-shaped substrate, and 307, 308, 309 are thermocouples for measuring the temperature of the strip-shaped substrate. Reference numeral 310 denotes a member that is in contact with the discharge and surrounds the film formation space (wall member for film formation space), 311 is a baking heater that is a member that contacts the discharge and surrounds the film formation space, 312.
˜318 is a thermocouple for measuring the temperature of the member 310, 319
˜325 is a heat bath for controlling the temperature of the member 310, 32
6 to 332 are cooling tubes for controlling the temperature of the heat bath, and 333 to 339.
Is a straight line introduction machine for bringing the heat baths 319 to 325 into contact with or away from the member 310 surrounding the film formation space, 340 is a temperature controller for the member surrounding the film formation space whose position is fixed in contact with discharge, and 341 is film formation It is a space. Reference numeral 346 is a means for supplying a raw material gas for forming a deposited film, 347 is a gas exhaust pipe of the film forming space, 342 and 344 are microwave applicators and microwave permeable members for introducing microwaves into the film forming space,
343 and 345 are bias rods. Reference numeral 348 is a space outside the film formation.

【0028】上記構成において、不図示の図面左側の帯
状基体送り出し機構を有する繰り出し容器に帯状基体3
03の巻き付けられたボビンをセットし、該帯状基体3
03をガスゲート304、成膜容器301、ガスゲート
305を通して不図示の図面右側の帯状部材巻き取り機
構を有する巻き取り容器に渡して、張力調製することが
でき、また、一定速度で搬送することができる。ランプ
ヒーター306の出力は、不図示の出力制御器によっ
て、熱電対307、308、309により測定した帯状
基体303の温度が一定になるように制御される。熱浴
319〜325の温度は熱浴中に埋め込まれたヒータ
ー、冷却水により調整する。成膜容器301は排気管3
47に連なる不図示のロータリーポンプ、メカニカルブ
ースターポンプ、拡散ポンプにより減圧に排気すること
ができる。また、排気管347上にある不図示のスロッ
トルバルブにより、成膜空間と成膜外空間を所定の圧力
に調整することができる。成膜空間341には、ガス供
給手段346により堆積膜形成用原料ガスまたは不活性
ガスを導入することができる。成膜空間341には、マ
イクロ波を不図示のマイクロ波電源から不図示の導波
管、マイクロ波アプリケータ及びマイクロ波透過性部材
342、344を通して導入し、放電を生起することが
できる。バイアスロッド343、345には、外部電源
からDC電圧またはRF電力を印加することができる。
不図示のフィードバック回路により、バイアスロッド3
43、345からアースに流れる電流が一定になるよう
にマイクロ波電力を制御することができる。べーキング
ヒーター311により、放電に接して成膜空間を囲む部
材310を、加熱、脱ガスすることができる。部材31
0の温度調整は、熱浴319〜325を温調したり、部
材310に接触させたり離したりすることにより行な
う。
In the above structure, the strip-shaped substrate 3 is provided in the feeding container having the strip-shaped substrate delivery mechanism on the left side of the drawing (not shown).
No. 03 wound bobbin is set, and the strip-shaped substrate 3
03 can be passed through the gas gate 304, the film forming container 301, and the gas gate 305 to a winding container having a belt-shaped member winding mechanism (not shown) on the right side of the drawing to adjust the tension, and can be conveyed at a constant speed. . The output of the lamp heater 306 is controlled by an output controller (not shown) so that the temperature of the belt-shaped substrate 303 measured by the thermocouples 307, 308, 309 becomes constant. The temperature of the heat baths 319 to 325 is adjusted by a heater and cooling water embedded in the heat bath. The film forming container 301 is the exhaust pipe 3
A rotary pump, a mechanical booster pump, and a diffusion pump (not shown) connected to 47 can be used to reduce the pressure. Further, the film forming space and the film forming outside space can be adjusted to a predetermined pressure by a throttle valve (not shown) provided on the exhaust pipe 347. A deposition film forming source gas or an inert gas can be introduced into the film formation space 341 by the gas supply unit 346. Microwaves can be introduced into the film formation space 341 from a microwave power source (not shown) through a waveguide (not shown), a microwave applicator, and microwave transmitting members 342 and 344 to generate a discharge. DC voltage or RF power can be applied to the bias rods 343 and 345 from an external power supply.
The bias rod 3 is provided by a feedback circuit (not shown).
The microwave power can be controlled so that the current flowing from 43, 345 to ground is constant. The baking heater 311 can heat and degas the member 310 that is in contact with the discharge and surrounds the film formation space. Member 31
The temperature adjustment of 0 is performed by adjusting the temperature of the heating baths 319 to 325, or bringing the members into contact with or leaving the members 310.

【0029】図4は、本発明の特徴を良く表す高周波プ
ラズマCVD法による機能性堆積膜形成装置を示した断
面図である。同図において、401は成膜容器、402
は成膜容器の壁部材、403は成膜容器401を貫いて
移動する帯状基体(被堆積用基体)、404,405は
成膜容器と隣接する不図示の成膜容器または帯状基体の
繰り出し容器または帯状基体の巻き取り容器とを繋ぐガ
スゲートである。406は帯状基体を加熱するランプヒ
ーター、407,408は帯状基体の温度を測定する熱
電対である。409は放電に接して成膜空間を囲む部材
(成膜空間用壁部材)、410は放電に接して成膜空間
を囲む部材のベーキングヒーター、412〜415は部
材410の温度を測定する熱電対、416〜419は部
材409を温度制御するための熱浴、420〜423は
熱浴416〜419の温度を制御するための冷却管、4
24〜427は熱浴416〜419を成膜空間を囲む部
材409に接触させたり離したりするための直線導入
機、428は成膜空間を囲む部材の温度コントローラ
ー、429は成膜空間である。430は堆積膜形成用原
料ガスの供給手段、433は成膜空間のガス排気配管、
431高周波電極、432は高周波導入端子である。4
34は成膜外間である。
FIG. 4 is a sectional view showing an apparatus for forming a functional deposited film by the high frequency plasma CVD method, which shows the features of the present invention well. In the figure, 401 is a film forming container and 402
Is a wall member of the film forming container, 403 is a strip-shaped substrate (deposition substrate) that moves through the film forming container 401, and 404 and 405 are film-depositing containers (not shown) adjacent to the film forming container or a feed-out container for the strip-shaped substrate. Alternatively, it is a gas gate that connects the winding container of the strip-shaped substrate. Reference numeral 406 is a lamp heater for heating the strip-shaped substrate, and 407 and 408 are thermocouples for measuring the temperature of the strip-shaped substrate. Reference numeral 409 denotes a member that is in contact with the discharge and surrounds the film formation space (film member for the film formation space), 410 is a baking heater that is a member that contacts the discharge and surrounds the film formation space, and reference numerals 412 to 415 are thermocouples that measure the temperature of the member 410. 416 to 419 are heat baths for controlling the temperature of the member 409, 420 to 423 are cooling tubes for controlling the temperature of the heat baths 416 to 419, 4
Reference numerals 24 to 427 are linear introduction machines for bringing the heat baths 416 to 419 into contact with and separating from the member 409 surrounding the film formation space, 428 is a temperature controller of the member surrounding the film formation space, and 429 is a film formation space. Reference numeral 430 is a means for supplying a raw material gas for forming a deposited film, 433 is a gas exhaust pipe for forming a film,
431 high frequency electrodes 432 are high frequency introduction terminals. Four
Reference numeral 34 is the outside of the film formation.

【0030】上記構成において、不図示の図面左側の帯
状基体送り出し機構を有する繰り出し容器に帯状基体4
03の巻き付けられたボビンをセットし、該帯状基体4
03をガスゲート404、成膜容器401、ガスゲート
405を通して不図示の図面右側の帯状基体巻き取り機
構を有する巻き取り容器に渡して、張力調製することが
でき、また、一定速度で搬送することができる。ランプ
ヒーター406の出力は、不図示の出力制御器によっ
て、熱電対407、408により測定した帯状基体40
3の温度が一定になるように制御される。成膜容器40
1は排気管415、419に連なる不図示のロータリー
ポンプ、メカニカルブースターポンプにより減圧に排気
することができる。また、排気管433上にある不図示
のスロットルバルブにより、成膜空間と成膜外空間を所
定の圧力に調整することができる。成膜空間429に
は、ガス供給手段430により堆積膜形成用原料ガスま
たは不活性ガスを導入することができる。成膜空間42
9には、高周波電力を成膜容器401外の不図示の高周
波電源から高周波電極431に印加して、放電を生起す
ることができる。不図示のフィードバック回路により、
高周波電極431からアースに流れる電流が一定になる
ようにマイクロ波電力を制御することができる。べーキ
ングヒーター410により、放電に接して成膜空間を囲
む部材409を、加熱、脱ガスすることができる。部材
410の温度調整は、熱浴316〜319を温調した
り、部材410に接触させたり離したりすることにより
行なう。
In the above structure, the strip-shaped substrate 4 is provided in the feeding container having the strip-shaped substrate delivery mechanism on the left side of the drawing (not shown).
No. 03 wound bobbin is set, and the strip-shaped substrate 4
03 can be passed through the gas gate 404, the film forming container 401, and the gas gate 405 to a winding container having a belt-shaped substrate winding mechanism (not shown) on the right side of the drawing to adjust the tension, and can be conveyed at a constant speed. . The output of the lamp heater 406 is measured by thermocouples 407 and 408 by an output controller (not shown).
The temperature of 3 is controlled to be constant. Film deposition container 40
1 can be exhausted to a reduced pressure by a rotary pump or a mechanical booster pump (not shown) connected to exhaust pipes 415 and 419. Further, a film formation space and a film formation outside space can be adjusted to a predetermined pressure by a throttle valve (not shown) provided on the exhaust pipe 433. A deposition gas forming source gas or an inert gas can be introduced into the film formation space 429 by the gas supply unit 430. Film formation space 42
In FIG. 9, high-frequency power can be applied to the high-frequency electrode 431 from a high-frequency power source (not shown) outside the film formation container 401 to cause discharge. By a feedback circuit not shown,
The microwave power can be controlled so that the current flowing from the high frequency electrode 431 to the ground becomes constant. The baking heater 410 can heat and degas the member 409 that is in contact with the discharge and surrounds the film formation space. The temperature of the member 410 is adjusted by adjusting the temperature of the heat baths 316 to 319, and bringing the member 410 into contact with or away from the member.

【0031】[0031]

【実施例】以下、本発明者らが本発明を完成させるに当
たり行った実験を含め、本発明の実施例を詳しく説明す
る。
EXAMPLES Examples of the present invention will be described in detail below, including experiments conducted by the present inventors to complete the present invention.

【0032】[実験1:帯状基体の温度制御]図1に示
した装置を用いマイクロ波プラズマを生起させ、連続し
て移動するSUS430BA製帯状基体103上に長さ
100(m)にわたってアモルファスシリコン半導体薄
膜(Si膜)、アモルファスシリコンゲルマ半導体薄膜
(SiGe膜)を形成した。成膜条件は、原料ガスSi
4 流量200(SCCM)、H2 200(SCC
M)、またはSiH4 120(SCCM)、GeH4
0(SCCM)、H2 2 00(SCCM)、成膜空間
圧力5(mTorr)、マイクロ波電力300(W)固
定とし、そして、バイアスロッドにRF(13.56M
Hz)バイアスを印加し、バイアスロッドからアースに
流れるバイアス電流が2.5(A)になるようにRF電
力を制御し(500(W)程度)、成膜空間の成膜長は
200(mm)にした。
[Experiment 1: Temperature Control of Strip-shaped Substrate] A microwave plasma was generated by using the apparatus shown in FIG. 1 and an amorphous silicon semiconductor was formed over a length of 100 (m) on the strip-shaped substrate 103 made of SUS430BA which continuously moves. A thin film (Si film) and an amorphous silicon germanium semiconductor thin film (SiGe film) were formed. The film forming conditions are the source gas Si
H 4 flow rate 200 (SCCM), H 2 200 (SCC
M), or SiH 4 120 (SCCM), GeH 4 9
0 (SCCM), H 2 200 (SCCM), film formation space pressure 5 (mTorr), microwave power 300 (W) fixed, and RF (13.56M) for the bias rod.
Bias is applied, RF power is controlled so that the bias current flowing from the bias rod to the ground is 2.5 (A) (about 500 (W)), and the deposition length of the deposition space is 200 (mm). )

【0033】この堆積膜形成においては、帯状基体10
3の温度を一定(300℃、350℃、400℃)と
し、成膜空間用壁部材111の温度を種々設定して行な
った。また、基体の移動速度は零(静止)から2000
mm/分まで種々設定して行なった。その結果、帯状基
体103を設定温度に制御可能な成膜空間用壁部材11
1の温度の上限は基体静止の場合であり、下記表1に示
す値であった。
In forming the deposited film, the strip-shaped substrate 10 is used.
The temperature of No. 3 was kept constant (300 ° C., 350 ° C., 400 ° C.), and the temperature of the film forming space wall member 111 was variously set. In addition, the moving speed of the substrate is from zero (stationary) to 2000.
Various settings were made up to mm / min. As a result, the film-forming space wall member 11 capable of controlling the band-shaped substrate 103 at a set temperature.
The upper limit of the temperature of 1 is the case where the substrate is stationary, and the values are shown in Table 1 below.

【0034】[0034]

【表1】 この表1に示す温度は装置系特有の値であり、他の一般
的な装置においても上限は存在する。
[Table 1] The temperature shown in Table 1 is a value peculiar to the apparatus system, and there is an upper limit in other general apparatuses.

【0035】表1に示す結果から明らかな様に、成膜空
間様壁部材111の温度が帯状基体103の温度以下で
ないと、成膜空間部材からの熱輻射により帯状基体温度
の制御が困難になる。
As is clear from the results shown in Table 1, unless the temperature of the film-forming space-like wall member 111 is not higher than the temperature of the strip-shaped substrate 103, it becomes difficult to control the temperature of the strip-shaped substrate due to heat radiation from the film-forming space member. Become.

【0036】[実験2:成膜空間用壁部材の温度制御]
本実験においては、実験1と同じ装置を用い、同じ手順
で連続して移動するSUS430BA製帯状基体103
上に長さ100(m)にわたりアモルファスシリコン半
導体薄膜を実験1と同じ条件で形成しながら、成膜空間
用壁部材に設置されたフィンの突出長(表面積)と壁部
材の表面温度、帯状基体温度との相関を調べた。さらに
成膜外空間の圧力と成膜空間を囲む部材の温度、帯状基
体温度との相関を調べた。実験条件の結果を図5および
図6にグラフとして示す。
[Experiment 2: Temperature control of wall member for film formation space]
In this experiment, the same apparatus as in Experiment 1 was used, and the strip-shaped substrate 103 made of SUS430BA that continuously moved in the same procedure was used.
While forming an amorphous silicon semiconductor thin film over the length of 100 (m) under the same conditions as in Experiment 1, the protruding length (surface area) of the fins installed in the film forming space wall member, the surface temperature of the wall member, and the strip-shaped substrate The correlation with temperature was investigated. Furthermore, the correlation between the pressure in the space outside the film formation, the temperature of the member surrounding the film formation space, and the temperature of the strip-shaped substrate was investigated. The results of the experimental conditions are shown as graphs in FIGS. 5 and 6.

【0037】図5に示す様にフィンの突出長を長くする
(表面積を大きくする)と熱の放射量が増えて成膜空間
を囲む部材の温度が下がる。また、図6に示す様に成膜
外空間の圧力を高くするとフィンからガスへの熱伝達量
が増えて成膜空間を囲む部材の温度が下がる。
As shown in FIG. 5, when the protruding length of the fins is increased (the surface area is increased), the radiation amount of heat increases and the temperature of the member surrounding the film formation space decreases. Further, as shown in FIG. 6, when the pressure in the outer space for film formation is increased, the amount of heat transferred from the fins to the gas is increased, and the temperature of the member surrounding the film formation space is lowered.

【0038】[実験3:バイアス電流、壁部材の温度、
膜特性の相関]本実験においては、実験1と同じ装置を
用い、同じ手順で連続して移動するSUS430BA製
帯状基体103上に長さ100(m)にわたりマイクロ
波CVD法によりアモルファスシリコン半導体薄膜を形
成した。実験は、放電に高周波または直流バイアスを印
加して、バイアスロッド(バイアスの印加電極)とアー
スの間に流れるバイアス電流と、成膜空間用壁部材の温
度と堆積膜の特性との相関を調べた。ただし、帯状基体
の温度は一定にした。実験の条件およびその結果を、図
7、図8および下記表2に示す。
[Experiment 3: Bias current, temperature of wall member,
Correlation of Film Properties] In this experiment, an amorphous silicon semiconductor thin film was formed by a microwave CVD method over a length of 100 (m) on a SUS430BA strip-shaped substrate 103 that continuously moved in the same procedure using the same apparatus as in Experiment 1. Formed. In the experiment, a high frequency or DC bias was applied to the discharge, and the correlation between the bias current flowing between the bias rod (bias application electrode) and the ground, the temperature of the wall member for film formation space, and the characteristics of the deposited film was investigated. It was However, the temperature of the strip-shaped substrate was kept constant. The experimental conditions and the results are shown in FIGS. 7 and 8 and Table 2 below.

【0039】[0039]

【表2】 [Table 2]

【0040】図7、図8および上記表2に示す結果から
明らかな様に、壁部材111の温度が高くなると、バイ
アス電流は増加し、堆積膜の特性が変化した。バイアス
電流が一定になるようにRFバイアス、またはマイクロ
波の電力を調整しても前記部材の温度が変わると堆積膜
の特性は変わる。
As is clear from the results shown in FIGS. 7 and 8 and Table 2 above, as the temperature of the wall member 111 increased, the bias current increased and the characteristics of the deposited film changed. Even if the RF bias or the microwave power is adjusted so that the bias current is constant, the characteristics of the deposited film change when the temperature of the member changes.

【0041】また、RFバイアスの印加する場合には、
成膜空間を囲む部材の温度を一定に維持しながら、バイ
アス電流が一定になるようにRFバイアス電力を制御す
ると堆積膜の特性は変わらない。また、DCバイアスを
印加する場合には、成膜空間を囲む部材の温度に一定に
堆積しながら、バイアス電流が一定になるようにマイク
ロ波電極を制御すると堆積膜の特性は変わらない。
When applying an RF bias,
When the RF bias power is controlled so that the bias current becomes constant while maintaining the temperature of the member surrounding the film formation space constant, the characteristics of the deposited film do not change. When a DC bias is applied, the characteristics of the deposited film do not change if the microwave electrode is controlled so that the bias current becomes constant while the temperature of the member surrounding the film formation space is kept constant.

【0042】次に、実施例を挙げて本発明をより詳細に
説明する。ただし本発明はこれら実施例に限定されるも
のではない。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

【0043】<実施例1>図9に模式的に示す様な層構
成のアモルファスシリコンpin型光起電力素子900
を以下の様にして作製した。この光起電力素子900
は、帯状基体901上に下部電極902、n型半導体層
903、i型半導体層904、p型半導体層905、透
明電極906および集電電極907を順に堆積形成した
光起電力素子である。なお、本実施例の光起電力素子9
00では透明電極906の側より光の入射が行われるこ
とを前提にしている。
Example 1 Amorphous silicon pin type photovoltaic element 900 having a layer structure as schematically shown in FIG.
Was prepared as follows. This photovoltaic element 900
Is a photovoltaic element in which a lower electrode 902, an n-type semiconductor layer 903, an i-type semiconductor layer 904, a p-type semiconductor layer 905, a transparent electrode 906, and a collector electrode 907 are sequentially deposited and formed on a belt-shaped substrate 901. The photovoltaic element 9 of this example
In 00, it is premised that light is incident from the transparent electrode 906 side.

【0044】まず、十分に脱脂洗浄を行ったSUS43
0BA製帯状基体(幅12cm×長さ100m×厚さ
0.2mm)を連続スパッタ装置にセットし、Ag(9
9.99%)電極をターゲットとして用いて1000オ
ングストロームのAg薄膜を、また連続してZnO(9
9.99%)電極をターゲットとして用いて1.2(μ
m)のZnO薄膜をスパッタ蒸着し下部電極を形成し
た。
First, SUS43 that has been thoroughly degreased and washed
A strip-shaped substrate made of 0BA (width 12 cm × length 100 m × thickness 0.2 mm) was set in a continuous sputtering apparatus, and Ag (9
A thin film of 1000 Å of Ag using the 9.99%) electrode as a target and ZnO (9
1.2 (μ)
The ZnO thin film of m) was sputter-deposited to form a lower electrode.

【0045】引き続き、該下部電極を形成した帯状基体
を図10に示した連続堆積膜形成装置1000にセット
した。
Subsequently, the strip-shaped substrate on which the lower electrode was formed was set in the continuous deposited film forming apparatus 1000 shown in FIG.

【0046】まず、基板送り出し機構を有する真空容器
1001に、帯状基体1002の巻き付けられたボビン
1003をセットし、帯状基体1002をガスゲート1
008,1013,1018,1023及び成膜容器1
010,1015,1020中の搬送機構を介して、帯
状基体巻き取り機構を有する真空容器1025まで通し
て、たるみの無い程度に張力調整を行った。
First, the bobbin 1003 on which the strip-shaped substrate 1002 is wound is set in a vacuum container 1001 having a substrate delivery mechanism, and the strip-shaped substrate 1002 is attached to the gas gate 1.
008, 1013, 1018, 1023 and film forming container 1
The tension was adjusted to such an extent that there was no slack by passing it through the transport mechanism in 010, 1015, 1020 to the vacuum container 1025 having a belt-shaped substrate winding mechanism.

【0047】各真空容器1001,1025及び成膜容
器1010,1015,1020を不図示のロータリー
ポンプで粗引きし、次いで不図示のメカニカルブースタ
ーポンプを起動させて10-3(Torr)付近まで真空引き
した後、Heガスを導入して圧力を1(Torr)にし、成
膜容器1010,1015,1020内の不図示のベー
キングヒーターを作動させて、3時間程この状態を保持
した。
The vacuum vessels 1001 and 1025 and the film forming vessels 1010, 1015, and 1020 are roughly evacuated by a rotary pump (not shown), and then a mechanical booster pump (not shown) is activated to evacuate to a pressure of about 10 -3 (Torr). After that, He gas was introduced to adjust the pressure to 1 (Torr), the baking heater (not shown) in the film forming containers 1010, 1015, and 1020 was operated, and this state was maintained for about 3 hours.

【0048】十分に脱ガスが行われた時点で、Heガス
の供給を停止し、成膜容器1015は不図示の油拡散ポ
ンプにて排気を開始した。次に、下記表3に示す条件で
それぞれのガス導入管より堆積膜形成用原料ガスを導入
し、それぞれの成膜容器から排気ポンプに通じる配管上
に設けたスロットルバルブの開度を調節して各成膜容器
内の成膜空間圧力を下記表3に示すとおりに保持した。
更に、各々の成膜空間でRFまたはマイクロ波プラズマ
を生起させ、放電等が安定したところで帯状基体100
2を搬送速度600(mm/min)で図中左側から右
側方向へ搬送させ、連続してn,i,p型半導体層を積
層形成した。
When the gas was sufficiently degassed, the supply of He gas was stopped, and the film forming container 1015 was started to be evacuated by an oil diffusion pump (not shown). Next, the raw material gas for forming a deposited film was introduced from each gas introduction pipe under the conditions shown in Table 3 below, and the opening degree of the throttle valve provided on the pipe leading from each film formation container to the exhaust pump was adjusted. The film forming space pressure in each film forming container was maintained as shown in Table 3 below.
Further, RF or microwave plasma is generated in each film forming space, and when the discharge or the like is stabilized, the strip-shaped substrate 100 is formed.
2 was conveyed from the left side to the right side in the drawing at a conveyance speed of 600 (mm / min), and n, i, p-type semiconductor layers were continuously laminated.

【0049】また、成膜容器1010、1015、10
20内には、図1、図2と同様な成膜空間を囲む壁部材
の温度制御手段(不図示)が設けられており、帯状基体
の温度よりも低い温度に一定に制御した。
Further, the film forming containers 1010, 1015, 10
A temperature control means (not shown) for a wall member that surrounds the film formation space similar to that shown in FIGS. 1 and 2 is provided inside 20, and the temperature is controlled to a temperature lower than the temperature of the strip-shaped substrate.

【0050】[0050]

【表3】 帯状基体1002の全長にわたって半導体層を積層形成
した後、冷却して取り出し、連続スパッタ装置にセット
し、ITO(99.99%)電極をターゲットとして用
いて700(オングストローム)のITO薄膜を蒸着
し、透明電極を形成した。連続モジュール化装置によっ
て12(cm)×30(cm)の太陽電池モジュールを
連続作製した。
[Table 3] After a semiconductor layer is laminated and formed over the entire length of the belt-shaped substrate 1002, it is cooled, taken out, set in a continuous sputtering device, and an ITO thin film of 700 (angstrom) is vapor-deposited using an ITO (99.99%) electrode as a target. A transparent electrode was formed. 12 (cm) × 30 (cm) solar cell modules were continuously produced by a continuous modularization device.

【0051】この様にして作製した太陽電池モジュール
について、AM1.5(100mW/cm2 )光照射下
にて特性評価を行ったところ、光電変換効率8(%)以
上が得られ、更にモジュール間の特性のバラツキは5
(%)以内に納まっていた。また、AM1.5(100
mW/cm2 )光の500時間連続照射後の光電変換効
率の初期値に対する変化率を測定したところ、9.5
(%)以内に納まった。図11に、光起電力素子の成膜
時間とセル特性の関係を示す。
The solar cell module thus produced was subjected to characteristic evaluation under AM1.5 (100 mW / cm 2 ) light irradiation, and a photoelectric conversion efficiency of 8 (%) or more was obtained. There are 5 variations in the characteristics of
It was within (%). Also, AM1.5 (100
The rate of change of the photoelectric conversion efficiency with respect to the initial value after continuous irradiation with mW / cm 2 ) light for 500 hours was measured to be 9.5.
It came within (%). FIG. 11 shows the relationship between the film formation time of the photovoltaic element and the cell characteristics.

【0052】<実施例2>図10に示す装置を用いて、
図9の断面模式図に示す層構成のアモルファスゲルマニ
ウムpin型光起電力素子900を実施例1と同様にし
て作成した。作製条件を下記表4に示す。
<Embodiment 2> Using the apparatus shown in FIG.
An amorphous germanium pin type photovoltaic element 900 having the layer structure shown in the schematic sectional view of FIG. 9 was produced in the same manner as in Example 1. The production conditions are shown in Table 4 below.

【0053】[0053]

【表4】 この様にして作製した太陽電池モジュールについて、A
M1.5(100mW/cm2 )光照射下にて特性評価
を行ったところ、光電変換効率9(%)以上が得られ、
更にモジュール間の特性のバラツキは5(%)以内に納
まっていた。また、AM1.5(100mW/cm2
光の500時間連続照射後の光電変換効率の初期値に対
する変化率を測定したところ、9.5(%)以内に納ま
った。図12に、光起電力素子の成膜時間とセル特性の
関係を示す。
[Table 4] Regarding the solar cell module thus manufactured,
When the characteristics were evaluated under irradiation with M1.5 (100 mW / cm 2 ) light, a photoelectric conversion efficiency of 9 (%) or more was obtained.
Furthermore, the variation in characteristics between modules was within 5 (%). In addition, AM1.5 (100 mW / cm 2 )
The rate of change of the photoelectric conversion efficiency with respect to the initial value after continuous irradiation with light for 500 hours was measured and found to be within 9.5 (%). FIG. 12 shows the relationship between the film formation time of the photovoltaic element and the cell characteristics.

【0054】<実施例3>図13に模式的に示す様な層
構成のa−Si/a−SiGe/a−SiGepin型
光起電力素子1300を以下の様にして作製した。この
光起電力素子1300は、帯状基体1301上に下部電
極1307、下部a−SiGeセル1302、中間a−
SiGeセル1303、上部a−Siセル1304、透
明電極1305、集電電極1306を順に堆積形成した
光起電力素子である。なお、各セルは、帯状基体側から
n,i,p型半導体層の順に堆積形成される。また、本
実施例においても、透明電極1305の側より光の入射
が行われることを前提にしている。
<Example 3> An a-Si / a-SiGe / a-SiGepin type photovoltaic element 1300 having a layer structure as schematically shown in FIG. 13 was produced as follows. This photovoltaic element 1300 has a lower electrode 1307, a lower a-SiGe cell 1302, an intermediate a- on a strip-shaped substrate 1301.
This is a photovoltaic device in which a SiGe cell 1303, an upper a-Si cell 1304, a transparent electrode 1305, and a collector electrode 1306 are sequentially deposited. Each cell is formed by depositing n, i, and p-type semiconductor layers in this order from the side of the belt-shaped substrate. Further, also in this embodiment, it is premised that light is incident from the transparent electrode 1305 side.

【0055】まず、実施例1,2と同様にして下部電極
を形成した帯状基体(幅12cm×長さ100m×厚さ
0.2mm)を図14に示した連続堆積膜形成装置14
00にセットした。基板送り出し機構を有する真空容器
1401に、前記帯状基体1422の巻き付けられたボ
ビン1423をセットし、該帯状基体1422をガスゲ
ート1402,1404,1406,1408,141
0,1412,1414,1416,1418,142
0及び成膜容器1403,1405,1407,140
9,1411,1413,1415,1417,141
9中の搬送機構を介して、帯状基体巻き取り機構を有す
る真空容器1421まで通し、たるみの無い程度に張力
調整を行った。
First, a strip-shaped substrate (width 12 cm × length 100 m × thickness 0.2 mm) having a lower electrode formed thereon in the same manner as in Examples 1 and 2 is shown in FIG.
I set it to 00. The bobbin 1423 around which the belt-shaped substrate 1422 is wound is set in a vacuum container 1401 having a substrate delivery mechanism, and the belt-shaped substrate 1422 is set to the gas gates 1402, 1404, 1406, 1408, 141.
0,1412,1414,1416,1418,142
0 and film forming containers 1403, 1405, 1407, 140
9, 1411, 1413, 1415, 1417, 141
The vacuum mechanism 1421 having a belt-shaped substrate winding mechanism was passed through the transport mechanism in No. 9 to adjust the tension so that there was no slack.

【0056】各真空容器1401,1421及び成膜容
器1403,1405,1407,1409,141
1,1413,1415,1417,1419を不図示
のロータリーポンプで粗引きし、次いで不図示のメカニ
カルブースターポンプを起動させて10-3(Torr)付近
まで真空引きした後、Heガスを導入して圧力を1(To
rr)にし、成膜容器内の不図示のベーキングヒーターを
作動させて、3時間程この状態を保持した。
Vacuum containers 1401 and 1421 and film forming containers 1403, 1405, 1407, 1409 and 141
1, 1413, 1415, 1417, 1419 are roughly evacuated by a rotary pump (not shown), and then a mechanical booster pump (not shown) is activated to evacuate to about 10 −3 (Torr), and then He gas is introduced. Set the pressure to 1 (To
rr), a baking heater (not shown) in the film forming container was operated, and this state was maintained for about 3 hours.

【0057】十分に脱ガスが行われた時点で、Heガス
の供給を停止し、成膜容器1405,1411,141
7は、不図示の油拡散ポンプにて排気を開始した。次
に、下記表7表に示す条件でそれぞれのガス導入管より
堆積膜形成用原料ガスを導入し、それぞれの成膜容器か
ら排気ポンプに通じる配管上に設けたスロットルバルブ
の開度を調節して各成膜容器内の成膜空間圧力を下記表
5に示すとおりに保持した。
When the degassing is sufficiently performed, the supply of He gas is stopped and the film forming containers 1405, 1411, 141
In No. 7, exhaust was started by an oil diffusion pump (not shown). Next, the raw material gas for forming a deposited film was introduced from each gas introduction pipe under the conditions shown in Table 7 below, and the opening degree of the throttle valve provided on the pipe leading from each film formation container to the exhaust pump was adjusted. The film forming space pressure in each film forming container was maintained as shown in Table 5 below.

【0058】更に、各々の成膜空間でRFまたはマイク
ロ波プラズマを生起させ、放電等が安定したところで帯
状基体を搬送速度60(cm/min)で図中左側から
右側方向へ搬送させ、連続してn,i,p型半導体層を
積層形成した。
Further, RF or microwave plasma is generated in each film forming space, and when the discharge or the like is stabilized, the strip-shaped substrate is conveyed from the left side to the right side in the figure at a conveying speed of 60 (cm / min), and is continuously formed. As a result, n, i, and p-type semiconductor layers were laminated.

【0059】[0059]

【表5】 帯状基体の全長にわたって半導体層を積層形成した後、
冷却して取り出し、更に、連続スパッタ装置にセット
し、ITO(99.99%)電極をターゲットとして用
いて700(オングストローム)のITO薄膜を蒸着
し、上部電極を形成した。更に、連続モジュール化装置
によって12(cm)×30(cm)の太陽電池モジュ
ールを連続作製した。
[Table 5] After stacking the semiconductor layers over the entire length of the strip-shaped substrate,
It was cooled, taken out, and further set in a continuous sputtering apparatus, and an ITO (99.99%) electrode was used as a target to deposit a 700 (angstrom) ITO thin film to form an upper electrode. Furthermore, a solar cell module of 12 (cm) × 30 (cm) was continuously produced by a continuous modularization device.

【0060】作製した太陽電池モジュールについて、A
M1.5(100mW/cm2 )光照射下にて特性評価
を行ったところ、光電変換効率10(%)以上が得ら
れ、更にモジュール間の特性のバラツキは5(%)以内
に納まっていた。また、AM1.5(100mW/cm
2 )光の500時間連続照射後の光電変換効率の初期値
に対する変化率を測定したところ、10(%)以内に納
まった。図15に、光起電力素子の成膜時間とセル特性
の関係を示す。
Regarding the manufactured solar cell module, A
When the characteristics were evaluated under irradiation with M1.5 (100 mW / cm 2 ) light, a photoelectric conversion efficiency of 10 (%) or more was obtained, and the variation in characteristics between modules was within 5 (%). . In addition, AM1.5 (100 mW / cm
2 ) The rate of change of the photoelectric conversion efficiency with respect to the initial value after continuous irradiation with light for 500 hours was measured and found to be within 10 (%). FIG. 15 shows the relationship between the film formation time of the photovoltaic element and the cell characteristics.

【0061】[0061]

【発明の効果】本発明によれば、成膜時に、成膜空間を
囲む壁部材の温度を基体の温度よりも低く保持しながら
堆積膜形成を行うことで、ランプヒーター等により温度
制御される帯状基体の温度制御精度が向上し、また、該
部材からの膜剥離及びガス放出による膜中欠陥及び不純
物混入が減少し、膜質を向上することができる。さらに
収率を向上することができる。
According to the present invention, at the time of film formation, the temperature of the wall member surrounding the film formation space is kept lower than the temperature of the substrate to form the deposited film, whereby the temperature is controlled by a lamp heater or the like. It is possible to improve the temperature control accuracy of the strip-shaped substrate, reduce film defects and impurity contamination due to film peeling and gas release from the member, and improve the film quality. Further, the yield can be improved.

【0062】また、成膜空間を囲む部材の温度を帯状基
体の搬送方向に向かって下降するように制御することで
放電にさらされながら移動する帯状基体温度の制御性を
向上することができる。
Further, by controlling the temperature of the member surrounding the film forming space so as to decrease in the conveying direction of the strip-shaped substrate, it is possible to improve the controllability of the temperature of the strip-shaped substrate which moves while being exposed to the discharge.

【0063】また、成膜空間を囲む部材の外側にフィン
を設け、放電外空間の気体と熱を交換することで成膜空
間を囲む部材の温度制御を行うことができる。
Further, by providing a fin outside the member surrounding the film forming space and exchanging heat with the gas outside the discharge space, the temperature of the member surrounding the film forming space can be controlled.

【0064】さらに、DCまたはRFバイアスを印加す
るマイクロ波プラズマCVD法による成膜においては、
成膜空間を囲む部材の温度を一定にしつつ、バイアス印
加電極からアースに流れるバイアス電流が一定になるよ
うにマイクロ波電力を調整することで、成膜条件の制御
精度が向上し、しいては膜質、及び膜質の均一性のいっ
そうの向上を達成することができる。
Further, in the film formation by the microwave plasma CVD method applying a DC or RF bias,
By controlling the microwave power so that the bias current flowing from the bias applying electrode to the ground becomes constant while keeping the temperature of the member surrounding the film forming space constant, the control accuracy of the film forming conditions is improved, Further improvement of the film quality and uniformity of the film quality can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したマイクロ波プラズマCVD法
による機能性堆積膜の形成装置の断面図である。
FIG. 1 is a sectional view of an apparatus for forming a functional deposited film by a microwave plasma CVD method according to the present invention.

【図2】本発明を実施した高周波プラズマCVD法によ
る機能性堆積膜の形成装置の断面図である。
FIG. 2 is a sectional view of an apparatus for forming a functional deposited film by a high frequency plasma CVD method according to the present invention.

【図3】本発明を実施した別のマイクロ波プラズマCV
D法による機能性堆積膜の形成装置である。
FIG. 3 is another microwave plasma CV embodying the present invention.
It is an apparatus for forming a functional deposited film by the D method.

【図4】本発明を実施した別の高周波プラズマCVD法
による機能性堆積膜の形成装置である。
FIG. 4 is a functional deposited film forming apparatus by another high frequency plasma CVD method embodying the present invention.

【図5】実験2に記載のフィン突出長と成膜空間を囲む
部材の温度の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the fin protrusion length and the temperature of the member surrounding the film formation space described in Experiment 2;

【図6】実験2に記載の放電外空間圧力と成膜空間を囲
む部材の温度との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the discharge external space pressure and the temperature of a member surrounding the film formation space described in Experiment 2;

【図7】実験3に記載のDCバイアスを印加した場合
の、成膜空間を囲む部材の温度とバイアス電流との関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between the temperature of the member surrounding the film formation space and the bias current when the DC bias described in Experiment 3 is applied.

【図8】実験3に記載のRFバイアスを印加した場合
の、成膜空間を囲む部材の温度とバイアス電流との関係
を示すグラフである。
FIG. 8 is a graph showing the relationship between the temperature of the member surrounding the film formation space and the bias current when the RF bias described in Experiment 3 was applied.

【図9】実施例1及び実施例2で作製した光起電力素子
の断面模式図である。
FIG. 9 is a schematic sectional view of the photovoltaic elements manufactured in Examples 1 and 2.

【図10】実施例1及び実施例2で用いた大面積機能性
堆積膜の連続形成装置である。
FIG. 10 is an apparatus for continuously forming a large-area functional deposited film used in Examples 1 and 2.

【図11】実施例1で作製した光起電力素子の成膜時間
とセル特性の関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the film formation time and cell characteristics of the photovoltaic element manufactured in Example 1.

【図12】実施例2で作製した光起電力素子の成膜時間
とセル特性の関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the film formation time and the cell characteristics of the photovoltaic element manufactured in Example 2.

【図13】実施例3で作製した光起電力素子の断面模式
図である。
FIG. 13 is a schematic cross-sectional view of the photovoltaic element manufactured in Example 3.

【図14】実施例3で用いた大面積機能性堆積膜の連続
形成装置である。
14 is an apparatus for continuously forming a large-area functional deposited film used in Example 3. FIG.

【図15】実施例3で作製した光起電力素子の成膜時間
とセル特性の関係を示すグラフである。
FIG. 15 is a graph showing the relationship between the film formation time and cell characteristics of the photovoltaic element manufactured in Example 3.

【符号の説明】[Explanation of symbols]

101,201,301,401 成膜容器 102,202,302,302 成膜容器の壁部材 103,203,303,403,901,1002,
1301 帯状基体 104,105,204,205,304,305,4
04,405 ガスゲート 106,206,306,406 ランプヒーター 107,108,109,207,208,307,3
08,309,407,408 ランプヒーター制御
用熱電対 110,319,320,321,322,323,3
24,325,416,417,418,419 熱
浴 111,209,310,409 放電に接して位置
の固定された成膜空間を囲む部材(成膜空間用壁部材) 112,210 フィン 113,211,311,410 ベーキングヒータ
ー 114,115,116,212,312,313,3
14,315,316,317,318,412,41
4,415 熱電対 117,213,341,429 成膜空間 118,214,346,430 堆積膜形成用原料
ガスの供給手段 119,215,347,433 成膜空間のガス排
気配管 120,342,344 マイクロ波アプリケータ及
びマイクロ波透過性部材 121,343,345 バイアスロッド 122,218,348,434 成膜外空間 123 成膜外空間にガスを供給する手段 124 成膜外空間のガス排気管 216,431 高周波電極 217,411 絶縁碍子 219 成膜外空間のガス排気配管 220,432 高周波導入端子 326,327,328,329,330,331,3
32,420,421,422,423 冷却管 333,334,335,336,337,338,3
39,424,425,426,427 直線導入機 340,428 温度コントローラー 900,1300 光起電力素子 902,1307 下部電極 903,1308,1311,1314 n型半導体
層 904,1309,1312,1315 i型半導体
層 905,1310,1313,1316 p型半導体
層 906,1305 透明電極 907,1306 集電電極 1001,1025,1401,1421 真空容器 1003,1026,1423,1424 ボビン 1004,1027,1425,1426 搬送ロー
ラー 1005,1028 圧力計 1006,1011,1016,1021,1029
排気配管 1007,1012,1017,1022,1030
スロットルバルブ 1008,1013,1018,1023,1402,
1404,1406,1408,1410,1412,
1414,1416,1418,1420ガスゲート 1009,1014,1019,1024 ガスゲー
ト導入配管 1010,1403,1409,1415 n型半導
体層成膜容器 1015,1405,1411,1417 i型半導
体層成膜容器 1020,1407,1413,1419 p型半導
体層成膜容器
101, 201, 301, 401 Film forming container 102, 202, 302, 302 Wall member of film forming container 103, 203, 303, 403, 901, 1002
1301 band-shaped substrate 104, 105, 204, 205, 304, 305, 4
04,405 Gas gate 106,206,306,406 Lamp heater 107,108,109,207,208,307,3
08,309,407,408 Thermocouple for lamp heater control 110,319,320,321,322,323,3
24, 325, 416, 417, 418, 419 Heat bath 111, 209, 310, 409 Member surrounding a film forming space fixed in contact with discharge (film forming space wall member) 112, 210 Fin 113, 211 , 311,410 Baking heater 114,115,116,212,312,313,3
14,315,316,317,318,412,41
4,415 Thermocouple 117, 213, 341, 429 Film forming space 118, 214, 346, 430 Deposition film forming source gas supply means 119, 215, 347, 433 Gas exhaust pipe of film forming space 120, 342, 344 Microwave applicator and microwave permeable member 121, 343, 345 Bias rod 122, 218, 348, 434 Outside film forming space 123 Means for supplying gas to outside film forming space 124 Gas exhaust pipe 216 of outside film forming space 431 High-frequency electrode 217, 411 Insulator 219 Gas exhaust pipe 220, 432 High-frequency introduction terminal 326, 327, 328, 329, 330, 331, 3
32,420,421,422,423 Cooling pipe 333,334,335,336,337,338,3
39,424,425,426,427 Linear introduction machine 340,428 Temperature controller 900,1300 Photovoltaic element 902,1307 Lower electrode 903,1308,1311,1314 n-type semiconductor layer 904,1309,1312,1315 i-type semiconductor Layers 905, 1310, 1313, 1316 p-type semiconductor layers 906, 1305 Transparent electrodes 907, 1306 Current collecting electrodes 1001, 1025, 1401, 1421 Vacuum containers 1003, 1026, 1423, 1424 Bobbins 1004, 1027, 1425, 1426 Conveying rollers 1005 , 1028 Pressure gauge 1006, 1011, 1016, 1021, 1029
Exhaust pipe 1007, 1012, 1017, 1022, 1030
Throttle valve 1008, 1013, 1018, 1023, 1402
1404, 1406, 1408, 1410, 1412,
1414, 1416, 1418, 1420 Gas gate 1009, 1014, 1019, 1024 Gas gate introduction piping 1010, 1403, 1409, 1415 n-type semiconductor layer deposition container 1015, 1405, 1411, 1417 i-type semiconductor layer deposition container 1020, 1407, 1413, 1419 p-type semiconductor layer deposition container

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被堆積用基体と該被堆積用基体以外の成
膜空間用壁部材により成膜空間を形成し、該成膜空間内
に原料ガスを導入し且つプラズマを生起して、被堆積用
基体を移動させつつ該被堆積用基体上に非単結晶シリコ
ン系半導体膜を形成する方法において、 膜形成時の前記壁部材の温度を、前記被堆積用基体の温
度よりも低く保持することを特徴とする非単結晶シリコ
ン系半導体膜を形成する方法。
1. A film-forming space is formed by a substrate for deposition and a wall member for a film-forming space other than the substrate for deposition, a source gas is introduced into the film-forming space, and plasma is generated to generate a film. A method of forming a non-single-crystal silicon semiconductor film on a substrate for deposition while moving the substrate for deposition, wherein the temperature of the wall member during film formation is kept lower than the temperature of the substrate for deposition. A method of forming a non-single-crystal silicon-based semiconductor film, comprising:
【請求項2】 膜形成時の前記成膜空間用壁部材の温度
を、前記堆積用基体の移動方向に向って低くなる温度分
布となるよう調整する請求項1記載の方法。
2. The method according to claim 1, wherein the temperature of the film forming space wall member during film formation is adjusted to have a temperature distribution that decreases in the moving direction of the deposition substrate.
【請求項3】 前記成膜空間用壁部材の成膜空間に接し
ない面にフィンを備え、該フィンの突出長の調整により
膜形成時の該壁部材の温度を調整する請求項1または2
記載の方法。
3. The film forming space wall member is provided with a fin on a surface not in contact with the film forming space, and the temperature of the wall member during film formation is adjusted by adjusting the protrusion length of the fin.
The method described.
【請求項4】 前記成膜空間用壁部材の成膜空間に接し
ない面にフィンを備え、該フィンに接するガス雰囲気の
圧力および/またはガス流量の調整により、膜形成時の
該壁部材の温度を調整する請求項1、2または3記載の
方法。
4. A fin is provided on a surface of the wall member for film forming space which is not in contact with the film forming space, and the pressure and / or the gas flow rate of a gas atmosphere in contact with the fin is adjusted so that the wall member for film formation is formed. The method according to claim 1, 2 or 3, wherein the temperature is adjusted.
【請求項5】 前記成膜空間用壁部材の成膜空間に接し
ない面側に熱浴を備え、該熱浴と該壁部材との接触の有
無により、膜形成時の該壁部材の温度を調整する請求項
1または2記載の方法。
5. A heating bath is provided on a surface side of the film forming space wall member which is not in contact with the film forming space, and the temperature of the wall member at the time of film formation depends on whether or not the heating bath and the wall member are in contact with each other. The method according to claim 1 or 2, wherein
【請求項6】 被堆積用基体と該被堆積用基体以外の壁
部材により成膜空間を形成し、該成膜空間内に原料ガス
を導入し且つプラズマを生起して、被堆積用基体を移動
させつつ該被堆積用基体上に非単結晶シリコン系半導体
膜を形成する装置において、 膜形成時の前記壁部材の温度を、前記被堆積用基体の温
度よりも低く保持する手段を有することを特徴とする非
単結晶シリコン系半導体膜形成装置。
6. A deposition base is formed by a deposition base and a wall member other than the deposition base, a source gas is introduced into the deposition space, and plasma is generated to form the deposition base. An apparatus for forming a non-single-crystal silicon-based semiconductor film on a substrate for deposition while moving, comprising means for keeping the temperature of the wall member at the time of film formation lower than the temperature of the substrate for deposition. A non-single crystal silicon-based semiconductor film forming apparatus characterized by:
【請求項7】 前記手段が、成膜空間用壁部材の成膜空
間に接しない面に備えられたフィンを含む請求項6記載
の装置。
7. The apparatus according to claim 6, wherein the means includes a fin provided on a surface of the wall member for a film forming space that is not in contact with the film forming space.
【請求項8】 前記フィンの突出長が調整可能である請
求項7記載の装置。
8. The apparatus of claim 7, wherein the protruding length of the fin is adjustable.
【請求項9】 前記手段が、前記フィンに接するガス雰
囲気の圧力および/またはガス流量を調整する手段を含
む請求項7または8記載の装置。
9. The apparatus according to claim 7, wherein the means includes means for adjusting the pressure and / or the gas flow rate of the gas atmosphere in contact with the fins.
【請求項10】 前記手段が、前記成膜空間用壁部材の
成膜空間に接しない面側に備えられ該壁部材との接触の
有無の調整が可能な熱浴を含む請求項6記載の装置。
10. The method according to claim 6, wherein the means includes a heat bath which is provided on a surface side of the film forming space wall member which is not in contact with the film forming space and is capable of adjusting contact / non-contact with the wall member. apparatus.
JP5118244A 1993-05-20 1993-05-20 Method and apparatus for forming non-single crystal silicon semiconductor film Pending JPH06333841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5118244A JPH06333841A (en) 1993-05-20 1993-05-20 Method and apparatus for forming non-single crystal silicon semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5118244A JPH06333841A (en) 1993-05-20 1993-05-20 Method and apparatus for forming non-single crystal silicon semiconductor film

Publications (1)

Publication Number Publication Date
JPH06333841A true JPH06333841A (en) 1994-12-02

Family

ID=14731809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5118244A Pending JPH06333841A (en) 1993-05-20 1993-05-20 Method and apparatus for forming non-single crystal silicon semiconductor film

Country Status (1)

Country Link
JP (1) JPH06333841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040952A (en) * 2008-08-08 2010-02-18 Hitachi Kokusai Electric Inc Substrate processing apparatus, and semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040952A (en) * 2008-08-08 2010-02-18 Hitachi Kokusai Electric Inc Substrate processing apparatus, and semiconductor device manufacturing method
TWI406350B (en) * 2008-08-08 2013-08-21 Hitachi Int Electric Inc Substrate processing device, heating device, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US5397395A (en) Method of continuously forming a large area functional deposited film by microwave PCVD and apparatus for the same
JP3571785B2 (en) Method and apparatus for forming deposited film
JP3332700B2 (en) Method and apparatus for forming deposited film
KR100340891B1 (en) Apparatus for Forming Non-Single-Crystal Semiconductor Thin Film, Method for Forming Non-Single-Crystal Semiconductor Thin Film, and Method for Producing Photovoltaic Device
US6113732A (en) Deposited film forming apparatus
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
US6413794B1 (en) Method of forming photovoltaic element
US20020016017A1 (en) Process for producing a semiconductor device
JP3025179B2 (en) Method for forming photoelectric conversion element
JPH0927459A (en) Semiconductor device manufacturing equipment
JP2000192244A (en) Apparatus and method for forming deposited film
JPH06333841A (en) Method and apparatus for forming non-single crystal silicon semiconductor film
JP3754855B2 (en) Substrate processing apparatus and substrate processing method
JP3486590B2 (en) Deposition film forming equipment
JP4416569B2 (en) Deposited film forming method and deposited film forming apparatus
JP3181121B2 (en) Deposition film formation method
JP3255903B2 (en) Method and apparatus for forming deposited film
JP3542480B2 (en) Non-single-crystal semiconductor thin film forming apparatus, non-single-crystal semiconductor thin film forming method, and photovoltaic element manufacturing method
JP2001323376A (en) Deposition film forming equipment
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH06192839A (en) Deposited film forming method and deposited film forming apparatus
JP3658165B2 (en) Continuous production equipment for photoelectric conversion elements
JP3624120B2 (en) Photovoltaic element manufacturing method and photovoltaic element manufacturing apparatus
JPH0714774A (en) Method and apparatus for continuously forming functional deposited film
JP2001288572A (en) Apparatus and method for forming deposited film