[go: up one dir, main page]

JPH06341781A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPH06341781A
JPH06341781A JP5149716A JP14971693A JPH06341781A JP H06341781 A JPH06341781 A JP H06341781A JP 5149716 A JP5149716 A JP 5149716A JP 14971693 A JP14971693 A JP 14971693A JP H06341781 A JPH06341781 A JP H06341781A
Authority
JP
Japan
Prior art keywords
heat
metal
heat transfer
heat storage
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5149716A
Other languages
Japanese (ja)
Inventor
Ryoei Takahashi
良栄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP5149716A priority Critical patent/JPH06341781A/en
Publication of JPH06341781A publication Critical patent/JPH06341781A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To prevent generation of a contact heat resistance in a boundary between a cover having an operating gas flow tube and a heat medium channel and hence to improve an operating efficiency of a heat accumulator by integrally molding foamed metal and a planar heat transfer element held between the cover and the medium. CONSTITUTION:A heat accumulator comprises a cover 2 having a flow tube 1 of operating gas to react with a scientific heat storage material filled in air gaps 9, and a channel 5 having heat medium introducing passage 3 and discharge passage 4 in such a manner that foamed metal 6' is arranged at the cover 2 side and a planar heat transfer element 7' is arranged at the channel 5 side. In this case, the metal 6' and the element 7' are integrally molded to form a foamed heat transfer element 10 of continuous foams. Thus, generation of a contact heat resistance is prevented in a boundary between the metal 6' and the element 7' and hence an operating efficiency of the accumulator is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱器に関する。更に
詳しくは、化学蓄熱材として固-気反応系物質の粉末を
充填して用いる蓄熱器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device. More specifically, the present invention relates to a heat storage device which is used by being filled with powder of a solid-gas reaction system substance as a chemical heat storage material.

【0002】[0002]

【従来の技術】アンモニア錯体、金属水素化物等の固-
気反応系物質の粉末が、化学蓄熱材として用いられてい
る。例えば、CaCl2・8NH3錯体粉末は、約80℃で次式で
右の方への反応を起こす: CaCl2・8NH3 ⇔ CaCl2・4NH3+4NH3 このとき、CaCl2・4NH3中に約10Kcal/モルの熱量を蓄え
る。また、CaCl2・4NH3に4NH3を加えると、やはり約10K
cal/モルの熱量が得られる。このとき発生する熱の温度
は、クラジウス-クラペイロンの関係により決定され
る。
2. Description of the Related Art Solid solutions of ammonia complexes, metal hydrides, etc.
A powder of a gas-reactive substance is used as a chemical heat storage material. For example, CaCl 2 · 8NH 3 complex powder causes a reaction to the right in the following formula at about 80 ° C: CaCl 2 · 8NH 3 ⇔ CaCl 2 · 4NH 3 + 4NH 3 At this time, in CaCl 2 · 4NH 3 Stores about 10 Kcal / mole of heat. Also, when 4NH 3 is added to CaCl 2 · 4NH 3 , it is still about 10K.
A calorie of cal / mol is obtained. The temperature of the heat generated at this time is determined by the Clausius-Clapeyron relationship.

【0003】このような固-気反応系物質粉末が化学蓄
熱材として蓄熱器内に充填された場合、化学蓄熱材との
熱交換は面状伝熱体を介して行われるが、化学蓄熱材の
熱伝導率が低いため、熱交換速度が遅くなり、運転効率
の低下を招いている。
When such a solid-gas reaction system substance powder is filled in the regenerator as a chemical heat storage material, heat exchange with the chemical heat storage material is carried out via the planar heat transfer material, but the chemical heat storage material is used. Has a low heat conductivity, the heat exchange rate becomes slow, resulting in a decrease in operation efficiency.

【0004】そこで、従来は面状伝熱体に発泡アルミニ
ウム体等の発泡金属体を接触させ、この発泡金属体内に
化学蓄熱材を充填することにより、化学蓄熱材の低熱伝
導性を補っている。具体的には、図2の断面図に示され
るような状態の蓄熱器が用いられており、空隙9に充填
された化学蓄熱材の反応に関与する作動ガスの流通管1
を備えたふた体2と一般に約80〜100℃の水が用いられ
る熱媒体の導入路3および排出路4を有する流路5との
間に、ふた体2側に発泡金属体6が、また流路5側に面
状伝熱体7が位置するようにして挾着させた蓄熱器が用
いられている。
Therefore, conventionally, a low thermal conductivity of the chemical heat storage material is supplemented by bringing a foam metal body such as a foam aluminum body into contact with the planar heat transfer body and filling the metal heat storage material with the chemical heat storage material. . Specifically, a heat storage device in a state as shown in the sectional view of FIG. 2 is used, and a working gas flow pipe 1 that participates in the reaction of the chemical heat storage material filled in the void 9
A metal foam body 6 on the lid body 2 side, and a flow path 5 having a heat medium introduction path 3 and a heat medium discharge path 4 in which water of generally about 80 to 100 ° C. is used. A heat storage device is used in which the planar heat transfer member 7 is positioned on the side of the flow path 5 so as to be sandwiched between them.

【0005】しかしながら、このような構成をとる蓄熱
器では、発泡金属体と面状伝熱体との境界8に接触熱抵
抗が生ずるため、十分な運転効率の向上が達成されな
い。
However, in the heat accumulator having such a structure, contact thermal resistance is generated at the boundary 8 between the metal foam body and the planar heat transfer body, so that sufficient improvement in operating efficiency cannot be achieved.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、化学
蓄熱材の反応に関与する作動ガスの流通管を備えたふた
体と熱媒体の導入路および排出路を有する流路との間
に、発泡金属体と面状伝熱体とを挾着させた蓄熱器にお
いて、運転効率を高めたものを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a space between a lid body provided with a flow pipe for a working gas involved in a reaction of a chemical heat storage material and a flow passage having a heat medium introduction passage and a discharge passage. The object of the present invention is to provide a heat accumulator in which a metal foam body and a sheet heat transfer body are sandwiched, and which has improved operation efficiency.

【0007】[0007]

【課題を解決するための手段】かかる本発明の目的は、
上記構成の蓄熱器において、発泡金属体と面状伝熱体と
を一体成形して用いることによって達成される。図1
は、本発明に係る蓄熱器の断面を示し、そこでは発泡金
属体と面状伝熱体との一体成形による連続気泡の発泡伝
熱体10が用いられている。
The object of the present invention is as follows.
In the heat accumulator having the above-mentioned configuration, it is achieved by integrally molding and using the metal foam body and the planar heat transfer body. Figure 1
Shows a cross section of a heat storage device according to the present invention, in which a foamed heat transfer body 10 having continuous cells formed by integrally molding a metal foam body and a planar heat transfer body is used.

【0008】このような発泡金属体と面状伝熱体との一
体成形物は、次のような各工程を経て、発泡金属から成
形される。 (1)50%PVA水溶液とカーボン粉末との等重量混合物中
に、気孔率約70〜80%の発泡ポリウレタンスポンジを含
浸させる。 (2)これを3℃/分の昇温速度で600℃迄昇温させ、水の除
去およびPVAの炭化を行った後、還元性雰囲気中、2100
℃で焼結する。 (3)得られた発泡焼結体を溶融アルミニウム等の溶融金
属中に含浸させるが、その含浸位置は深さ方向の上部位
置とする。 (4)酸素雰囲気中、約600〜650℃に加熱してカーボンを
燃焼させ、気孔率約70〜80%、気孔の大きさ約1〜2mmの
発泡金属体部とその下部に気孔を有しない厚さ約1〜2mm
の面状伝熱体部とが一体に成形された発泡伝熱体が得ら
れる。
An integrally molded product of such a foam metal body and a sheet-shaped heat transfer body is molded from the foam metal through the following steps. (1) A polyurethane foam sponge having a porosity of about 70 to 80% is impregnated in an equal weight mixture of a 50% PVA aqueous solution and carbon powder. (2) The temperature was raised to 600 ° C at a heating rate of 3 ° C / min, water was removed and PVA was carbonized, and then 2100 in a reducing atmosphere.
Sinter at ° C. (3) The obtained foamed sintered body is impregnated into a molten metal such as molten aluminum, but the impregnation position is the upper position in the depth direction. (4) In an oxygen atmosphere, carbon is burned by heating to about 600 to 650 ° C, and there is no porosity in the foam metal body part with a porosity of about 70 to 80% and a pore size of about 1 to 2 mm and its lower part. Thickness about 1-2 mm
It is possible to obtain a foamed heat transfer member integrally formed with the planar heat transfer member part.

【0009】得られた発泡伝熱体10の発泡金属体部6´
側にはふた体2が、また面状伝熱体部7´側には流路5
が設けられることは、従来例の如くである。
The foam metal body portion 6'of the obtained foam heat transfer body 10
The lid 2 is provided on the side, and the flow path 5 is provided on the side of the planar heat transfer member 7 '.
Is provided as in the conventional example.

【0010】[0010]

【発明の効果】化学蓄熱材の低熱伝導性を補うために発
泡金属体を用いる場合に、発泡金属体と面状伝熱体とを
一体成形することにより、蓄熱器の効率の向上を図るこ
とができた。
When a metal foam body is used to supplement the low thermal conductivity of the chemical heat storage material, the efficiency of the regenerator is improved by integrally molding the metal foam body and the planar heat transfer body. I was able to.

【0011】[0011]

【実施例】次に、実施例について本発明を説明する。EXAMPLES The present invention will now be described with reference to examples.

【0012】実施例 図1に示される全体が円筒形の蓄熱器(全体外径120mm、
流通管、導入路、排出路部分を除く全体の高さ14mm、発
泡伝熱体外径80mm、発泡伝熱体厚さ12mm、発泡金属体部
厚さ10mm、発泡金属体部空隙率90%)を用い、発泡金属体
部の空隙9に40gのCaCl2・8NH3錯体粉末を充填した。こ
の蓄熱器の作動ガス流通路をNH3ガス容器に連結し、熱
媒体として60℃の水を流したところ、CaCl2・8NH3錯体
粉末は吸熱反応を起こした。このときの吸熱反応所要時
間は約1時間であった。
Embodiment A heat accumulator having an entirely cylindrical shape shown in FIG. 1 (total outer diameter 120 mm,
Overall height excluding distribution pipe, introduction path, discharge path part 14 mm, foam heat transfer body outer diameter 80 mm, foam heat transfer body thickness 12 mm, foam metal body part thickness 10 mm, foam metal body part void ratio 90%) Then, 40 g of CaCl 2 .8NH 3 complex powder was filled in the void 9 of the metal foam part. When the working gas flow passage of this heat accumulator was connected to an NH 3 gas container and water at 60 ° C. was passed as a heat medium, the CaCl 2 · 8NH 3 complex powder caused an endothermic reaction. The time required for the endothermic reaction at this time was about 1 hour.

【0013】比較例 図2に示される全体が円筒形の蓄熱器(寸法は実施例と
同じ、ただし発泡金属体厚さ10mm、面状伝熱体厚さ2mm)
を用い、実施例と同様の吸熱反応を行わせたところ、反
応所要時間は約1時間40分であった。
COMPARATIVE EXAMPLE The entire cylindrical heat accumulator shown in FIG. 2 (dimensions are the same as the embodiment, except that the thickness of the foam metal body is 10 mm and the thickness of the planar heat transfer body is 2 mm).
When an endothermic reaction similar to that in the example was carried out using, the time required for the reaction was about 1 hour and 40 minutes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る蓄熱器の断面図である。FIG. 1 is a sectional view of a heat storage device according to the present invention.

【図2】従来例の蓄熱器の断面図である。FIG. 2 is a sectional view of a conventional heat storage device.

【符号の説明】[Explanation of symbols]

1 作動ガス流通管 2 ふた体 3 熱媒体導入路 4 熱媒体排出路 5 熱媒体流路 6 発泡金属体 6´発泡金属体部 7 面状伝熱体 7´面状伝熱体部 9 空隙 10 発泡伝熱体 DESCRIPTION OF SYMBOLS 1 Working gas flow pipe 2 Lid body 3 Heat medium introduction path 4 Heat medium discharge path 5 Heat medium flow path 6 Metal foam body 6'Foam metal body section 7 Sheet heat transfer body 7'Sheet heat transfer section 9 Void 10 Foam heat transfer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学蓄熱材の反応に関与する作動ガスの
流通管を備えたふた体と熱媒体の導入路および排出路を
有する流路との間に、発泡金属体と面状伝熱体とを挾着
させた蓄熱器において、発泡金属体と面状伝熱体とを一
体成形したことを特徴とする蓄熱器。
1. A metal foam body and a planar heat transfer body are provided between a lid body provided with a flow pipe for a working gas involved in a reaction of a chemical heat storage material and a flow path having an inlet passage and an outlet passage of a heat medium. A heat storage device in which a foam metal body and a planar heat transfer body are integrally molded in a heat storage device in which the and the heat storage device are attached to each other.
JP5149716A 1993-05-31 1993-05-31 Heat accumulator Pending JPH06341781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5149716A JPH06341781A (en) 1993-05-31 1993-05-31 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5149716A JPH06341781A (en) 1993-05-31 1993-05-31 Heat accumulator

Publications (1)

Publication Number Publication Date
JPH06341781A true JPH06341781A (en) 1994-12-13

Family

ID=15481266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5149716A Pending JPH06341781A (en) 1993-05-31 1993-05-31 Heat accumulator

Country Status (1)

Country Link
JP (1) JPH06341781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024761A (en) * 1997-07-03 2012-02-09 Robert Bosch Gmbh METHOD AND DEVICE FOR SELECTIVE CATALYTIC NOx REDUCTION
JP2015087082A (en) * 2013-11-01 2015-05-07 株式会社豊田自動織機 Chemical heat storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024761A (en) * 1997-07-03 2012-02-09 Robert Bosch Gmbh METHOD AND DEVICE FOR SELECTIVE CATALYTIC NOx REDUCTION
JP2015087082A (en) * 2013-11-01 2015-05-07 株式会社豊田自動織機 Chemical heat storage device

Similar Documents

Publication Publication Date Title
US5866090A (en) Method for separation of carbon dioxide gas
JP3442167B2 (en) Heat transfer method in reformer
US8021793B2 (en) Hydrogen producing apparatus and fuel cell system using the same
US8377178B2 (en) Fuel source for electrochemical cell
US20020012824A1 (en) Electrochemical conversion system
WO2001081850A1 (en) A hydrogen cooled hydrogen storage unit having maximized cooling efficiency
WO2001047801A1 (en) Modifying device
US6378601B1 (en) Hydrogen cooled hydrogen storage unit having a high packing density of storage alloy and encapsulation
WO2005038949A3 (en) Metal hydride heating element
GB1503850A (en) Method and apparatus for thermal energy storage
US20040161652A1 (en) Alkaline fuel cell pack with gravity fed electrolyte circulation and water management system
US20100261094A1 (en) Apparatus for containing metal-organic frameworks
JPH06341781A (en) Heat accumulator
US3374120A (en) Apparatus and method regarding generation of electrical energy from thermal energy
JPH01212893A (en) Heat storage body
US20160285118A1 (en) Hydrogen generator
JPS6249703B2 (en)
US7309535B2 (en) Air breathing fuel cell having bi-cell unit cells
JP3499273B2 (en) Heat transfer method in reformer
EP1291072A4 (en) A gas-solid phase exothermic catalytic reactor with low temperature difference and its process
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
US10476089B2 (en) Reducing heat loss from a lightweight vacuum insulated vessel
JP2006177434A (en) Hydrogen storage and supply equipment
JP2002022097A (en) Storage container for hydrogen storage alloy
JPS5890A (en) Structure of heat exchanger utilizing metal hydride