JPH06349312A - Palladium wire for semiconductor element - Google Patents
Palladium wire for semiconductor elementInfo
- Publication number
- JPH06349312A JPH06349312A JP5139663A JP13966393A JPH06349312A JP H06349312 A JPH06349312 A JP H06349312A JP 5139663 A JP5139663 A JP 5139663A JP 13966393 A JP13966393 A JP 13966393A JP H06349312 A JPH06349312 A JP H06349312A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- bonding
- palladium
- strength
- fine line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/43—Manufacturing methods
- H01L2224/432—Mechanical processes
- H01L2224/4321—Pulling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45163—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/45164—Palladium (Pd) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01072—Hafnium [Hf]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置を製造する
に際し、ボンディングに使用するパラジウム細線に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a palladium thin wire used for bonding in manufacturing a semiconductor device.
【0002】[0002]
【従来の技術】現在半導体素子上の電極と外部リードと
の間を接合するボンディング線としては、金合金細線、
高純度銅細線、アルミニウム合金細線などが使用されて
いる。アルミニウム合金細線では大気中で正常なボール
形成が困難であることから、接合方法として半導体素子
上の電極部に細線を超音波熱圧着するウェッジ接合法を
用いるのが一般的であり、金合金細線に比べて生産性が
低下する。金合金細線あるいは高純度銅細線の場合に
は、細線先端をアーク入熱で加熱溶融し、表面張力によ
りボールを形成させた後に、150〜300℃の範囲内
で加熱した半導体素子の電極上にこのボール部を超音波
圧着接合せしめ、さらに外部リード側との接続を超音波
圧着する方法が一般的である。しかしながら、銅細線の
場合には、大気中でボールを形成すると銅が容易に酸化
されボール形状が不安定であり、また銅ボール部が酸化
により硬化してボンディング時に電極下のシリコンチッ
プに損傷を与えることなどから、ボール形成時に不活性
ガスを吹き付けて酸化防止することが必要である。結果
として、金は大気中で安定して真球ボールを形成可能
で、且つ電気抵抗が低く、耐食性および展延性などに優
れた特性を有することなどから、半導体素子用ボンディ
ング線としては金合金細線を用いるのが主流である。2. Description of the Related Art Currently, gold alloy fine wires are used as bonding wires for joining electrodes on semiconductor elements and external leads.
High-purity copper fine wires and aluminum alloy fine wires are used. Since it is difficult to form a normal ball in the air with an aluminum alloy thin wire, it is common to use a wedge bonding method in which the thin wire is ultrasonically thermocompression bonded to the electrode part on the semiconductor element as a bonding method. Productivity is lower than that of. In the case of a gold alloy fine wire or a high-purity copper fine wire, the tip of the fine wire is heated and melted by the heat input of the arc to form a ball by the surface tension, and then it is placed on the electrode of the semiconductor element heated in the range of 150 to 300 ° C. A general method is to ultrasonically press bond this ball portion and then ultrasonically press the connection with the external lead side. However, in the case of a copper thin wire, when a ball is formed in the air, the copper is easily oxidized and the ball shape is unstable, and the copper ball portion is hardened by the oxidation and the silicon chip under the electrode is damaged during bonding. Therefore, it is necessary to blow an inert gas at the time of ball formation to prevent oxidation. As a result, gold can stably form a spherical ball in the atmosphere, has low electric resistance, and has excellent characteristics such as corrosion resistance and spreadability. Therefore, as a bonding wire for a semiconductor element, a gold alloy fine wire is used. Is the mainstream.
【0003】トランジスタやICなどの半導体素子とし
て使用するためには、Siチップ、ボンディングワイ
ヤ、およびSiチップが取り付けられた部分のリードフ
レームを保護する目的で樹脂封止する。樹脂封止時に
は、高温加熱された樹脂が高い粘性を保持しつつ高速で
金型内に流入するため、結線されたワイヤが変形して流
れを生じる。半導体素子の高密度実装および狭ピッチに
対応するため、金合金細線の長尺化、細線化あるいは高
ループ化などが要求されている。ワイヤが長尺化すると
一般的に、ボンディング直後のワイヤの垂れや曲がり、
樹脂封止時のワイヤ流れなどが大きくなる傾向がある。
長尺化とワイヤの垂れおよび曲がりの抑制という条件を
同時に満足することには、従来の金合金細線では限界が
指摘されている。In order to use it as a semiconductor element such as a transistor or an IC, it is sealed with resin for the purpose of protecting the Si chip, the bonding wire, and the lead frame at the portion where the Si chip is attached. At the time of resin sealing, the resin heated at a high temperature flows into the mold at a high speed while maintaining a high viscosity, so that the connected wire is deformed to generate a flow. In order to cope with high-density mounting of semiconductor elements and narrow pitches, it is required to elongate gold alloy thin wires, thin wires, or increase loops. Generally, when the wire becomes longer, the wire sags or bends immediately after bonding,
There is a tendency that wire flow during resin sealing becomes large.
It has been pointed out that the conventional gold alloy fine wire has a limit in satisfying the conditions of lengthening and suppressing sagging and bending of the wire at the same time.
【0004】また、半導体素子が使用される環境条件が
ますます厳しくなっており、例えば自動車のエンジンル
ーム周辺で使用される半導体素子では高温あるいは高湿
などの環境で使用される場合もあり、金細線を用いた場
合、高温環境下におけるアルミ電極との接合部の長期信
頼性の低下などが問題視されている。さらに最近、LS
Iなどの半導体では高密度化が進み、一部の半導体装置
では使用する金合金細線量の増大なども考慮したうえ
で、低価格で信頼性の優れたワイヤボンディング素材の
供給要求が強まっている。In addition, the environmental conditions under which semiconductor elements are used are becoming more and more severe. For example, semiconductor elements used in the vicinity of the engine room of automobiles may be used in high temperature or high humidity environments. When a thin wire is used, the long-term reliability of the joint with the aluminum electrode under high temperature environment is considered to be a problem. More recently, LS
In semiconductors such as I, the density has been increasing, and in some semiconductor devices, the demand for low-priced and highly-reliable wire bonding materials has been increasing in consideration of the increase in the fine dose of gold alloy used. .
【0005】[0005]
【発明が解決しようとする課題】金合金細線に代替可能
な材料としては、素材費が金よりも安価であること、真
球のボール部を安定して形成できること、適切なループ
形状が得られること、接合部の強度および接合部信頼性
が金合金細線と比較して同等あるいは優れていることな
どが必要である。これらの諸条件を満足する素材として
はパラジウムが可能性を有している。パラジウムをボン
ディングワイヤ材料として用いることは、特開昭59−
177339号公報や特開昭59−201454号公報
などに開示されており、パラジウムに数種の合金元素の
添加による特性の向上なども含め提案されている。本発
明者等がパラジウム細線のボンディングワイヤへの使用
を検討した結果、パラジウム細線は強度が高く、ボンデ
ィング直後のワイヤの垂れや曲がり、樹脂封止時のワイ
ヤ流れなどが金合金細線と比較して低減されており、ま
た高温環境下におけるアルミ電極との接合部の長期信頼
性に関しても金合金細線よりも良好であることが確認さ
れた。As a material that can be substituted for the gold alloy fine wire, the material cost is lower than that of gold, the ball portion of a true sphere can be stably formed, and an appropriate loop shape can be obtained. It is necessary that the strength and the reliability of the joint be equal to or superior to the gold alloy thin wire. Palladium has potential as a material that satisfies these various conditions. The use of palladium as a bonding wire material is disclosed in JP-A-59-59.
It is disclosed in Japanese Patent Laid-Open No. 177339, Japanese Patent Laid-Open No. 59-2014454, etc., and is proposed including improvement of characteristics by adding several kinds of alloying elements to palladium. As a result of the inventors of the present invention studying the use of a palladium thin wire for a bonding wire, the palladium thin wire has high strength, the sagging and bending of the wire immediately after bonding, and the wire flow at the time of resin sealing are compared with the gold alloy thin wire. It was confirmed that the amount of the gold alloy was reduced, and the long-term reliability of the joint with the aluminum electrode under high temperature environment was better than that of the gold alloy thin wire.
【0006】従来一般的に使用されている金合金細線の
伸び率は2〜6%の範囲であり、この範囲内に調整され
た金合金細線では適正なループ形状が得られ作業性など
も良好である。従って、ボンディングワイヤとして使用
されるパラジウムにおいても同程度の伸び率を有する細
線が考えられており、例えば、特願平3−158694
号公報に提案されているパラジウム細線においても伸び
率が4%の場合に関する結果のみであり、従来の文献で
は、パラジウム細線に関して伸び率が5%未満に調整さ
れたものに限定される。しかしながら、伸び率が上記範
囲である5%未満に調整したパラジウム細線では、リー
ドフレームのインナーリードへ接合する際に十分な接合
面積を得るのが困難であり、しかも連続ボンディング性
が低下することが見い出され、また、ループ高さが低い
ことによりSiチップと接触する危険性が高いことが懸
念される。The elongation rate of gold alloy fine wires generally used in the past is in the range of 2 to 6%, and the gold alloy fine wire adjusted within this range has an appropriate loop shape and good workability. Is. Therefore, in the case of palladium used as a bonding wire, a fine wire having a similar elongation rate is considered, and for example, Japanese Patent Application No. 3-158694.
Even in the palladium thin wire proposed in Japanese Patent Laid-Open No. 10-31100, only the result regarding the case where the elongation rate is 4% is used, and in the conventional literature, the elongation rate is limited to less than 5% for the palladium thin wire. However, it is difficult to obtain a sufficient bonding area when bonding to the inner lead of the lead frame with a palladium thin wire whose elongation rate is adjusted to less than 5%, which is in the above range, and continuous bondability may deteriorate. It is found that there is a high risk of contact with the Si chip due to the low loop height.
【0007】[0007]
【課題を解決するための手段】本発明者等は前述した観
点から、連続ボンディング性の向上および良好なループ
形状を達成可能にするパラジウム細線を開発すべく研究
を行った結果、パラジウム細線における適正な機械的特
性としてワイヤの伸び率を5%以上にすることにより、
ボンディング特性全般において金合金細線と同等あるい
はそれ以上の特性が得られることを見い出した。すなわ
ち、本発明は、上記知見に基づくものであって、その要
旨とするところは常温における線方向の引張伸び率が5
〜14%であることを特徴とする半導体素子用パラジウ
ム細線である。好ましくは、引張伸び率の範囲を7〜1
3%とする半導体素子用パラジウム細線である。From the above-mentioned viewpoints, the present inventors have conducted research to develop a palladium thin wire capable of improving continuous bondability and achieving a good loop shape. As a good mechanical property, by making the elongation of the wire 5% or more,
It has been found that the bonding characteristics as a whole can be as good as or better than those of the gold alloy fine wire. That is, the present invention is based on the above findings, and its gist is that the tensile elongation in the linear direction at room temperature is 5
It is a palladium thin wire for semiconductor elements, which is characterized by being -14%. Preferably, the tensile elongation range is 7 to 1
It is a palladium thin wire for a semiconductor element, which is 3%.
【0008】[0008]
【作用】以下に、パラジウム細線に関する本発明の構成
についてさらに説明する。パラジウム細線は金に比べて
引張強度および硬度が高いことから、パラジウム細線を
リードフレームに接合(セカンドボンディング)する際
に、ワイヤの変形能が低く十分な接合面積を得るのが困
難となる。十分な接合強度を得るために荷重や超音波出
力などを高く設定すると、ボール形状が不安定となる。The structure of the present invention relating to the palladium thin wire will be further described below. Since the fine palladium wire has higher tensile strength and hardness than gold, when the fine palladium wire is bonded (second bonding) to the lead frame, the deformability of the wire is low and it is difficult to obtain a sufficient bonding area. If the load and the ultrasonic output are set high in order to obtain sufficient bonding strength, the ball shape becomes unstable.
【0009】良好なセカンドボンディングとしては、キ
ャピラリを用いて超音波圧着によりワイヤを変形させて
リードフレーム上に接合した後に、ワイヤを上方向に引
張ることによりキャピラリ直下で最も変形した部分で破
断させるものであり、この際にキャピラリ先端から突出
しているワイヤ部(テイル部)の長さがボール形成時の
アーク放電の状態を支配する。荷重や超音波出力などが
高くなると、ワイヤの接合部近傍でキャピラリにより変
形した部分におけるワイヤ断面積の低下が顕著となるこ
とに伴い、テイル部の長さにばらつきが生じてボールの
形状および大きさが不安定となる。従って接合条件の適
正範囲としては、十分な接合強度を確保し且つ真球ボー
ルを連続的に作製できることを満足しなくてはならず、
金合金細線では展延性が良好であることから良好な連続
ボンディングが容易であるのに対し、変形能の低いパラ
ジウム細線を使用すると適正範囲が狭くなることから、
セカンドボンディングにおいて良好な接合を得ることが
困難になり、加えてボール形成不能が生じて連続ボンデ
ィング中に不良が発生する場合がある。A good second bonding is one in which a wire is deformed by ultrasonic pressure bonding using a capillary and bonded on a lead frame, and then the wire is pulled upward to break at the most deformed portion immediately below the capillary. At this time, the length of the wire portion (tail portion) protruding from the capillary tip governs the state of arc discharge during ball formation. When the load or ultrasonic output increases, the wire cross-sectional area in the part deformed by the capillary near the wire joint becomes noticeable, and the length of the tail part varies, resulting in ball shape and size. Becomes unstable. Therefore, as an appropriate range of the joining conditions, it is necessary to ensure that sufficient joining strength is ensured and that spherical balls can be continuously produced.
Good spreadability is good for gold alloy fine wires, so good continuous bonding is easy.However, if palladium thin wires with low deformability are used, the appropriate range becomes narrower.
It may be difficult to obtain good bonding in the second bonding, and in addition, the ball may not be formed and a defect may occur during continuous bonding.
【0010】パラジウムの機械的特性を金と比較する
と、例えば、市販品で容易に入手できる少なくとも純度
99.95重量%以上と規定された高純度パラジウムを
使用して、最終線径が30μmまで伸線した後に連続焼
鈍により伸び率が約4%になるように調整したパラジウ
ムワイヤにおいては、引張強度は伸び率が同程度の汎用
金細線に比べて8割以上高く、ビッカース硬度では金合
金細線より約6割高い値を示している。Comparing the mechanical properties of palladium with that of gold, for example, using high-purity palladium, which has a purity of at least 99.95% by weight and is readily available as a commercial product, the final wire diameter is extended to 30 μm. In a palladium wire adjusted to have an elongation of about 4% by continuous annealing after being drawn, the tensile strength is 80% or more higher than that of a general-purpose gold wire having the same elongation, and the Vickers hardness is higher than that of a gold alloy wire. The value is about 60% higher.
【0011】ボンディングワイヤの主要な機械的特性と
しては強度および伸びなどが挙げられ、ワイヤの変形を
促進するためには、まず強度を低下させることが有効で
あると考えられる。しかし、ワイヤの強度は製造工程に
おける種々の条件の影響を受けやすい。ワイヤ製造につ
いてはダイスによる伸線工程で細線化を行い、製造工程
の歩留まり向上のために工程中に細線の中間焼鈍が加え
られ、さらに最終線径まで伸線工程を続けた後に、連続
焼鈍して機械的特性などを調整する。中間焼鈍条件が異
なれば、最終線径における伸線ままの細線の強度は大き
く変化し、さらに連続焼鈍後の強度にまで影響を及ぼす
が、伸び率に関しては伸線加工条件および中間焼鈍条件
の影響を受けにくく、パラジウム細線においてはこの傾
向が顕著である。パラジウムワイヤの連続ボンディング
性あるいは接合性に関してワイヤの伸び率で評価するこ
とは、以上の理由に基づくものである。また、連続焼鈍
の条件をコントロールすることにより、目標とする伸び
率を容易に達成可能である。The main mechanical properties of the bonding wire include strength and elongation, and it is considered effective to reduce the strength in order to accelerate the deformation of the wire. However, the strength of the wire is susceptible to various conditions in the manufacturing process. For wire production, the wire is thinned in the wire drawing process using a die, intermediate annealing of the thin wire is added during the process to improve the yield of the manufacturing process, and the wire drawing process is continued to the final wire diameter, followed by continuous annealing. Adjust mechanical properties. When the intermediate annealing conditions are different, the strength of the as-drawn thin wire at the final wire diameter changes greatly, and even the strength after continuous annealing is affected, but the elongation rate is affected by the wire drawing and intermediate annealing conditions. It is hard to receive, and this tendency is remarkable in the fine palladium wire. The continuous bondability or bondability of the palladium wire is evaluated by the elongation rate of the wire based on the above reason. Further, by controlling the conditions of continuous annealing, the target elongation rate can be easily achieved.
【0012】パラジウム細線の熱処理温度を高くして伸
び率を増加させたワイヤでは、機械的強度が低下してワ
イヤの変形能が良くなることにより、セカンドボンディ
ングの接合面積が容易に増加するとともに、テイル長さ
のばらつきも減少して連続ボンディング性も向上するこ
とが見い出された。さらに、パラジウム細線においては
伸び率が増加すると、ループ高さが上昇することにより
シリコンチップとの接触も容易に防止でき、ボール部直
上のネック部が直立することによりネック部への損傷も
低減する傾向にあることが確認された。[0012] In the wire in which the heat treatment temperature of the palladium fine wire is increased to increase the elongation, the mechanical strength is lowered and the deformability of the wire is improved, so that the bonding area of the second bonding is easily increased and It has been found that variations in tail length are also reduced and continuous bondability is improved. Further, in the case of a fine palladium wire, as the elongation increases, the loop height rises and it is possible to easily prevent contact with the silicon chip, and the neck portion immediately above the ball portion stands upright, which reduces damage to the neck portion. It was confirmed that there was a tendency.
【0013】本発明に係わるパラジウム細線の線方向の
伸び率を5〜14%に定めたのは、伸び率が5%未満で
は強度が高いため上記理由からセカンドボンディング時
の接合不良や不安定なボール形成が発生するためであ
り、14%を超えるとワイヤ強度が低くなることにより
ボンディング直後のループの直進性の低下に伴うワイヤ
曲がりが顕著になることなどの理由に基づくものであ
る。また、伸び率が上記範囲内のパラジウム細線におい
ては樹脂封止時のワイヤ流れは金合金細線よりも低く抑
えられていることを確認している。The elongation rate of the fine palladium wire according to the present invention in the direction of the wire is set to 5 to 14%. If the elongation rate is less than 5%, the strength is high, and for the above reason, the bonding failure or instability during the second bonding is unstable. This is because ball formation occurs, and if it exceeds 14%, the wire strength becomes low, so that the wire bending becomes remarkable due to the deterioration of the straightness of the loop immediately after bonding, and the like. Further, it has been confirmed that in the palladium fine wire having an elongation rate within the above range, the wire flow during resin sealing is suppressed to be lower than that of the gold alloy fine wire.
【0014】一般的に細線の機械的特性に関して伸び率
が低い領域というのは強度が大きく変化する領域に相当
するため、強度のばらつきを低く抑えるためには熱処理
条件の厳密な管理が要求されることになり、また、高い
伸び率を得るために熱処理温度を高くしてワイヤの再結
晶化が進行しすぎると、ワイヤが容易に変形することに
伴いワイヤ製造工程およびボンディング工程における作
業性の低下が懸念される。従って、パラジウム細線の常
温における伸び率の範囲としては7〜13%とすること
がさらに好ましい。In general, a region having a low elongation rate in terms of mechanical properties of a thin wire corresponds to a region in which the strength changes greatly. Therefore, strict control of heat treatment conditions is required to suppress variations in strength. In addition, if the heat treatment temperature is increased to obtain a high elongation and the recrystallization of the wire progresses too much, the wire is easily deformed and the workability in the wire manufacturing process and the bonding process deteriorates. Is concerned. Therefore, the range of the elongation rate of the palladium thin wire at room temperature is more preferably 7 to 13%.
【0015】[0015]
【実施例】以下、実施例について説明する。純度が約9
9.95重量%のパラジウムを素材として用いて、高周
波真空溶解炉で溶解鋳造し、その鋳塊を圧延した後に常
温で伸線加工を行い、必要に応じて細線の中間焼鈍工程
を加え、さらに伸線工程を続け、最終線径が30μmの
パラジウム細線とした後に、大気中に連続焼鈍して伸び
率が本発明の範囲内になるように調整した。製造条件の
一例として、本実施例2のパラジウム細線では、線径が
約1.5mmにおいて中間焼鈍を約750℃で行い、連続
焼鈍の温度は約650℃である。得られたパラジウム細
線について、ワイヤの機械的特性、ボール形状、ループ
高さ、ワイヤ曲がり、連続ボンディング性などを調べた
結果を表1に示した。EXAMPLES Examples will be described below. Purity is about 9
Using 9.95% by weight of palladium as a raw material, melting and casting in a high-frequency vacuum melting furnace, rolling the ingot, and then performing wire drawing at room temperature, adding an intermediate annealing step for fine wires, if necessary, and The wire drawing process was continued to form a fine palladium wire having a final wire diameter of 30 μm, and the wire was continuously annealed in the atmosphere to adjust the elongation to fall within the range of the present invention. As an example of the manufacturing conditions, in the palladium thin wire of the second embodiment, the intermediate annealing is performed at about 750 ° C. and the continuous annealing temperature is about 650 ° C. when the wire diameter is about 1.5 mm. Table 1 shows the results of examination of the mechanical properties of the wires, ball shape, loop height, wire bending, continuous bondability, etc. of the obtained palladium thin wires.
【0016】ワイヤの機械的特性については、線径が3
0μmのパラジウム細線を用いて常温での引張試験を1
0本行い、破断強度と伸び率の平均値で評価した。高速
自動ボンダーを使用して不活性ガスを吹き付けて酸化を
十分抑制した状態で作製したボールを走査型電子顕微鏡
で観察し、ボール形状が異常なものあるいはボール径の
ばらつきが顕著なものを△印、良好なものを○印にて評
価した。ループ高さは、半導体素子上の電極と外部リー
ドとの間を接合した後に、形成される各ループの頂高と
当該半導体素子の電極面とを光学顕微鏡で100本測定
し、その両者の高さの差であるループ高さとそのばらつ
きで評価した。ワイヤ曲がりは、ワイヤ両端の接合距離
(スパン)が2.5mmとなるようボンディングしたワイ
ヤを半導体素子とほぼ垂直上方向から観察し、ワイヤ中
心部からワイヤの両端接合部を結ぶ直線と、ワイヤの曲
がりが最大の部分との垂線の距離を、投影機を用いて8
0本測定した平均値で示した。連続ボンディング性につ
いては、高速自動ボンダーを使用してワイヤを500本
結線することにより、ボンディング不良の発生が10本
以上を×印、1〜10本のものは△印、不良が発生しな
いものを○印で表記した。Regarding the mechanical characteristics of the wire, the wire diameter is 3
Tensile test at normal temperature using 0μm palladium wire
The test was performed 0 times and evaluated by the average value of the breaking strength and the elongation rate. Balls made with a high-speed automatic bonder sprayed with an inert gas and sufficiently suppressed oxidation were observed with a scanning electron microscope, and abnormal ball shapes or marked ball diameter variations were marked with a triangle. The good ones were evaluated by ○. The loop height is determined by measuring the top height of each loop formed and the electrode surface of the semiconductor element with an optical microscope after joining 100 between the electrode on the semiconductor element and the external lead, and measuring the height of both of them. The loop height, which is the difference in height, and its variation were evaluated. For wire bending, observe the wire bonded so that the bonding distance (span) at both ends of the wire is 2.5 mm from the direction almost perpendicular to the semiconductor element. Use the projector to set the distance of the perpendicular to the maximum bend
The average value of 0 measurements was shown. Regarding continuous bondability, by connecting 500 wires using a high-speed automatic bonder, 10 or more bonding defects are marked with X, 1 to 10 are marked with Δ, and no defects are generated. It is written with a circle.
【0017】[0017]
【表1】 [Table 1]
【0018】ループ形状の観察結果において、本実施例
であるパラジウムワイヤではループ最高高さは200μ
m以上で高く、ボール直上のネック部において直立した
部分が十分得られており、しかもワイヤ曲がりは低く抑
えられ良好な直進性が保たれている。それに対し、伸び
率が本発明範囲より低い比較例ではループ最高高さは1
80μm以下の低い値を示し、しかもネック部がリード
フレームとの接合部の方向に傾斜しているものが認めら
れた。また、伸び率が本発明範囲を超える場合はワイヤ
曲がりが高く、そのばらつきも大きい。本実施例ではボ
ールの真球度が高く大きさも一定であり、連続ボンディ
ング性に関しても良好な結果が得られたが、伸び率が本
発明範囲より低い比較例では、ボール形状が真球になら
ないものあるいはばらつきの大きいものなどが存在して
おり、リードフレームとの接合強度が十分でないことに
起因するボンディング不良も認められた。In the observation result of the loop shape, the maximum loop height is 200 μm in the palladium wire of this embodiment.
It is high at m or more, and a sufficient upright portion is obtained in the neck portion directly above the ball. Moreover, the wire bending is suppressed to a low level and good straightness is maintained. On the other hand, in the comparative example whose elongation rate is lower than the range of the present invention, the maximum loop height is 1
A low value of 80 μm or less was observed, and it was recognized that the neck portion was inclined in the direction of the joint portion with the lead frame. Further, when the elongation exceeds the range of the present invention, the wire bending is high and its variation is large. In this example, the sphericity of the ball was high and the size was constant, and good results were obtained in terms of continuous bondability, but in the comparative example in which the elongation rate is lower than the range of the present invention, the ball shape does not become a sphere. In some cases, some of them had a large variation, and some of them had large variations, and defective bonding due to insufficient bonding strength with the lead frame was also recognized.
【0019】本実施例においては、本発明の効果を明確
にするために高純度のパラジウム細線の場合についての
み示したが、本発明はこれに限定するものではない。今
後、ボンディングワイヤとしての機能を向上させる目的
で元素添加により合金化したパラジウム細線の使用、あ
るいは安価な低純度パラジウムを素材として用いること
ができ、純度99.9%程度の低純度パラジウムを素材
として用いた場合、あるいは数種の元素を添加したパラ
ジウム合金細線を使用した場合についても、本発明に係
わる効果について同様の傾向を確認している。In this embodiment, only the case of a high-purity palladium thin wire is shown to clarify the effect of the present invention, but the present invention is not limited to this. In the future, it is possible to use palladium fine wires alloyed by adding elements for the purpose of improving the function as a bonding wire, or to use inexpensive low-purity palladium as a material, and use low-purity palladium with a purity of about 99.9% as a material. The same tendency has been confirmed for the effects of the present invention when used or when a palladium alloy thin wire to which several kinds of elements are added is used.
【0020】[0020]
【発明の効果】以上、本発明に係わるパラジウム細線を
ボンディングワイヤとして使用することにより、リード
フレームとの良好な接合および連続ボンディング性の向
上を達成するものであり、またワイヤ曲がりおよび樹脂
封止時のワイヤ流れの低減、高ループ化などを同時に実
現することにより、金合金細線と同等あるいはそれ以上
の特性を有する、半導体の高密度実装にも対応するパラ
ジウム細線を提供するものである。As described above, by using the palladium thin wire according to the present invention as a bonding wire, good bonding with the lead frame and improvement of continuous bonding property are achieved, and also when the wire is bent and the resin is sealed. The present invention provides a palladium thin wire which has characteristics equal to or better than those of gold alloy thin wires and which is suitable for high-density mounting of semiconductors, by simultaneously achieving reduction of wire flow and high looping.
Claims (1)
であることを特徴とする半導体素子用パラジウム細線。1. A palladium thin wire for a semiconductor device, which has a tensile elongation in the linear direction in the range of 5 to 14%.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5139663A JPH06349312A (en) | 1993-06-10 | 1993-06-10 | Palladium wire for semiconductor element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5139663A JPH06349312A (en) | 1993-06-10 | 1993-06-10 | Palladium wire for semiconductor element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06349312A true JPH06349312A (en) | 1994-12-22 |
Family
ID=15250525
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5139663A Pending JPH06349312A (en) | 1993-06-10 | 1993-06-10 | Palladium wire for semiconductor element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06349312A (en) |
-
1993
- 1993-06-10 JP JP5139663A patent/JPH06349312A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR0139246B1 (en) | Gold alloy bonding wire | |
| US6210637B1 (en) | Gold alloy thin wire for semiconductor devices | |
| US5658664A (en) | Thin gold-alloy wire for semiconductor device | |
| JP3579493B2 (en) | Gold alloy wires for semiconductor devices | |
| JP3612179B2 (en) | Gold-silver alloy fine wire for semiconductor devices | |
| JP3323185B2 (en) | Gold wire for connecting semiconductor elements | |
| JPH06349312A (en) | Palladium wire for semiconductor element | |
| JP4694908B2 (en) | Manufacturing method of Au fine wire for ball bonding | |
| JP3445616B2 (en) | Gold alloy wires for semiconductor devices | |
| JPH07335686A (en) | Gold alloy fine wire for bonding | |
| JPH06145842A (en) | Bonding gold alloy thin wire | |
| JP3639662B2 (en) | Gold alloy fine wire for semiconductor devices | |
| JP4134261B1 (en) | Gold alloy wire for ball bonding | |
| JP3235198B2 (en) | Bonding wire | |
| JP3426399B2 (en) | Gold alloy fine wire for semiconductor devices | |
| JPH05179376A (en) | Gold alloy fine wire for bonding | |
| JP2830520B2 (en) | Method of manufacturing bonding wire for semiconductor device | |
| US6080492A (en) | Gold alloy thin wire for semiconductor devices | |
| JP3059314B2 (en) | Gold alloy fine wire for bonding | |
| JP2005294681A (en) | Bonding wire for semiconductor element and manufacturing method thereof | |
| JPH08293514A (en) | Gold alloy fine wire for semiconductor element | |
| JP2782082B2 (en) | Gold alloy fine wire for bonding | |
| JP3571793B2 (en) | Gold alloy wire and gold alloy bump | |
| JPH05179375A (en) | Fine gold alloy wire for bonding | |
| JPH02251156A (en) | Gold alloy wire for semiconductor device bonding |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990209 |