JPH06349748A - Vapor growth device for semiconductor - Google Patents
Vapor growth device for semiconductorInfo
- Publication number
- JPH06349748A JPH06349748A JP15610393A JP15610393A JPH06349748A JP H06349748 A JPH06349748 A JP H06349748A JP 15610393 A JP15610393 A JP 15610393A JP 15610393 A JP15610393 A JP 15610393A JP H06349748 A JPH06349748 A JP H06349748A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- susceptor
- rpm
- vapor phase
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】
【構成】 反応管1中で複数の半導体基板4を回転軸3
を中心に速度500rpm以上2000rpm以下で公
転させる半導体気相成長装置において、前記回転軸側に
対し周方向側を位置的に高くし、かつ、この傾斜角度を
1°以上15°以下としたサセプタ8の傾斜面上に前記
半導体基板を配置する半導体気相成長装置。
【効果】 同時に処理される複数の半導体基板上の全面
に均一性良好な結晶薄膜を形成することが可能となり、
生産性向上に直結する。
(57) [Summary] [Structure] A plurality of semiconductor substrates 4 are attached to the rotary shaft 3 in the reaction tube 1.
In a semiconductor vapor phase growth apparatus that revolves at a speed of 500 rpm or more and 2000 rpm or less, the susceptor 8 in which the circumferential direction side is positionally higher than the rotation axis side and the inclination angle is 1 ° or more and 15 ° or less. Vapor deposition apparatus for arranging the semiconductor substrate on the inclined surface of the. [Effect] It becomes possible to form a crystal thin film with good uniformity on the entire surface of a plurality of semiconductor substrates processed at the same time.
Directly connected to productivity improvement.
Description
【0001】[0001]
【産業上の利用分野】本発明は複数枚の半導体基板を同
時に処理する半導体気相成長装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor vapor phase growth apparatus for simultaneously processing a plurality of semiconductor substrates.
【0002】[0002]
【従来の技術】従来の半導体気相成長装置の一例を図4
に示す。図4(a)及び(b)において、1は石英等で
作られる内径23cmの反応管、2は被成長基板を保持
するカーボン等で作られた直径150mmのサセプタ、
3は前記サセプタの回転を行う回転軸、4はサセプタ上
に載置された直径50mmの被成長基板、5はサセプタ
の加熱を行うカーボン等で作られたヒータ、6は前記ヒ
ータの支持台である。この例では、ヒータ5によって被
成長基板4を載置したサセプタ2を500〜700℃に
加熱し、かつ、回転軸3によってサセプタ2を10〜5
0rpmで回転させながら、原料ガスの熱分解を利用し
て、被成長基板4上に膜厚数μm以下の半導体薄膜が形
成されるものであり、図4(b)に示すように、被成長
基板4はサセプタ2上に形成された溝内にほぼ水平に載
置される。この例は、4枚の被成長基板を同時に処理す
るものであり、量産を目的とした半導体気相成長装置で
あり、従って、被成長基板面内での結晶膜厚や、結晶中
の組成等が均一であることが要求されることは勿論、同
時に処理される4枚の被成長基板上に形成される半導体
薄膜の膜厚、組成等の特性が同一である必要がある。前
記サセプタの回転はこれらの均一性を実現するために実
施されるものであり、その回転速度をはじめ、反応炉内
の圧力、反応炉へのガス供給量、加熱温度等の作製条件
の最適化が行われる。2. Description of the Related Art An example of a conventional semiconductor vapor phase growth apparatus is shown in FIG.
Shown in. In FIGS. 4A and 4B, 1 is a reaction tube having an inner diameter of 23 cm made of quartz or the like, 2 is a susceptor having a diameter of 150 mm made of carbon or the like for holding a growth substrate,
3 is a rotating shaft for rotating the susceptor, 4 is a substrate to be grown having a diameter of 50 mm placed on the susceptor, 5 is a heater made of carbon or the like for heating the susceptor, and 6 is a support base of the heater. is there. In this example, the susceptor 2 on which the growth substrate 4 is placed is heated to 500 to 700 ° C. by the heater 5, and the susceptor 2 is set to 10 to 5 by the rotating shaft 3.
While rotating at 0 rpm, a semiconductor thin film having a film thickness of several μm or less is formed on the substrate 4 to be grown by utilizing the thermal decomposition of the raw material gas. As shown in FIG. The substrate 4 is placed substantially horizontally in the groove formed on the susceptor 2. This example is a semiconductor vapor phase growth apparatus for processing four growth substrates at the same time and is intended for mass production. Therefore, the crystal film thickness in the plane of the growth substrate, the composition in the crystal, etc. Are required to be uniform, and the characteristics such as film thickness and composition of the semiconductor thin films formed on the four growth substrates to be processed at the same time must be the same. Rotation of the susceptor is performed to achieve these uniformity, and optimization of manufacturing conditions such as rotation speed, pressure in the reaction furnace, gas supply amount to the reaction furnace, heating temperature, etc. Is done.
【0003】[0003]
【発明が解決しようとする課題】しかしこのような作製
条件の設定にもかかわらず、図4(b)に示すような被
成長基板を水平に載置する半導体気相成長装置において
は、被成長基板上に形成される半導体薄膜の特性に分布
が生じる。例えば、MOCVD法により、TMIn(ト
リメチルインジウム)とPH3 (ホスフィン)を原料と
して反応炉圧力76torr、総ガス流量30リットル
/minの条件下で、InP基板上にInPの結晶膜を
作製した場合、その膜厚を例にとると、図4(c)に示
すようにサセプタの回転中心からサセプタの周方向に向
かい、膜厚が次第に薄くなる傾向を呈し、反応炉圧力や
ガス供給量等の作製条件を調整しても、例えば直径50
mmの被成長基板上における膜厚分布は5〜10%に達
する。また、膜厚以外の例えば結晶組成や結晶中の不純
物の分布も膜厚と同様にサセプタの回転中心からサセプ
タの周方向に向かって変化するので、量産のためにはよ
り均一性を向上する必要がある。However, in spite of the setting of such manufacturing conditions, in the semiconductor vapor phase epitaxy apparatus for horizontally mounting a growth substrate as shown in FIG. A distribution occurs in the characteristics of the semiconductor thin film formed on the substrate. For example, when an InP crystal film is formed on an InP substrate by a MOCVD method using TMIn (trimethylindium) and PH 3 (phosphine) as raw materials under the conditions of a reactor pressure of 76 torr and a total gas flow rate of 30 l / min, Taking the film thickness as an example, as shown in FIG. 4C, the film thickness tends to gradually decrease from the rotation center of the susceptor in the circumferential direction of the susceptor. Even if the conditions are adjusted, for example, diameter 50
The film thickness distribution on the growth substrate of mm reaches 5 to 10%. Further, other than the film thickness, for example, the crystal composition and the distribution of impurities in the crystal also change in the circumferential direction of the susceptor from the rotation center of the susceptor like the film thickness, so that it is necessary to improve the uniformity for mass production. There is.
【0004】一方、このような問題点に関連して図3に
示す装置が開発されている。ここでは図3(a)に示す
ように半導体基板に約30°の傾斜角を与えることによ
りサセプタ7の回転によって生じる遠心力で基板が落下
することを防止し、かつ、サセプタを1000rpmの
高速で回転することによって均一化を目指している。し
かしながら、ここでは図3(b)に示すように、半導体
の薄膜はやはり不均一な断面膜厚分布を示し、図4
(c)とは分布形状が変化したものの、依然としてサセ
プタの外周方向で膜厚が薄くなる傾向を呈す。またこの
装置によれば、結晶膜表面の欠陥数が増大するという新
たな問題が生じた。これは図3(a)に示すように、サ
セプタ上で原料ガス流に渦を生じたことが原因と考えら
れる。図3において図4と同符号は同じものを示す。On the other hand, the apparatus shown in FIG. 3 has been developed in relation to such problems. Here, as shown in FIG. 3A, the semiconductor substrate is provided with an inclination angle of about 30 ° to prevent the substrate from dropping due to the centrifugal force generated by the rotation of the susceptor 7, and the susceptor is operated at a high speed of 1000 rpm. Aiming for homogenization by rotating. However, here, as shown in FIG. 3B, the semiconductor thin film also shows a non-uniform cross-sectional film thickness distribution.
Although the distribution shape is changed from (c), the film thickness still tends to decrease in the outer peripheral direction of the susceptor. Further, according to this device, a new problem that the number of defects on the surface of the crystal film is increased occurs. This is considered to be caused by the generation of vortices in the raw material gas flow on the susceptor as shown in FIG. 3, the same symbols as those in FIG. 4 indicate the same things.
【0005】[0005]
【課題を解決するための手段】本発明者らは上記の事情
に鑑み、種々検討を重ねた結果、半導体基板を特定の速
度で公転させるに当り、サセプタの傾斜角度を特定の範
囲に規制することにより上記のようなガス流の渦の発生
を防ぎ、膜厚の均一性を著しく高めうることを見い出
し、この知見に基づき本発明をなすに至った。すなわち
本発明は、反応炉中で複数の半導体基板を回転軸を中心
に速度500rpm以上2000rpm以下で公転させ
る半導体気相成長装置において、前記回転軸側に対し周
方向側を位置的に高くし、かつ、この傾斜角度を1°以
上15°以下とした傾斜面上に前記半導体基板を配置す
ることを特徴とする半導体気相成長装置を提供するもの
である。As a result of various investigations in view of the above circumstances, the present inventors regulate the inclination angle of the susceptor within a specific range when the semiconductor substrate is revolved at a specific speed. As a result, it was found that the generation of the vortex of the gas flow as described above can be prevented and the uniformity of the film thickness can be remarkably enhanced, and the present invention has been completed based on this finding. That is, the present invention is a semiconductor vapor phase growth apparatus for revolving a plurality of semiconductor substrates in a reaction furnace about a rotation axis at a speed of 500 rpm or more and 2000 rpm or less, in which the circumferential side is positionally higher than the rotation axis side, Further, the present invention provides a semiconductor vapor phase growth apparatus characterized in that the semiconductor substrate is arranged on an inclined surface having an inclination angle of 1 ° or more and 15 ° or less.
【0006】[0006]
【実施例】次に本発明を実施例にもとづきさらに詳細に
説明する。図1(a)、(b)は本発明の半導体気相成
長装置の一実施例を示すものである。図1(a)におい
て8はサセプタであり、図1(b)に示す断面図から明
らかなように、半導体基板は前記サセプタ上に形成され
た溝内に水平面に対して角度θの傾斜をもって載置され
る。図1(c)は本実施例による気相成長の結果を示す
一例であり、サセプタの回転数1000rpmにおい
て、θ=3〜5°とすることにより、直径50mmの被
成長基板上に形成される半導体薄膜の膜厚分布は1〜2
%以内に改善されることが判明し、またこれと同時に、
面内の組成や不純物濃度の均一性も大幅に向上した。図
1において図4と同符号は同じものを示す。なお、前記
傾斜角θの最も好ましい範囲は、形成する半導体薄膜の
材料や、反応炉圧力、公転速度、原料ガス供給量の作製
条件によって異なる。この傾斜角θと膜厚分布との関係
を図2に示す。図2に示すように傾斜角1°未満では均
一性改善への寄与度は極めて小さく、また、15°を越
える付近から逆に均一性が劣化し、また、結晶膜の品質
が損なわれる傾向を示した。後者の原因は、図3に示す
ように、急傾斜を設けることによって、反応炉内の原料
ガス流に流体力学的な渦を生じ、原料ガス中での寄生反
応等の不必要な反応を生じるためと考えられ好ましくな
い。従って、傾斜角θは1°以上、15°以下とするこ
とが必要であり、好ましくは4〜12°とする。なお、
以上の実施例は、TMIn(トリメチルインジウム)と
PH3 (ホスフィン)を原料としてサセプタの回転数1
000rpmで反応炉圧力76torr、総ガス流量3
0リットル/minの条件下で、InP基板上にInP
の結晶膜を作成した場合を基本に述べた。The present invention will be described in more detail based on the following examples. 1 (a) and 1 (b) show an embodiment of a semiconductor vapor phase growth apparatus of the present invention. In FIG. 1 (a), 8 is a susceptor, and as is clear from the cross-sectional view shown in FIG. 1 (b), the semiconductor substrate is mounted in a groove formed on the susceptor at an angle θ with respect to a horizontal plane. Placed. FIG. 1C is an example showing the result of vapor phase growth according to this example, and is formed on a growth substrate having a diameter of 50 mm by setting θ = 3 to 5 ° at a susceptor rotation speed of 1000 rpm. Thickness distribution of semiconductor thin film is 1-2
Found to improve within%, and at the same time,
The in-plane composition and the uniformity of the impurity concentration were also greatly improved. In FIG. 1, the same symbols as those in FIG. 4 indicate the same things. The most preferable range of the inclination angle θ depends on the material of the semiconductor thin film to be formed, the reactor pressure, the revolution speed, and the production conditions of the raw material gas supply amount. The relationship between the inclination angle θ and the film thickness distribution is shown in FIG. As shown in FIG. 2, when the tilt angle is less than 1 °, the contribution to the improvement of uniformity is extremely small, and from the vicinity of more than 15 °, the uniformity deteriorates and the quality of the crystal film tends to be impaired. Indicated. The reason for the latter is that, as shown in FIG. 3, by providing a steep slope, a hydrodynamic vortex is generated in the raw material gas flow in the reactor, and an unnecessary reaction such as a parasitic reaction in the raw material gas is generated. It is considered to be because of this and is not preferable. Therefore, it is necessary that the inclination angle θ is 1 ° or more and 15 ° or less, and preferably 4 to 12 °. In addition,
In the above embodiment, TMIn (trimethylindium) and PH 3 (phosphine) are used as the raw materials, and the rotation speed of the susceptor is 1
Reactor pressure 76 torr at 000 rpm, total gas flow 3
InP on the InP substrate under the condition of 0 liter / min
The description was based on the case where the crystal film of 1 was prepared.
【0007】なお、本発明は以上に示した実施例に限っ
て適用されるものではなく、様々な設計上の変更が可能
であることは言うまでもない。実施例では反応管を石英
製としたが、ステンレス等のその他の材料で作製した反
応管でも本発明は何ら制限を受けるものではなく、ま
た、実施例に用いたカーボン製のヒータは、あくまでも
加熱手段の一例であり、高周波誘導加熱方式等の他の加
熱手段の選択は、反応炉設計において当然配慮すべきで
ある。また、サセプタはカーボン等で作製される例が多
いが、機械強度の面で難があり、モリブデン等の金属材
料で作製される場合も多々ある。Needless to say, the present invention is not limited to the above-described embodiments, and various design changes can be made. Although the reaction tube is made of quartz in the examples, the present invention is not limited to the reaction tube made of other materials such as stainless steel, and the carbon heater used in the examples is a heating device. It is an example of the means, and selection of other heating means such as a high frequency induction heating method should be naturally taken into consideration in the reactor design. Although the susceptor is often made of carbon or the like, it is difficult in terms of mechanical strength and is often made of a metal material such as molybdenum.
【0008】[0008]
【発明の効果】本発明によれば、同時に処理される複数
の半導体基板上の全面に均一性良好な結晶薄膜を形成す
ることが可能となり、生産性向上に直結する。According to the present invention, it becomes possible to form a crystal thin film with good uniformity on the entire surface of a plurality of semiconductor substrates to be processed at the same time, which directly leads to improvement in productivity.
【図1】本発明に係る半導体気相成長装置の一実施例を
表わし、(a)は内部の状態を示す斜視図、(b)はサ
セプタの断面図、(c)は(b)の位置に対応するサセ
プタ上の半導体薄膜の断面膜厚分布を示すグラフであ
る。FIG. 1 shows an embodiment of a semiconductor vapor phase growth apparatus according to the present invention, (a) is a perspective view showing an internal state, (b) is a sectional view of a susceptor, and (c) is a position of (b). 3 is a graph showing a cross-sectional film thickness distribution of a semiconductor thin film on a susceptor corresponding to FIG.
【図2】サセプタの傾斜角度と断面膜厚分布との関係を
示すグラフである。FIG. 2 is a graph showing a relationship between a tilt angle of a susceptor and a cross-sectional film thickness distribution.
【図3】従来例の半導体気相成長装置の一例を示し、
(a)は断面図で表わす模式図、(b)はサセプタ上の
半導体薄膜の断面膜厚分布を(a)との対応で示すグラ
フである。FIG. 3 shows an example of a conventional semiconductor vapor deposition apparatus,
(A) is a schematic diagram represented by a cross-sectional view, and (b) is a graph showing a cross-sectional film thickness distribution of a semiconductor thin film on a susceptor in correspondence with (a).
【図4】従来の半導体気相成長装置の一例を示し、
(a)は内部の状態を示す斜視図、(b)はサセプタの
断面図、(c)は(b)に対応するサセプタ上の半導体
薄膜の断面膜厚分布を示すグラフである。FIG. 4 shows an example of a conventional semiconductor vapor phase growth apparatus,
(A) is a perspective view showing an internal state, (b) is a sectional view of a susceptor, and (c) is a graph showing a sectional thickness distribution of a semiconductor thin film on the susceptor corresponding to (b).
1 反応管 2、7、8 サセプタ 3 回転軸 4 被成長基板 5 加熱用ヒータ 6 ヒータ支持台 1 Reaction Tube 2, 7, 8 Susceptor 3 Rotating Shaft 4 Growth Substrate 5 Heating Heater 6 Heater Support
Claims (1)
中心に速度500rpm以上2000rpm以下で公転
させる半導体気相成長装置において、前記回転軸側に対
し周方向側を位置的に高くし、かつ、この傾斜角度を1
°以上15°以下とした傾斜面上に前記半導体基板を配
置することを特徴とする半導体気相成長装置。1. A semiconductor vapor phase growth apparatus in which a plurality of semiconductor substrates are revolved around a rotation axis at a speed of 500 rpm or more and 2000 rpm or less in a reaction furnace, wherein a circumferential side is positionally higher than the rotation axis side, And this inclination angle is 1
A semiconductor vapor phase growth apparatus characterized in that the semiconductor substrate is arranged on an inclined surface of not less than 15 ° and not more than 15 °.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15610393A JPH06349748A (en) | 1993-06-02 | 1993-06-02 | Vapor growth device for semiconductor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15610393A JPH06349748A (en) | 1993-06-02 | 1993-06-02 | Vapor growth device for semiconductor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06349748A true JPH06349748A (en) | 1994-12-22 |
Family
ID=15620377
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15610393A Pending JPH06349748A (en) | 1993-06-02 | 1993-06-02 | Vapor growth device for semiconductor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06349748A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002324801A (en) * | 2001-04-26 | 2002-11-08 | Shin Etsu Handotai Co Ltd | Method for gas flow pattern recognition in furnace |
| WO2003071011A1 (en) * | 2002-02-22 | 2003-08-28 | Aixtron Ag | Method and device for depositing semi-conductor layers |
| JP2013115215A (en) * | 2011-11-28 | 2013-06-10 | Taiyo Nippon Sanso Corp | Vapor phase growth apparatus |
| JP2013521655A (en) * | 2010-03-03 | 2013-06-10 | ビーコ・インストゥルメンツ・インコーポレイテッド | Wafer carrier with inclined edges |
-
1993
- 1993-06-02 JP JP15610393A patent/JPH06349748A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002324801A (en) * | 2001-04-26 | 2002-11-08 | Shin Etsu Handotai Co Ltd | Method for gas flow pattern recognition in furnace |
| WO2003071011A1 (en) * | 2002-02-22 | 2003-08-28 | Aixtron Ag | Method and device for depositing semi-conductor layers |
| JP2013521655A (en) * | 2010-03-03 | 2013-06-10 | ビーコ・インストゥルメンツ・インコーポレイテッド | Wafer carrier with inclined edges |
| JP2013115215A (en) * | 2011-11-28 | 2013-06-10 | Taiyo Nippon Sanso Corp | Vapor phase growth apparatus |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3004846B2 (en) | Susceptor for vapor phase growth equipment | |
| JP2001351864A (en) | Thin film vapor phase growth method and thin film vapor phase growth apparatus used in the method | |
| US5743956A (en) | Method of producing single crystal thin film | |
| JPH06349748A (en) | Vapor growth device for semiconductor | |
| JPS6090894A (en) | Vapor phase growing apparatus | |
| JP2009038294A (en) | Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor | |
| JP3113478B2 (en) | Semiconductor manufacturing equipment | |
| JP7628868B2 (en) | Susceptor | |
| JPH02212393A (en) | Vapor growth method and its device | |
| JPH08250430A (en) | Manufacture of single-crystal thin film | |
| JPS6058613A (en) | Epitaxial apparatus | |
| JPH06291066A (en) | Semiconductor vapor growth device | |
| JP2000031064A (en) | Lateral vapor phase epitaxial growth method and apparatus | |
| JPS6316617A (en) | Vapor phase growth equipment | |
| JPH0710689A (en) | Semiconductor vapor deposition equipment | |
| JP3230162B2 (en) | Vapor phase growth equipment | |
| WO2023223691A1 (en) | Method for growing single-crystal silicon, method for producing silicon wafer, and single-crystal pulling device | |
| JPS6159279B2 (en) | ||
| JP2002261023A (en) | Method of manufacturing epitaxial wafer | |
| JP4236230B2 (en) | Susceptor for vapor phase thin film growth apparatus and vapor phase thin film growth apparatus using the susceptor | |
| JP2775837B2 (en) | Chemical vapor deposition equipment | |
| JP2024085308A (en) | Susceptor | |
| JPH10125606A (en) | Vapor phase growth equipment | |
| JPH02146725A (en) | Metal organic vapor phase epitaxy equipment | |
| JPH0551294A (en) | Vapor phase growth equipment |