JPH06345408A - Hydrogen production equipment - Google Patents
Hydrogen production equipmentInfo
- Publication number
- JPH06345408A JPH06345408A JP16635293A JP16635293A JPH06345408A JP H06345408 A JPH06345408 A JP H06345408A JP 16635293 A JP16635293 A JP 16635293A JP 16635293 A JP16635293 A JP 16635293A JP H06345408 A JPH06345408 A JP H06345408A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- catalyst layer
- reforming
- hydrocarbons
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 105
- 239000001257 hydrogen Substances 0.000 title claims abstract description 105
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 71
- 238000002407 reforming Methods 0.000 claims abstract description 42
- 238000002485 combustion reaction Methods 0.000 claims abstract description 30
- 239000012528 membrane Substances 0.000 claims abstract description 30
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 22
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 22
- 239000000446 fuel Substances 0.000 claims abstract description 17
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 16
- 238000000629 steam reforming Methods 0.000 claims abstract description 11
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 150000001298 alcohols Chemical class 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 3
- 238000000746 purification Methods 0.000 abstract description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910002070 thin film alloy Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/382—Multi-step processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0405—Purification by membrane separation
- C01B2203/041—In-situ membrane purification during hydrogen production
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
(57)【要約】
【目的】 改質、一酸化炭素変成及び水素精製における
各反応を一まとめに実施し高純度の水素を連続的に製造
することができるコンパクトな水素製造装置を提供す
る。
【構成】 炭化水素およびまたはアルコール類等から水
蒸気改質反応により水素を製造する装置において、燃料
炭化水素等および空気が供給される平板状燃焼触媒層1
と、該平板状燃焼触媒層1に積層され原料炭化水素等お
よび水蒸気が供給される平板状改質触媒層2と、該改質
触媒層2に積層した平板状水素透過膜3とを具備し、該
水素透過膜に水素排出間隙4を隣接した。
(57) [Summary] [PROBLEMS] To provide a compact hydrogen production device capable of continuously producing high-purity hydrogen by collectively carrying out each reaction in reforming, carbon monoxide conversion and hydrogen purification. In an apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction, a flat combustion catalyst layer 1 to which fuel hydrocarbons and air are supplied
A flat plate-shaped reforming catalyst layer 2 stacked on the flat plate-shaped combustion catalyst layer 1 and supplied with raw material hydrocarbons and steam, and a flat plate-shaped hydrogen permeable membrane 3 stacked on the reforming catalyst layer 2. A hydrogen discharge gap 4 was adjacent to the hydrogen permeable membrane.
Description
【0001】[0001]
【産業上の利用分野】本発明は炭化水素およびまたはア
ルコール類を主成分とする原料を水蒸気改質して水素を
製造する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hydrogen by steam reforming a raw material containing hydrocarbons and / or alcohols as main components.
【0002】[0002]
【従来技術】ナフサ、天然ガス、都市ガスおよびメタノ
ール、エタノール等より水蒸気改質反応を利用して改質
器で水素を製造する方法は工業上広く使用されている。
一方、約200℃以下で作動する燃料電池においては、
電極の白金などの触媒がCOにより被毒されるため、該
燃料電池に供給する水素含有ガス中のCO濃度は、1%
以下にする必要がある。200℃以下の比較的低温で作
動する燃料電池としては、150〜230℃で作動する
リン酸型、100℃以下で作動する固体高分子膜型、ア
ルカリ型などがあるが、特に100℃以下で作動する固
体高分子膜型では、燃料電池に供給する水素含有ガス中
のCO濃度は10ppm以下にする必要があると言われ
ている。このため、従来の方法により製造した水素を燃
料電池用の燃料ガスとするには、当該粗製水素を一酸化
炭素変成器及び水素精製器により更に精製して高純度と
し(約CO10ppm以下)固体高分子膜型燃料電池
(ポリマー燃料電池)に使用することが考えられる。こ
の際生ずる反応は次のようである。 ここで発生するCOは固体高分子燃料電池の電極の被毒
物質となる。2. Description of the Related Art A method for producing hydrogen in a reformer by utilizing a steam reforming reaction from naphtha, natural gas, city gas, methanol, ethanol and the like is widely used in industry.
On the other hand, in a fuel cell that operates below about 200 ° C,
Since the catalyst such as platinum in the electrode is poisoned by CO, the CO concentration in the hydrogen-containing gas supplied to the fuel cell is 1%.
Must be: Fuel cells that operate at a relatively low temperature of 200 ° C. or lower include phosphoric acid type that operates at 150 to 230 ° C., solid polymer membrane type that operates at 100 ° C. or lower, and alkaline type, but especially at 100 ° C. or lower. It is said that the CO concentration in the hydrogen-containing gas supplied to the fuel cell needs to be 10 ppm or less in the operating solid polymer membrane type. Therefore, in order to use hydrogen produced by the conventional method as a fuel gas for a fuel cell, the crude hydrogen is further purified by a carbon monoxide shift converter and a hydrogen purifier to obtain high purity (about CO 10 ppm or less). It is considered to be used for a molecular membrane fuel cell (polymer fuel cell). The reaction that occurs at this time is as follows. The CO generated here becomes a poisoning substance for the electrodes of the polymer electrolyte fuel cell.
【0003】[0003]
【発明が解決しようとする課題】しかし、水素を高純度
にするための上記のプロセスは工程が複雑であり、装置
全体が大型であり、多量の高温熱エネルギーを要し、ま
た、装置の効率が悪く、必然的に水素製造コストが高く
なる欠点を有し、炭化水素等から直接固体高分子燃料電
池に供給するような、COのほとんど含まれない(約1
0ppm以下)の高純度の水素を製造することは経済性
も考慮すると極めて困難である。However, the above-mentioned process for purifying hydrogen with high purity has complicated steps, the entire apparatus is large, requires a large amount of high-temperature heat energy, and the efficiency of the apparatus is high. However, it has a drawback that hydrogen production cost is inevitably high, and it contains almost no CO, which is directly supplied from a hydrocarbon or the like to a solid polymer fuel cell (about 1
It is extremely difficult to produce high-purity hydrogen (0 ppm or less) in consideration of economical efficiency.
【0004】このため、水素を選択的に透過する水素分
離膜(メンブレン)を改質反応場と共存させることによ
って、改質反応と水素精製を同時に処理するメンブレン
リアクタの概念が、既に特開昭61−17401および
特開平4−321502号などで提案されている。しか
しながら、これらの先願では、リアクタの基本原理の提
案のみに留まっており、大型化が容易な実用的リアクタ
構成、特に加熱方式、各流体の供給排出方式の具体例は
示されていない。すなわちこれらの先願では、図3に示
すように水素を選択的に透過する水素透過管を内管とし
て、その外部に触媒反応管を外管として同心円筒状に配
置し、当該内管と外管の間の円環状空間に改質触媒を充
填し、外管壁を適当な熱媒体で加熱することが示されて
いるだけである。Therefore, the concept of a membrane reactor that simultaneously processes a reforming reaction and hydrogen purification by coexisting a hydrogen separation membrane (membrane) that selectively permeates hydrogen with a reforming reaction field has already been proposed in Japanese Patent Laid-Open Publication No. 61-17401 and JP-A-4-321502. However, in these prior applications, only the basic principle of the reactor is proposed, and practical examples of a practical reactor configuration that is easy to increase in size, particularly a heating system and a supply / discharge system of each fluid are not shown. That is, in these prior applications, as shown in FIG. 3, a hydrogen permeation tube that selectively permeates hydrogen is used as an inner tube, and a catalytic reaction tube is arranged concentrically as an outer tube outside the inner tube. It has only been shown to fill the annular space between the tubes with the reforming catalyst and to heat the outer tube wall with a suitable heating medium.
【0005】本発明は上述の点にかんがみてなされたも
ので、従来のプロセスに使用されていた改質器、一酸化
炭素変成器及び水素精製器の反応を一まとめに実施し、
高純度の水素を連続的に製造することができるコンパク
トな水素製造装置を提供することを目的とする。The present invention has been made in consideration of the above points, and the reactions of the reformer, the carbon monoxide shift converter and the hydrogen purifier used in the conventional process are collectively carried out,
An object of the present invention is to provide a compact hydrogen production device capable of continuously producing high-purity hydrogen.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明は炭化水素およびまたはアルコール類等から
水蒸気改質反応により水素を製造する装置において、燃
料炭化水素および空気が供給される平板状燃焼触媒層
と、該平板状燃焼触媒層に積層され原料炭化水素および
水蒸気が供給される平板状改質触媒層と、該改質触媒層
に積層した平板状水素透過膜とを具備し、該水素透過膜
に水素排出間隙を隣接したことを特徴とする。In order to solve the above-mentioned problems, the present invention is an apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction in a flat plate shape to which fuel hydrocarbons and air are supplied. A combustion catalyst layer; a plate-like reforming catalyst layer laminated on the plate-like combustion catalyst layer and supplied with raw material hydrocarbons and steam; and a plate-like hydrogen permeable membrane laminated on the reforming catalyst layer, The hydrogen permeable membrane is characterized by adjoining a hydrogen discharge gap.
【0007】また、本発明は炭化水素およびまたはアル
コール類等から水蒸気改質反応により水素を製造する装
置において、燃料炭化水素および空気が供給される平板
状燃焼触媒層と、該平板状燃焼触媒層に積層され原料炭
化水素および水蒸気が供給される平板状改質触媒層とを
具備し、前記改質触媒層の中に複数本の水素透過管を埋
設し、該水素透過管の中から水素を取り出すようにした
ことを特徴とする。Further, according to the present invention, in an apparatus for producing hydrogen from a hydrocarbon and / or alcohol by a steam reforming reaction, a flat combustion catalyst layer to which fuel hydrocarbon and air are supplied, and the flat combustion catalyst layer. And a flat plate-shaped reforming catalyst layer to which raw material hydrocarbons and steam are supplied, and a plurality of hydrogen permeation tubes are embedded in the reforming catalyst layer, and hydrogen is supplied from the hydrogen permeation tubes. The feature is that it is taken out.
【0008】[0008]
【作用】本発明の水素製造装置は改質触媒、水素透過膜
(パラジウム薄膜およびパラジウム系合金ほか)、燃焼
触媒等で構成された水素透過膜改質器となり、炭化水素
およびまたはアルコール類等から直接高純度水素を造る
ことができる。すなわち、改質触媒に接触して管状水素
透過膜や平板状水素透過膜を設けることにより簡便に高
純度水素を得る。燃焼触媒に燃料としての炭化水素と空
気を与えることにより発生する反応熱により改質触媒を
加熱する。また、水素透過膜を使用することにより化学
平衡がずれるため、改質温度(700〜800℃)を1
50〜200℃低下させることができる。The hydrogen producing apparatus of the present invention is a hydrogen permeable membrane reformer composed of a reforming catalyst, a hydrogen permeable membrane (palladium thin film and palladium alloy, etc.), a combustion catalyst, etc. High purity hydrogen can be produced directly. That is, high purity hydrogen can be easily obtained by providing a tubular hydrogen permeable membrane or a flat hydrogen permeable membrane in contact with the reforming catalyst. The reforming catalyst is heated by the reaction heat generated by supplying hydrocarbon and air as fuel to the combustion catalyst. Moreover, since the chemical equilibrium shifts due to the use of the hydrogen permeable membrane, the reforming temperature (700 to 800 ° C.) is set to 1
It can be lowered by 50 to 200 ° C.
【0009】[0009]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0010】図1は本発明の水素製造装置の概略構成を
示す斜視図である。FIG. 1 is a perspective view showing a schematic structure of a hydrogen production apparatus of the present invention.
【0011】図1において、平板状の燃焼触媒層1が最
上層に配置され、燃焼触媒層1の下側にこれに接触して
平板状の改質触媒層2が配置されている。更に、この改
質触媒層2の下側にこれに接触して平板状の水素透過膜
3が配置されている。水素透過膜3の下側は空間すなわ
ち水素排出間隙4となっている。In FIG. 1, a flat plate-shaped combustion catalyst layer 1 is arranged on the uppermost layer, and a flat plate-shaped reforming catalyst layer 2 is arranged below and in contact with the combustion catalyst layer 1. Further, a flat plate-shaped hydrogen permeable membrane 3 is disposed below the reforming catalyst layer 2 in contact therewith. Below the hydrogen permeable membrane 3 is a space, that is, a hydrogen discharge gap 4.
【0012】水素排出間隙4の下側は平板状の水素透過
膜3が配置され、水素透過膜3の下側にこれに接触して
平板状の改質触媒層2が配置されている。また、改質触
媒層2の下側にこれに接触して平板状の燃焼触媒層1が
配置されている。このように、各層1、2、3と水素排
出間隙4が積層される。A flat plate-shaped hydrogen permeable membrane 3 is arranged below the hydrogen discharge gap 4, and a flat plate-shaped reforming catalyst layer 2 is arranged below and in contact with the hydrogen permeable membrane 3. Further, a flat plate-shaped combustion catalyst layer 1 is arranged below and in contact with the reforming catalyst layer 2. In this way, the layers 1, 2, and 3 and the hydrogen discharge gap 4 are stacked.
【0013】水素透過膜3は多孔質担体にパラジウムを
無電解メッキ法により成膜して調整したもの、パラジウ
ム−銀の合金を多孔質担体上に蒸着したもの、このほか
パラジウム−銀等の合金箔を多孔質担体上に密着したも
のなどを使用することができる。The hydrogen permeable membrane 3 is prepared by forming palladium on a porous carrier by electroless plating, prepared by depositing a palladium-silver alloy on the porous carrier, and other alloys such as palladium-silver. It is possible to use a foil in which a foil is adhered on a porous carrier.
【0014】上記構成になる本発明の水素製造装置は次
のように作動する。The hydrogen production device of the present invention having the above-mentioned structure operates as follows.
【0015】燃料としての炭化水素等と空気が燃焼触媒
層1に矢印A方向に通される。燃焼触媒層1で発生され
た反応熱が下の改質触媒層2に伝えられる。Hydrocarbons as fuel and air are passed through the combustion catalyst layer 1 in the direction of arrow A. The reaction heat generated in the combustion catalyst layer 1 is transferred to the reforming catalyst layer 2 below.
【0016】改質触媒層2に矢印B方向に原料としての
炭化水素等と水蒸気が矢印B方向に通されている。上記
燃焼触媒層1で発生された反応熱により加熱された改質
触媒層2は水蒸気改質反応により水素を発生する。この
時の反応式は次のようである。 この水素は水素透過膜3を透過して水素排出間隙4に入
る。また、水蒸気改質反応により改質触媒層2の中に発
生したCO は矢印C方向に排出される。Hydrocarbons and the like as raw materials and water vapor are passed through the reforming catalyst layer 2 in the direction of arrow B in the direction of arrow B. The reforming catalyst layer 2 heated by the reaction heat generated in the combustion catalyst layer 1 generates hydrogen by the steam reforming reaction. The reaction formula at this time is as follows. This hydrogen permeates the hydrogen permeable membrane 3 and enters the hydrogen discharge gap 4. Further, CO 2 generated in the reforming catalyst layer 2 by the steam reforming reaction is discharged in the direction of arrow C.
【0017】同様に、下側の改質触媒層2で発生した水
素が、水素排出間隙4の下にある水素透過膜3を透過し
て水素排出間隙4に入る。なお、水素排出間隙4の中に
透過した水素は矢印D方向に排出される。Similarly, hydrogen generated in the lower reforming catalyst layer 2 permeates the hydrogen permeable membrane 3 below the hydrogen discharge gap 4 and enters the hydrogen discharge gap 4. The hydrogen that has penetrated into the hydrogen discharge gap 4 is discharged in the direction of arrow D.
【0018】図2は本発明の他の水素製造装置の概略構
成を示す斜視図である。FIG. 2 is a perspective view showing a schematic structure of another hydrogen producing apparatus of the present invention.
【0019】図2において、平板状の燃焼触媒層1が上
層に配置され、燃焼触媒層1の下側にこれに接触して平
板状の改質触媒層2が配置されている。In FIG. 2, a flat plate-shaped combustion catalyst layer 1 is arranged as an upper layer, and a flat plate-shaped reforming catalyst layer 2 is arranged below and in contact with the combustion catalyst layer 1.
【0020】改質触媒層2の中に複数本の水素透過管5
が並列に埋設されている。A plurality of hydrogen permeation tubes 5 are provided in the reforming catalyst layer 2.
Are buried in parallel.
【0021】改質触媒層2の下に再び燃焼触媒層1が積
層され、この燃焼触媒層1の下に再び改質触媒層2が積
層され、この改質触媒層2の中に複数本の水素透過管5
が並列に配置されている。このように平板状の燃焼触媒
層1と平板状の改質触媒層2が多段階に積層される。水
素透過管5は多孔質担体にパラジウムを無電解メッキ法
により成膜し調製したものなどを使用する。The combustion catalyst layer 1 is laminated again under the reforming catalyst layer 2, the reforming catalyst layer 2 is laminated again under the combustion catalyst layer 1, and a plurality of reforming catalyst layers 2 are formed in the reforming catalyst layer 2. Hydrogen permeation tube 5
Are arranged in parallel. In this way, the plate-shaped combustion catalyst layer 1 and the plate-shaped reforming catalyst layer 2 are stacked in multiple stages. As the hydrogen permeation tube 5, one prepared by depositing palladium on a porous carrier by an electroless plating method is used.
【0022】上記構成になる本発明の水素製造装置は次
のように作動する。The hydrogen production apparatus of the present invention having the above-mentioned structure operates as follows.
【0023】燃料としての炭化水素等と空気が燃焼触媒
層1に矢印A方向に通される。燃焼触媒層1で発生され
た反応熱が下の改質触媒層2に伝えられる。Hydrocarbons as fuel and air are passed through the combustion catalyst layer 1 in the direction of arrow A. The reaction heat generated in the combustion catalyst layer 1 is transferred to the reforming catalyst layer 2 below.
【0024】改質触媒層2に矢印B方向に原料としての
炭化水素等と水蒸気が矢印B方向に通されている。上記
燃焼触媒層1で発生された反応熱により加熱された改質
触媒層2は水蒸気改質反応により水素を発生する。この
時の反応式は次のようである。この水素は水素透過管5
を透過してその中に入り、矢印D方向に排出される。ま
た、水蒸気改質反応により改質触媒層2の中に発生した
CO は矢印C方向に排出される。このような反応が各
段の改質触媒層2の中で行われ、水素が取り出される。Hydrocarbon and the like as raw materials and water vapor are passed through the reforming catalyst layer 2 in the direction of arrow B in the direction of arrow B. The reforming catalyst layer 2 heated by the reaction heat generated in the combustion catalyst layer 1 generates hydrogen by the steam reforming reaction. The reaction formula at this time is as follows. This hydrogen is hydrogen permeation tube 5
Permeate into the inside and is discharged in the direction of arrow D. Further, CO 2 generated in the reforming catalyst layer 2 by the steam reforming reaction is discharged in the direction of arrow C. Such a reaction is carried out in each stage of the reforming catalyst layer 2 to take out hydrogen.
【0025】図2に示す水素製造装置は図1に示すもの
に比較して、水素排出間隙4が無いので積層数が少なく
コンパクトとなり、また円筒状水素透過管であるため平
板状の水素透過膜より強度が大となる長所を有する。The hydrogen production apparatus shown in FIG. 2 is compact and has a small number of layers because it does not have a hydrogen discharge gap 4 as compared with the apparatus shown in FIG. It has the advantage of greater strength.
【0026】[0026]
【発明の効果】以上説明したように、本発明によれば平
板状燃焼触媒層と平板状改質触媒層と平板状水素透過膜
とを互いに積層し、発生した水素を水素透過膜に隣接す
る間隙から取り出すように構成し、また、平板状燃焼触
媒層と平板状改質触媒層とを互いに積層し、改質触媒層
の中に多数の水素透過管を埋設し、これらの水素透過管
の中に水素を透過させて取り出すようにしたので、下記
のような優れた効果が得られる。 (1) 水素製造装置を平板状に構成したので、水素透
過膜の面積が増加し、その結果水素透過量が増大し、水
素製造装置の性能が向上した。 (2) 水素透過膜を使用することにより、精製装置を
設けることなく、天然ガスや都市ガス等から直接に高純
度の水素を造ることができる。 (3) 燃焼触媒層、改質触媒層、水素透過管や平板状
水素透過膜が効率的に配置され、伝熱性が向上し、発生
熱エネルギーが有効に利用され、省エネルギープロセス
が実現し、水素製造能力が向上し、装置全体がコンパク
トになる。 (4) 反応後の水素の分離、精製工程が省略される。 (5) 水素透過膜により化学平衡をずらし、改質温度
(700〜800℃)を従来より150〜200℃低下
させ、装置の製作に使用する材料の選択範囲を拡大し、
価格を低廉にし、装置の耐久性を向上させる。As described above, according to the present invention, the plate-shaped combustion catalyst layer, the plate-shaped reforming catalyst layer and the plate-shaped hydrogen permeable membrane are laminated, and the generated hydrogen is adjacent to the hydrogen permeable membrane. It is configured to be taken out from the gap, and the flat combustion catalyst layer and the flat reforming catalyst layer are laminated on each other, and a large number of hydrogen permeation tubes are embedded in the reforming catalyst layer. Since hydrogen is permeated and taken out, the following excellent effects can be obtained. (1) Since the hydrogen production device has a flat plate shape, the area of the hydrogen permeable membrane is increased, and as a result, the hydrogen permeation amount is increased and the performance of the hydrogen production device is improved. (2) By using a hydrogen permeable membrane, high-purity hydrogen can be directly produced from natural gas, city gas, etc. without providing a refining device. (3) The combustion catalyst layer, the reforming catalyst layer, the hydrogen permeable tube and the flat plate hydrogen permeable membrane are efficiently arranged, the heat transfer property is improved, the generated heat energy is effectively used, the energy saving process is realized, and the hydrogen is realized. Manufacturing capacity is improved and the entire device is compact. (4) The steps of separating and purifying hydrogen after the reaction are omitted. (5) The hydrogen permeable membrane shifts the chemical equilibrium, lowers the reforming temperature (700-800 ° C) by 150-200 ° C compared to the conventional method, and expands the selection range of materials used for manufacturing the device.
The price is low and the durability of the device is improved.
【図1】本発明の水素製造装置の概略構成を示す斜視図
である。FIG. 1 is a perspective view showing a schematic configuration of a hydrogen production device of the present invention.
【図2】本発明の水素製造装置の他の概略構成を示す斜
視図である。FIG. 2 is a perspective view showing another schematic configuration of the hydrogen production device of the present invention.
【図3】これまでに提案されているメンブレンリアクタ
方式の水素製造装置の原理を示す図である。FIG. 3 is a diagram showing the principle of a membrane reactor type hydrogen production apparatus proposed so far.
1 燃焼触媒層 2 改質触媒層 3 平板状水素透過膜 4 水素排出間隙 5 水素透過管 1 Combustion Catalyst Layer 2 Reforming Catalyst Layer 3 Flat Hydrogen Permeation Membrane 4 Hydrogen Discharge Gap 5 Hydrogen Permeation Tube
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 洋 神奈川県横浜市緑区あざみ野3−2−15− 106 (72)発明者 黒田 健之助 東京都新宿区富久町15−1 三菱重工業株 式会社エンジニアリングセンター内 (72)発明者 太田 眞輔 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島製作所内 (72)発明者 内田 敏之 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Uchida 3-2-15-106 Azamino, Midori-ku, Yokohama-shi, Kanagawa Prefecture (72) Kennosuke Kuroda 15-1 Tomihisacho, Shinjuku-ku, Tokyo Mitsubishi Heavy Industries Engineering Co., Ltd. In the center (72) Sansuke Ota 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Prefecture Sanbishi Heavy Industries Ltd. Hiroshima Works (72) Toshiyuki Uchida 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture Hiroshima Prefecture Heavy industry Hiroshima factory
Claims (2)
ら水蒸気改質反応により水素等を製造する装置におい
て、燃料炭化水素等および空気が供給される平板状燃焼
触媒層と、該平板状燃焼触媒層に積層され原料炭化水素
等および水蒸気が供給される平板状改質触媒層と、該改
質触媒層に積層した平板状水素透過膜とを具備し、該水
素透過膜に水素排出間隙を隣接したことを特徴とする水
素製造装置。1. A flat combustion catalyst layer to which fuel hydrocarbons and air are supplied, and a flat combustion catalyst layer in an apparatus for producing hydrogen and the like from hydrocarbons and / or alcohols by steam reforming reaction. It is provided with a flat plate-shaped reforming catalyst layer which is laminated and to which raw material hydrocarbons and steam are supplied, and a flat plate-shaped hydrogen permeable membrane which is laminated on the reforming catalyst layer, and a hydrogen discharge gap is adjacent to the hydrogen permeable membrane. Hydrogen production equipment characterized by.
ら水蒸気改質反応により水素を製造する装置において、
燃料炭化水素等および空気が供給される平板状燃焼触媒
層と、該平板状燃焼触媒層に積層され原料炭化水素等お
よび水蒸気が供給される平板状改質触媒層とを具備し、
前記改質触媒層の中に複数本の水素透過管を埋設し、該
水素透過管の中から水素を取り出すようにしたことを特
徴とする水素製造装置。2. An apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction,
A flat plate-shaped combustion catalyst layer to which fuel hydrocarbons and air are supplied; and a flat-plate reformed catalyst layer that is stacked on the flat plate-shaped combustion catalyst layer and to which raw material hydrocarbons and steam are supplied,
A hydrogen production apparatus, wherein a plurality of hydrogen permeation pipes are embedded in the reforming catalyst layer, and hydrogen is taken out from the hydrogen permeation pipes.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16635293A JP3406021B2 (en) | 1993-06-11 | 1993-06-11 | Hydrogen production equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16635293A JP3406021B2 (en) | 1993-06-11 | 1993-06-11 | Hydrogen production equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06345408A true JPH06345408A (en) | 1994-12-20 |
| JP3406021B2 JP3406021B2 (en) | 2003-05-12 |
Family
ID=15829794
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16635293A Expired - Lifetime JP3406021B2 (en) | 1993-06-11 | 1993-06-11 | Hydrogen production equipment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3406021B2 (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0814054A3 (en) * | 1996-06-19 | 1998-04-15 | Daimler-Benz Aktiengesellschaft | Reformer, especially for the steam reformation of methanol |
| EP0924162A3 (en) * | 1997-12-16 | 1999-10-20 | dbb fuel cell engines GmbH | Membrane for the separation of hydrogen, methanol reformer using this membrane and process for its operation |
| JP2002126519A (en) * | 2000-10-27 | 2002-05-08 | Toyota Motor Corp | Reforming composite and structure for producing hydrogen comprising the same |
| JP2002128506A (en) * | 2000-05-15 | 2002-05-09 | Toyota Motor Corp | Hydrogen generator |
| WO2002002460A3 (en) * | 2000-06-29 | 2002-05-16 | Exxonmobil Res & Eng Co | Heat exchanged membrane reactor for electric power generation |
| JP2002211901A (en) * | 2001-01-05 | 2002-07-31 | Nissan Motor Co Ltd | Reactor |
| WO2002070402A3 (en) * | 2001-03-05 | 2002-11-28 | Shell Int Research | Apparatus and process for the production of hydrogen |
| JP2003081611A (en) * | 2001-09-07 | 2003-03-19 | Toyota Motor Corp | Stacked hydrogen separator |
| JP2003095617A (en) * | 2001-09-19 | 2003-04-03 | Toyota Motor Corp | Hydrogen separation device |
| WO2003035546A1 (en) * | 2001-10-22 | 2003-05-01 | Lattice Intellectual Property Ltd | Method and apparatus for steam reforming |
| US6660069B2 (en) | 2001-07-23 | 2003-12-09 | Toyota Jidosha Kabushiki Kaisha | Hydrogen extraction unit |
| US6821501B2 (en) | 2001-03-05 | 2004-11-23 | Shell Oil Company | Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system |
| US6923944B2 (en) * | 2000-07-07 | 2005-08-02 | Robert E. Buxbaum | Membrane reactor for gas extraction |
| US7255721B1 (en) | 1999-11-18 | 2007-08-14 | Toyota Jidosha Kabushiki Kaisha | Device forming fuel gas for fuel cell and composite material for hydrogen separation |
| WO2009017054A1 (en) | 2007-07-27 | 2009-02-05 | Nippon Oil Corporation | Method and apparatus for hydrogen production and carbon dioxide recovery |
| JP2010513216A (en) * | 2006-12-21 | 2010-04-30 | セラマテック・インク | Catalytic microchannel reformer |
| EP2578532A1 (en) * | 2005-04-18 | 2013-04-10 | Intelligent Energy, Inc. | Compact devices for generating pure hydrogen |
-
1993
- 1993-06-11 JP JP16635293A patent/JP3406021B2/en not_active Expired - Lifetime
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6264856B1 (en) | 1996-06-19 | 2001-07-24 | Daimlerchrysler Ag | Three-step reforming reactor especially for mobile fuel cell |
| EP0814054A3 (en) * | 1996-06-19 | 1998-04-15 | Daimler-Benz Aktiengesellschaft | Reformer, especially for the steam reformation of methanol |
| EP0924162A3 (en) * | 1997-12-16 | 1999-10-20 | dbb fuel cell engines GmbH | Membrane for the separation of hydrogen, methanol reformer using this membrane and process for its operation |
| US6231831B1 (en) | 1997-12-16 | 2001-05-15 | Xcellsis Gmbh | Hydrogen separating membrane, methanol reformation system equipped therewith, and operating method therefor |
| US7255721B1 (en) | 1999-11-18 | 2007-08-14 | Toyota Jidosha Kabushiki Kaisha | Device forming fuel gas for fuel cell and composite material for hydrogen separation |
| DE10123410B4 (en) * | 2000-05-15 | 2008-11-20 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Hydrogen generator |
| US7285143B2 (en) | 2000-05-15 | 2007-10-23 | Toyota Jidosha Kabushiki Kaisha | Hydrogen generator |
| JP2002128506A (en) * | 2000-05-15 | 2002-05-09 | Toyota Motor Corp | Hydrogen generator |
| WO2002002460A3 (en) * | 2000-06-29 | 2002-05-16 | Exxonmobil Res & Eng Co | Heat exchanged membrane reactor for electric power generation |
| US6923944B2 (en) * | 2000-07-07 | 2005-08-02 | Robert E. Buxbaum | Membrane reactor for gas extraction |
| JP2002126519A (en) * | 2000-10-27 | 2002-05-08 | Toyota Motor Corp | Reforming composite and structure for producing hydrogen comprising the same |
| JP2002211901A (en) * | 2001-01-05 | 2002-07-31 | Nissan Motor Co Ltd | Reactor |
| WO2002070402A3 (en) * | 2001-03-05 | 2002-11-28 | Shell Int Research | Apparatus and process for the production of hydrogen |
| US6821501B2 (en) | 2001-03-05 | 2004-11-23 | Shell Oil Company | Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system |
| US6660069B2 (en) | 2001-07-23 | 2003-12-09 | Toyota Jidosha Kabushiki Kaisha | Hydrogen extraction unit |
| JP2003081611A (en) * | 2001-09-07 | 2003-03-19 | Toyota Motor Corp | Stacked hydrogen separator |
| JP2003095617A (en) * | 2001-09-19 | 2003-04-03 | Toyota Motor Corp | Hydrogen separation device |
| WO2003035546A1 (en) * | 2001-10-22 | 2003-05-01 | Lattice Intellectual Property Ltd | Method and apparatus for steam reforming |
| EP2578532A1 (en) * | 2005-04-18 | 2013-04-10 | Intelligent Energy, Inc. | Compact devices for generating pure hydrogen |
| JP2010513216A (en) * | 2006-12-21 | 2010-04-30 | セラマテック・インク | Catalytic microchannel reformer |
| US8961625B2 (en) | 2006-12-21 | 2015-02-24 | Ceramatec, Inc. | Catalytic microchannel reformer |
| US9873101B2 (en) | 2006-12-21 | 2018-01-23 | Ceramatec, Inc. | Catalytic microchannel reformer |
| WO2009017054A1 (en) | 2007-07-27 | 2009-02-05 | Nippon Oil Corporation | Method and apparatus for hydrogen production and carbon dioxide recovery |
| EP2361878A1 (en) | 2007-07-27 | 2011-08-31 | Nippon Oil Corporation | Method and apparatus for hydrogen production and carbon dioxide recovery |
| US8911519B2 (en) | 2007-07-27 | 2014-12-16 | Nippon Oil Corporation | Method and apparatus for hydrogen production and carbon dioxide recovery |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3406021B2 (en) | 2003-05-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1135822B1 (en) | Miniature fuel reformer and system using metal thin film | |
| JP3406021B2 (en) | Hydrogen production equipment | |
| JP4184037B2 (en) | Hydrogen production equipment | |
| US6171574B1 (en) | Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel | |
| Lukyanov et al. | Catalytic reactors with hydrogen membrane separation | |
| KR102298046B1 (en) | Membrane Module with Tubular Hydrogen Separator designed to increase hydrogen recovery and Device and Process for hydrogen production using the same | |
| CA2428548C (en) | Methanol-steam reformer | |
| KR102168018B1 (en) | Fuel cell system associated with a fuel reformer that additionally performs methanation | |
| CN101427413B (en) | Solid oxide fuel cell and reformer | |
| CN103946153B (en) | Hydrogen production module using integrated reaction/separation method and hydrogen production reactor using the same | |
| Basile et al. | Single-stage hydrogen production and separation from fossil fuels using micro-and macromembrane reactors | |
| KR102344813B1 (en) | Device and Process for hydrogen production using pre-reformer and membrane reformer | |
| Gallucci et al. | A review on patents for hydrogen production using membrane reactors | |
| JPH06345405A (en) | Hydrogen production device | |
| JP3680936B2 (en) | Fuel reformer | |
| JP4192061B2 (en) | Ammonia synthesis reactor and ammonia synthesis system | |
| JP3202442B2 (en) | Hydrogen production equipment | |
| JP2009242216A (en) | Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system | |
| JP3839598B2 (en) | Hydrogen production equipment | |
| JP4874245B2 (en) | A stepwise system for producing purified hydrogen from a reaction gas mixture of hydrocarbon compounds. | |
| JP4443968B2 (en) | Hydrogen production equipment | |
| JP4682403B2 (en) | CO removing device and fuel cell power generator using the same | |
| JP3839599B2 (en) | Hydrogen production equipment | |
| Palma et al. | Membrane reactor technology and catalysis for intensified hydrogen production | |
| JPH092803A (en) | Hydrogen production equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020702 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030218 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080307 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |