[go: up one dir, main page]

JPH06345408A - Hydrogen production equipment - Google Patents

Hydrogen production equipment

Info

Publication number
JPH06345408A
JPH06345408A JP16635293A JP16635293A JPH06345408A JP H06345408 A JPH06345408 A JP H06345408A JP 16635293 A JP16635293 A JP 16635293A JP 16635293 A JP16635293 A JP 16635293A JP H06345408 A JPH06345408 A JP H06345408A
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst layer
reforming
hydrocarbons
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16635293A
Other languages
Japanese (ja)
Other versions
JP3406021B2 (en
Inventor
Yoshinori Shirasaki
義則 白▲崎▼
Hirokuni Oota
洋州 太田
Hiroshi Uchida
洋 内田
Kennosuke Kuroda
健之助 黒田
Shinsuke Ota
眞輔 太田
Toshiyuki Uchida
敏之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16635293A priority Critical patent/JP3406021B2/en
Publication of JPH06345408A publication Critical patent/JPH06345408A/en
Application granted granted Critical
Publication of JP3406021B2 publication Critical patent/JP3406021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

(57)【要約】 【目的】 改質、一酸化炭素変成及び水素精製における
各反応を一まとめに実施し高純度の水素を連続的に製造
することができるコンパクトな水素製造装置を提供す
る。 【構成】 炭化水素およびまたはアルコール類等から水
蒸気改質反応により水素を製造する装置において、燃料
炭化水素等および空気が供給される平板状燃焼触媒層1
と、該平板状燃焼触媒層1に積層され原料炭化水素等お
よび水蒸気が供給される平板状改質触媒層2と、該改質
触媒層2に積層した平板状水素透過膜3とを具備し、該
水素透過膜に水素排出間隙4を隣接した。
(57) [Summary] [PROBLEMS] To provide a compact hydrogen production device capable of continuously producing high-purity hydrogen by collectively carrying out each reaction in reforming, carbon monoxide conversion and hydrogen purification. In an apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction, a flat combustion catalyst layer 1 to which fuel hydrocarbons and air are supplied
A flat plate-shaped reforming catalyst layer 2 stacked on the flat plate-shaped combustion catalyst layer 1 and supplied with raw material hydrocarbons and steam, and a flat plate-shaped hydrogen permeable membrane 3 stacked on the reforming catalyst layer 2. A hydrogen discharge gap 4 was adjacent to the hydrogen permeable membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素およびまたはア
ルコール類を主成分とする原料を水蒸気改質して水素を
製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hydrogen by steam reforming a raw material containing hydrocarbons and / or alcohols as main components.

【0002】[0002]

【従来技術】ナフサ、天然ガス、都市ガスおよびメタノ
ール、エタノール等より水蒸気改質反応を利用して改質
器で水素を製造する方法は工業上広く使用されている。
一方、約200℃以下で作動する燃料電池においては、
電極の白金などの触媒がCOにより被毒されるため、該
燃料電池に供給する水素含有ガス中のCO濃度は、1%
以下にする必要がある。200℃以下の比較的低温で作
動する燃料電池としては、150〜230℃で作動する
リン酸型、100℃以下で作動する固体高分子膜型、ア
ルカリ型などがあるが、特に100℃以下で作動する固
体高分子膜型では、燃料電池に供給する水素含有ガス中
のCO濃度は10ppm以下にする必要があると言われ
ている。このため、従来の方法により製造した水素を燃
料電池用の燃料ガスとするには、当該粗製水素を一酸化
炭素変成器及び水素精製器により更に精製して高純度と
し(約CO10ppm以下)固体高分子膜型燃料電池
(ポリマー燃料電池)に使用することが考えられる。こ
の際生ずる反応は次のようである。 ここで発生するCOは固体高分子燃料電池の電極の被毒
物質となる。
2. Description of the Related Art A method for producing hydrogen in a reformer by utilizing a steam reforming reaction from naphtha, natural gas, city gas, methanol, ethanol and the like is widely used in industry.
On the other hand, in a fuel cell that operates below about 200 ° C,
Since the catalyst such as platinum in the electrode is poisoned by CO, the CO concentration in the hydrogen-containing gas supplied to the fuel cell is 1%.
Must be: Fuel cells that operate at a relatively low temperature of 200 ° C. or lower include phosphoric acid type that operates at 150 to 230 ° C., solid polymer membrane type that operates at 100 ° C. or lower, and alkaline type, but especially at 100 ° C. or lower. It is said that the CO concentration in the hydrogen-containing gas supplied to the fuel cell needs to be 10 ppm or less in the operating solid polymer membrane type. Therefore, in order to use hydrogen produced by the conventional method as a fuel gas for a fuel cell, the crude hydrogen is further purified by a carbon monoxide shift converter and a hydrogen purifier to obtain high purity (about CO 10 ppm or less). It is considered to be used for a molecular membrane fuel cell (polymer fuel cell). The reaction that occurs at this time is as follows. The CO generated here becomes a poisoning substance for the electrodes of the polymer electrolyte fuel cell.

【0003】[0003]

【発明が解決しようとする課題】しかし、水素を高純度
にするための上記のプロセスは工程が複雑であり、装置
全体が大型であり、多量の高温熱エネルギーを要し、ま
た、装置の効率が悪く、必然的に水素製造コストが高く
なる欠点を有し、炭化水素等から直接固体高分子燃料電
池に供給するような、COのほとんど含まれない(約1
0ppm以下)の高純度の水素を製造することは経済性
も考慮すると極めて困難である。
However, the above-mentioned process for purifying hydrogen with high purity has complicated steps, the entire apparatus is large, requires a large amount of high-temperature heat energy, and the efficiency of the apparatus is high. However, it has a drawback that hydrogen production cost is inevitably high, and it contains almost no CO, which is directly supplied from a hydrocarbon or the like to a solid polymer fuel cell (about 1
It is extremely difficult to produce high-purity hydrogen (0 ppm or less) in consideration of economical efficiency.

【0004】このため、水素を選択的に透過する水素分
離膜(メンブレン)を改質反応場と共存させることによ
って、改質反応と水素精製を同時に処理するメンブレン
リアクタの概念が、既に特開昭61−17401および
特開平4−321502号などで提案されている。しか
しながら、これらの先願では、リアクタの基本原理の提
案のみに留まっており、大型化が容易な実用的リアクタ
構成、特に加熱方式、各流体の供給排出方式の具体例は
示されていない。すなわちこれらの先願では、図3に示
すように水素を選択的に透過する水素透過管を内管とし
て、その外部に触媒反応管を外管として同心円筒状に配
置し、当該内管と外管の間の円環状空間に改質触媒を充
填し、外管壁を適当な熱媒体で加熱することが示されて
いるだけである。
Therefore, the concept of a membrane reactor that simultaneously processes a reforming reaction and hydrogen purification by coexisting a hydrogen separation membrane (membrane) that selectively permeates hydrogen with a reforming reaction field has already been proposed in Japanese Patent Laid-Open Publication No. 61-17401 and JP-A-4-321502. However, in these prior applications, only the basic principle of the reactor is proposed, and practical examples of a practical reactor configuration that is easy to increase in size, particularly a heating system and a supply / discharge system of each fluid are not shown. That is, in these prior applications, as shown in FIG. 3, a hydrogen permeation tube that selectively permeates hydrogen is used as an inner tube, and a catalytic reaction tube is arranged concentrically as an outer tube outside the inner tube. It has only been shown to fill the annular space between the tubes with the reforming catalyst and to heat the outer tube wall with a suitable heating medium.

【0005】本発明は上述の点にかんがみてなされたも
ので、従来のプロセスに使用されていた改質器、一酸化
炭素変成器及び水素精製器の反応を一まとめに実施し、
高純度の水素を連続的に製造することができるコンパク
トな水素製造装置を提供することを目的とする。
The present invention has been made in consideration of the above points, and the reactions of the reformer, the carbon monoxide shift converter and the hydrogen purifier used in the conventional process are collectively carried out,
An object of the present invention is to provide a compact hydrogen production device capable of continuously producing high-purity hydrogen.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は炭化水素およびまたはアルコール類等から
水蒸気改質反応により水素を製造する装置において、燃
料炭化水素および空気が供給される平板状燃焼触媒層
と、該平板状燃焼触媒層に積層され原料炭化水素および
水蒸気が供給される平板状改質触媒層と、該改質触媒層
に積層した平板状水素透過膜とを具備し、該水素透過膜
に水素排出間隙を隣接したことを特徴とする。
In order to solve the above-mentioned problems, the present invention is an apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction in a flat plate shape to which fuel hydrocarbons and air are supplied. A combustion catalyst layer; a plate-like reforming catalyst layer laminated on the plate-like combustion catalyst layer and supplied with raw material hydrocarbons and steam; and a plate-like hydrogen permeable membrane laminated on the reforming catalyst layer, The hydrogen permeable membrane is characterized by adjoining a hydrogen discharge gap.

【0007】また、本発明は炭化水素およびまたはアル
コール類等から水蒸気改質反応により水素を製造する装
置において、燃料炭化水素および空気が供給される平板
状燃焼触媒層と、該平板状燃焼触媒層に積層され原料炭
化水素および水蒸気が供給される平板状改質触媒層とを
具備し、前記改質触媒層の中に複数本の水素透過管を埋
設し、該水素透過管の中から水素を取り出すようにした
ことを特徴とする。
Further, according to the present invention, in an apparatus for producing hydrogen from a hydrocarbon and / or alcohol by a steam reforming reaction, a flat combustion catalyst layer to which fuel hydrocarbon and air are supplied, and the flat combustion catalyst layer. And a flat plate-shaped reforming catalyst layer to which raw material hydrocarbons and steam are supplied, and a plurality of hydrogen permeation tubes are embedded in the reforming catalyst layer, and hydrogen is supplied from the hydrogen permeation tubes. The feature is that it is taken out.

【0008】[0008]

【作用】本発明の水素製造装置は改質触媒、水素透過膜
(パラジウム薄膜およびパラジウム系合金ほか)、燃焼
触媒等で構成された水素透過膜改質器となり、炭化水素
およびまたはアルコール類等から直接高純度水素を造る
ことができる。すなわち、改質触媒に接触して管状水素
透過膜や平板状水素透過膜を設けることにより簡便に高
純度水素を得る。燃焼触媒に燃料としての炭化水素と空
気を与えることにより発生する反応熱により改質触媒を
加熱する。また、水素透過膜を使用することにより化学
平衡がずれるため、改質温度(700〜800℃)を1
50〜200℃低下させることができる。
The hydrogen producing apparatus of the present invention is a hydrogen permeable membrane reformer composed of a reforming catalyst, a hydrogen permeable membrane (palladium thin film and palladium alloy, etc.), a combustion catalyst, etc. High purity hydrogen can be produced directly. That is, high purity hydrogen can be easily obtained by providing a tubular hydrogen permeable membrane or a flat hydrogen permeable membrane in contact with the reforming catalyst. The reforming catalyst is heated by the reaction heat generated by supplying hydrocarbon and air as fuel to the combustion catalyst. Moreover, since the chemical equilibrium shifts due to the use of the hydrogen permeable membrane, the reforming temperature (700 to 800 ° C.) is set to 1
It can be lowered by 50 to 200 ° C.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の水素製造装置の概略構成を
示す斜視図である。
FIG. 1 is a perspective view showing a schematic structure of a hydrogen production apparatus of the present invention.

【0011】図1において、平板状の燃焼触媒層1が最
上層に配置され、燃焼触媒層1の下側にこれに接触して
平板状の改質触媒層2が配置されている。更に、この改
質触媒層2の下側にこれに接触して平板状の水素透過膜
3が配置されている。水素透過膜3の下側は空間すなわ
ち水素排出間隙4となっている。
In FIG. 1, a flat plate-shaped combustion catalyst layer 1 is arranged on the uppermost layer, and a flat plate-shaped reforming catalyst layer 2 is arranged below and in contact with the combustion catalyst layer 1. Further, a flat plate-shaped hydrogen permeable membrane 3 is disposed below the reforming catalyst layer 2 in contact therewith. Below the hydrogen permeable membrane 3 is a space, that is, a hydrogen discharge gap 4.

【0012】水素排出間隙4の下側は平板状の水素透過
膜3が配置され、水素透過膜3の下側にこれに接触して
平板状の改質触媒層2が配置されている。また、改質触
媒層2の下側にこれに接触して平板状の燃焼触媒層1が
配置されている。このように、各層1、2、3と水素排
出間隙4が積層される。
A flat plate-shaped hydrogen permeable membrane 3 is arranged below the hydrogen discharge gap 4, and a flat plate-shaped reforming catalyst layer 2 is arranged below and in contact with the hydrogen permeable membrane 3. Further, a flat plate-shaped combustion catalyst layer 1 is arranged below and in contact with the reforming catalyst layer 2. In this way, the layers 1, 2, and 3 and the hydrogen discharge gap 4 are stacked.

【0013】水素透過膜3は多孔質担体にパラジウムを
無電解メッキ法により成膜して調整したもの、パラジウ
ム−銀の合金を多孔質担体上に蒸着したもの、このほか
パラジウム−銀等の合金箔を多孔質担体上に密着したも
のなどを使用することができる。
The hydrogen permeable membrane 3 is prepared by forming palladium on a porous carrier by electroless plating, prepared by depositing a palladium-silver alloy on the porous carrier, and other alloys such as palladium-silver. It is possible to use a foil in which a foil is adhered on a porous carrier.

【0014】上記構成になる本発明の水素製造装置は次
のように作動する。
The hydrogen production device of the present invention having the above-mentioned structure operates as follows.

【0015】燃料としての炭化水素等と空気が燃焼触媒
層1に矢印A方向に通される。燃焼触媒層1で発生され
た反応熱が下の改質触媒層2に伝えられる。
Hydrocarbons as fuel and air are passed through the combustion catalyst layer 1 in the direction of arrow A. The reaction heat generated in the combustion catalyst layer 1 is transferred to the reforming catalyst layer 2 below.

【0016】改質触媒層2に矢印B方向に原料としての
炭化水素等と水蒸気が矢印B方向に通されている。上記
燃焼触媒層1で発生された反応熱により加熱された改質
触媒層2は水蒸気改質反応により水素を発生する。この
時の反応式は次のようである。 この水素は水素透過膜3を透過して水素排出間隙4に入
る。また、水蒸気改質反応により改質触媒層2の中に発
生したCO は矢印C方向に排出される。
Hydrocarbons and the like as raw materials and water vapor are passed through the reforming catalyst layer 2 in the direction of arrow B in the direction of arrow B. The reforming catalyst layer 2 heated by the reaction heat generated in the combustion catalyst layer 1 generates hydrogen by the steam reforming reaction. The reaction formula at this time is as follows. This hydrogen permeates the hydrogen permeable membrane 3 and enters the hydrogen discharge gap 4. Further, CO 2 generated in the reforming catalyst layer 2 by the steam reforming reaction is discharged in the direction of arrow C.

【0017】同様に、下側の改質触媒層2で発生した水
素が、水素排出間隙4の下にある水素透過膜3を透過し
て水素排出間隙4に入る。なお、水素排出間隙4の中に
透過した水素は矢印D方向に排出される。
Similarly, hydrogen generated in the lower reforming catalyst layer 2 permeates the hydrogen permeable membrane 3 below the hydrogen discharge gap 4 and enters the hydrogen discharge gap 4. The hydrogen that has penetrated into the hydrogen discharge gap 4 is discharged in the direction of arrow D.

【0018】図2は本発明の他の水素製造装置の概略構
成を示す斜視図である。
FIG. 2 is a perspective view showing a schematic structure of another hydrogen producing apparatus of the present invention.

【0019】図2において、平板状の燃焼触媒層1が上
層に配置され、燃焼触媒層1の下側にこれに接触して平
板状の改質触媒層2が配置されている。
In FIG. 2, a flat plate-shaped combustion catalyst layer 1 is arranged as an upper layer, and a flat plate-shaped reforming catalyst layer 2 is arranged below and in contact with the combustion catalyst layer 1.

【0020】改質触媒層2の中に複数本の水素透過管5
が並列に埋設されている。
A plurality of hydrogen permeation tubes 5 are provided in the reforming catalyst layer 2.
Are buried in parallel.

【0021】改質触媒層2の下に再び燃焼触媒層1が積
層され、この燃焼触媒層1の下に再び改質触媒層2が積
層され、この改質触媒層2の中に複数本の水素透過管5
が並列に配置されている。このように平板状の燃焼触媒
層1と平板状の改質触媒層2が多段階に積層される。水
素透過管5は多孔質担体にパラジウムを無電解メッキ法
により成膜し調製したものなどを使用する。
The combustion catalyst layer 1 is laminated again under the reforming catalyst layer 2, the reforming catalyst layer 2 is laminated again under the combustion catalyst layer 1, and a plurality of reforming catalyst layers 2 are formed in the reforming catalyst layer 2. Hydrogen permeation tube 5
Are arranged in parallel. In this way, the plate-shaped combustion catalyst layer 1 and the plate-shaped reforming catalyst layer 2 are stacked in multiple stages. As the hydrogen permeation tube 5, one prepared by depositing palladium on a porous carrier by an electroless plating method is used.

【0022】上記構成になる本発明の水素製造装置は次
のように作動する。
The hydrogen production apparatus of the present invention having the above-mentioned structure operates as follows.

【0023】燃料としての炭化水素等と空気が燃焼触媒
層1に矢印A方向に通される。燃焼触媒層1で発生され
た反応熱が下の改質触媒層2に伝えられる。
Hydrocarbons as fuel and air are passed through the combustion catalyst layer 1 in the direction of arrow A. The reaction heat generated in the combustion catalyst layer 1 is transferred to the reforming catalyst layer 2 below.

【0024】改質触媒層2に矢印B方向に原料としての
炭化水素等と水蒸気が矢印B方向に通されている。上記
燃焼触媒層1で発生された反応熱により加熱された改質
触媒層2は水蒸気改質反応により水素を発生する。この
時の反応式は次のようである。この水素は水素透過管5
を透過してその中に入り、矢印D方向に排出される。ま
た、水蒸気改質反応により改質触媒層2の中に発生した
CO は矢印C方向に排出される。このような反応が各
段の改質触媒層2の中で行われ、水素が取り出される。
Hydrocarbon and the like as raw materials and water vapor are passed through the reforming catalyst layer 2 in the direction of arrow B in the direction of arrow B. The reforming catalyst layer 2 heated by the reaction heat generated in the combustion catalyst layer 1 generates hydrogen by the steam reforming reaction. The reaction formula at this time is as follows. This hydrogen is hydrogen permeation tube 5
Permeate into the inside and is discharged in the direction of arrow D. Further, CO 2 generated in the reforming catalyst layer 2 by the steam reforming reaction is discharged in the direction of arrow C. Such a reaction is carried out in each stage of the reforming catalyst layer 2 to take out hydrogen.

【0025】図2に示す水素製造装置は図1に示すもの
に比較して、水素排出間隙4が無いので積層数が少なく
コンパクトとなり、また円筒状水素透過管であるため平
板状の水素透過膜より強度が大となる長所を有する。
The hydrogen production apparatus shown in FIG. 2 is compact and has a small number of layers because it does not have a hydrogen discharge gap 4 as compared with the apparatus shown in FIG. It has the advantage of greater strength.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば平
板状燃焼触媒層と平板状改質触媒層と平板状水素透過膜
とを互いに積層し、発生した水素を水素透過膜に隣接す
る間隙から取り出すように構成し、また、平板状燃焼触
媒層と平板状改質触媒層とを互いに積層し、改質触媒層
の中に多数の水素透過管を埋設し、これらの水素透過管
の中に水素を透過させて取り出すようにしたので、下記
のような優れた効果が得られる。 (1) 水素製造装置を平板状に構成したので、水素透
過膜の面積が増加し、その結果水素透過量が増大し、水
素製造装置の性能が向上した。 (2) 水素透過膜を使用することにより、精製装置を
設けることなく、天然ガスや都市ガス等から直接に高純
度の水素を造ることができる。 (3) 燃焼触媒層、改質触媒層、水素透過管や平板状
水素透過膜が効率的に配置され、伝熱性が向上し、発生
熱エネルギーが有効に利用され、省エネルギープロセス
が実現し、水素製造能力が向上し、装置全体がコンパク
トになる。 (4) 反応後の水素の分離、精製工程が省略される。 (5) 水素透過膜により化学平衡をずらし、改質温度
(700〜800℃)を従来より150〜200℃低下
させ、装置の製作に使用する材料の選択範囲を拡大し、
価格を低廉にし、装置の耐久性を向上させる。
As described above, according to the present invention, the plate-shaped combustion catalyst layer, the plate-shaped reforming catalyst layer and the plate-shaped hydrogen permeable membrane are laminated, and the generated hydrogen is adjacent to the hydrogen permeable membrane. It is configured to be taken out from the gap, and the flat combustion catalyst layer and the flat reforming catalyst layer are laminated on each other, and a large number of hydrogen permeation tubes are embedded in the reforming catalyst layer. Since hydrogen is permeated and taken out, the following excellent effects can be obtained. (1) Since the hydrogen production device has a flat plate shape, the area of the hydrogen permeable membrane is increased, and as a result, the hydrogen permeation amount is increased and the performance of the hydrogen production device is improved. (2) By using a hydrogen permeable membrane, high-purity hydrogen can be directly produced from natural gas, city gas, etc. without providing a refining device. (3) The combustion catalyst layer, the reforming catalyst layer, the hydrogen permeable tube and the flat plate hydrogen permeable membrane are efficiently arranged, the heat transfer property is improved, the generated heat energy is effectively used, the energy saving process is realized, and the hydrogen is realized. Manufacturing capacity is improved and the entire device is compact. (4) The steps of separating and purifying hydrogen after the reaction are omitted. (5) The hydrogen permeable membrane shifts the chemical equilibrium, lowers the reforming temperature (700-800 ° C) by 150-200 ° C compared to the conventional method, and expands the selection range of materials used for manufacturing the device.
The price is low and the durability of the device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素製造装置の概略構成を示す斜視図
である。
FIG. 1 is a perspective view showing a schematic configuration of a hydrogen production device of the present invention.

【図2】本発明の水素製造装置の他の概略構成を示す斜
視図である。
FIG. 2 is a perspective view showing another schematic configuration of the hydrogen production device of the present invention.

【図3】これまでに提案されているメンブレンリアクタ
方式の水素製造装置の原理を示す図である。
FIG. 3 is a diagram showing the principle of a membrane reactor type hydrogen production apparatus proposed so far.

【符号の説明】[Explanation of symbols]

1 燃焼触媒層 2 改質触媒層 3 平板状水素透過膜 4 水素排出間隙 5 水素透過管 1 Combustion Catalyst Layer 2 Reforming Catalyst Layer 3 Flat Hydrogen Permeation Membrane 4 Hydrogen Discharge Gap 5 Hydrogen Permeation Tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 洋 神奈川県横浜市緑区あざみ野3−2−15− 106 (72)発明者 黒田 健之助 東京都新宿区富久町15−1 三菱重工業株 式会社エンジニアリングセンター内 (72)発明者 太田 眞輔 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島製作所内 (72)発明者 内田 敏之 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Uchida 3-2-15-106 Azamino, Midori-ku, Yokohama-shi, Kanagawa Prefecture (72) Kennosuke Kuroda 15-1 Tomihisacho, Shinjuku-ku, Tokyo Mitsubishi Heavy Industries Engineering Co., Ltd. In the center (72) Sansuke Ota 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Prefecture Sanbishi Heavy Industries Ltd. Hiroshima Works (72) Toshiyuki Uchida 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture Hiroshima Prefecture Heavy industry Hiroshima factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素およびまたはアルコール類等か
ら水蒸気改質反応により水素等を製造する装置におい
て、燃料炭化水素等および空気が供給される平板状燃焼
触媒層と、該平板状燃焼触媒層に積層され原料炭化水素
等および水蒸気が供給される平板状改質触媒層と、該改
質触媒層に積層した平板状水素透過膜とを具備し、該水
素透過膜に水素排出間隙を隣接したことを特徴とする水
素製造装置。
1. A flat combustion catalyst layer to which fuel hydrocarbons and air are supplied, and a flat combustion catalyst layer in an apparatus for producing hydrogen and the like from hydrocarbons and / or alcohols by steam reforming reaction. It is provided with a flat plate-shaped reforming catalyst layer which is laminated and to which raw material hydrocarbons and steam are supplied, and a flat plate-shaped hydrogen permeable membrane which is laminated on the reforming catalyst layer, and a hydrogen discharge gap is adjacent to the hydrogen permeable membrane. Hydrogen production equipment characterized by.
【請求項2】 炭化水素およびまたはアルコール類等か
ら水蒸気改質反応により水素を製造する装置において、
燃料炭化水素等および空気が供給される平板状燃焼触媒
層と、該平板状燃焼触媒層に積層され原料炭化水素等お
よび水蒸気が供給される平板状改質触媒層とを具備し、
前記改質触媒層の中に複数本の水素透過管を埋設し、該
水素透過管の中から水素を取り出すようにしたことを特
徴とする水素製造装置。
2. An apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction,
A flat plate-shaped combustion catalyst layer to which fuel hydrocarbons and air are supplied; and a flat-plate reformed catalyst layer that is stacked on the flat plate-shaped combustion catalyst layer and to which raw material hydrocarbons and steam are supplied,
A hydrogen production apparatus, wherein a plurality of hydrogen permeation pipes are embedded in the reforming catalyst layer, and hydrogen is taken out from the hydrogen permeation pipes.
JP16635293A 1993-06-11 1993-06-11 Hydrogen production equipment Expired - Lifetime JP3406021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16635293A JP3406021B2 (en) 1993-06-11 1993-06-11 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16635293A JP3406021B2 (en) 1993-06-11 1993-06-11 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JPH06345408A true JPH06345408A (en) 1994-12-20
JP3406021B2 JP3406021B2 (en) 2003-05-12

Family

ID=15829794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16635293A Expired - Lifetime JP3406021B2 (en) 1993-06-11 1993-06-11 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP3406021B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814054A3 (en) * 1996-06-19 1998-04-15 Daimler-Benz Aktiengesellschaft Reformer, especially for the steam reformation of methanol
EP0924162A3 (en) * 1997-12-16 1999-10-20 dbb fuel cell engines GmbH Membrane for the separation of hydrogen, methanol reformer using this membrane and process for its operation
JP2002126519A (en) * 2000-10-27 2002-05-08 Toyota Motor Corp Reforming composite and structure for producing hydrogen comprising the same
JP2002128506A (en) * 2000-05-15 2002-05-09 Toyota Motor Corp Hydrogen generator
WO2002002460A3 (en) * 2000-06-29 2002-05-16 Exxonmobil Res & Eng Co Heat exchanged membrane reactor for electric power generation
JP2002211901A (en) * 2001-01-05 2002-07-31 Nissan Motor Co Ltd Reactor
WO2002070402A3 (en) * 2001-03-05 2002-11-28 Shell Int Research Apparatus and process for the production of hydrogen
JP2003081611A (en) * 2001-09-07 2003-03-19 Toyota Motor Corp Stacked hydrogen separator
JP2003095617A (en) * 2001-09-19 2003-04-03 Toyota Motor Corp Hydrogen separation device
WO2003035546A1 (en) * 2001-10-22 2003-05-01 Lattice Intellectual Property Ltd Method and apparatus for steam reforming
US6660069B2 (en) 2001-07-23 2003-12-09 Toyota Jidosha Kabushiki Kaisha Hydrogen extraction unit
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US6923944B2 (en) * 2000-07-07 2005-08-02 Robert E. Buxbaum Membrane reactor for gas extraction
US7255721B1 (en) 1999-11-18 2007-08-14 Toyota Jidosha Kabushiki Kaisha Device forming fuel gas for fuel cell and composite material for hydrogen separation
WO2009017054A1 (en) 2007-07-27 2009-02-05 Nippon Oil Corporation Method and apparatus for hydrogen production and carbon dioxide recovery
JP2010513216A (en) * 2006-12-21 2010-04-30 セラマテック・インク Catalytic microchannel reformer
EP2578532A1 (en) * 2005-04-18 2013-04-10 Intelligent Energy, Inc. Compact devices for generating pure hydrogen

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264856B1 (en) 1996-06-19 2001-07-24 Daimlerchrysler Ag Three-step reforming reactor especially for mobile fuel cell
EP0814054A3 (en) * 1996-06-19 1998-04-15 Daimler-Benz Aktiengesellschaft Reformer, especially for the steam reformation of methanol
EP0924162A3 (en) * 1997-12-16 1999-10-20 dbb fuel cell engines GmbH Membrane for the separation of hydrogen, methanol reformer using this membrane and process for its operation
US6231831B1 (en) 1997-12-16 2001-05-15 Xcellsis Gmbh Hydrogen separating membrane, methanol reformation system equipped therewith, and operating method therefor
US7255721B1 (en) 1999-11-18 2007-08-14 Toyota Jidosha Kabushiki Kaisha Device forming fuel gas for fuel cell and composite material for hydrogen separation
DE10123410B4 (en) * 2000-05-15 2008-11-20 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Hydrogen generator
US7285143B2 (en) 2000-05-15 2007-10-23 Toyota Jidosha Kabushiki Kaisha Hydrogen generator
JP2002128506A (en) * 2000-05-15 2002-05-09 Toyota Motor Corp Hydrogen generator
WO2002002460A3 (en) * 2000-06-29 2002-05-16 Exxonmobil Res & Eng Co Heat exchanged membrane reactor for electric power generation
US6923944B2 (en) * 2000-07-07 2005-08-02 Robert E. Buxbaum Membrane reactor for gas extraction
JP2002126519A (en) * 2000-10-27 2002-05-08 Toyota Motor Corp Reforming composite and structure for producing hydrogen comprising the same
JP2002211901A (en) * 2001-01-05 2002-07-31 Nissan Motor Co Ltd Reactor
WO2002070402A3 (en) * 2001-03-05 2002-11-28 Shell Int Research Apparatus and process for the production of hydrogen
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US6660069B2 (en) 2001-07-23 2003-12-09 Toyota Jidosha Kabushiki Kaisha Hydrogen extraction unit
JP2003081611A (en) * 2001-09-07 2003-03-19 Toyota Motor Corp Stacked hydrogen separator
JP2003095617A (en) * 2001-09-19 2003-04-03 Toyota Motor Corp Hydrogen separation device
WO2003035546A1 (en) * 2001-10-22 2003-05-01 Lattice Intellectual Property Ltd Method and apparatus for steam reforming
EP2578532A1 (en) * 2005-04-18 2013-04-10 Intelligent Energy, Inc. Compact devices for generating pure hydrogen
JP2010513216A (en) * 2006-12-21 2010-04-30 セラマテック・インク Catalytic microchannel reformer
US8961625B2 (en) 2006-12-21 2015-02-24 Ceramatec, Inc. Catalytic microchannel reformer
US9873101B2 (en) 2006-12-21 2018-01-23 Ceramatec, Inc. Catalytic microchannel reformer
WO2009017054A1 (en) 2007-07-27 2009-02-05 Nippon Oil Corporation Method and apparatus for hydrogen production and carbon dioxide recovery
EP2361878A1 (en) 2007-07-27 2011-08-31 Nippon Oil Corporation Method and apparatus for hydrogen production and carbon dioxide recovery
US8911519B2 (en) 2007-07-27 2014-12-16 Nippon Oil Corporation Method and apparatus for hydrogen production and carbon dioxide recovery

Also Published As

Publication number Publication date
JP3406021B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
EP1135822B1 (en) Miniature fuel reformer and system using metal thin film
JP3406021B2 (en) Hydrogen production equipment
JP4184037B2 (en) Hydrogen production equipment
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
Lukyanov et al. Catalytic reactors with hydrogen membrane separation
KR102298046B1 (en) Membrane Module with Tubular Hydrogen Separator designed to increase hydrogen recovery and Device and Process for hydrogen production using the same
CA2428548C (en) Methanol-steam reformer
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
CN101427413B (en) Solid oxide fuel cell and reformer
CN103946153B (en) Hydrogen production module using integrated reaction/separation method and hydrogen production reactor using the same
Basile et al. Single-stage hydrogen production and separation from fossil fuels using micro-and macromembrane reactors
KR102344813B1 (en) Device and Process for hydrogen production using pre-reformer and membrane reformer
Gallucci et al. A review on patents for hydrogen production using membrane reactors
JPH06345405A (en) Hydrogen production device
JP3680936B2 (en) Fuel reformer
JP4192061B2 (en) Ammonia synthesis reactor and ammonia synthesis system
JP3202442B2 (en) Hydrogen production equipment
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP3839598B2 (en) Hydrogen production equipment
JP4874245B2 (en) A stepwise system for producing purified hydrogen from a reaction gas mixture of hydrocarbon compounds.
JP4443968B2 (en) Hydrogen production equipment
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP3839599B2 (en) Hydrogen production equipment
Palma et al. Membrane reactor technology and catalysis for intensified hydrogen production
JPH092803A (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10