JPH0635214Y2 - Optical deflector - Google Patents
Optical deflectorInfo
- Publication number
- JPH0635214Y2 JPH0635214Y2 JP1986028749U JP2874986U JPH0635214Y2 JP H0635214 Y2 JPH0635214 Y2 JP H0635214Y2 JP 1986028749 U JP1986028749 U JP 1986028749U JP 2874986 U JP2874986 U JP 2874986U JP H0635214 Y2 JPH0635214 Y2 JP H0635214Y2
- Authority
- JP
- Japan
- Prior art keywords
- spring
- axis
- optical deflector
- reflecting mirror
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Mechanical Optical Scanning Systems (AREA)
Description
【考案の詳細な説明】 <産業上の利用分野> 本考案は,光走査装置に用いて好適な共振振動型の光偏
向器に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a resonant vibration type optical deflector suitable for use in an optical scanning device.
<従来の技術> 従来,光ビームを走査する場合,一定速度で回転するポ
リゴンミラーや,鋸歯状波信号で駆動されるガルバノミ
ラーが用いられている。<Prior Art> Conventionally, when scanning a light beam, a polygon mirror rotating at a constant speed or a galvanometer mirror driven by a sawtooth wave signal is used.
<考案が解決しようとする問題点> しかしながら,上記ポリゴンミラーやガルバノミラーを
用いる従来の光走査装置は高価,大型となる。また,ポ
リゴンミラーの場合は回転むらの少ないモータが要求さ
れ,ガルバノメータでは強制振動領域(固有振動数より
低い周波数領域)で使用されるため励振信号の歪みが発
生し走査速度のむらとなる。更に,機械的構成部分を有
するために長期の使用に問題があり,また,全体の構成
も複雑になる。<Problems to be Solved by the Invention> However, the conventional optical scanning device using the polygon mirror or the galvanometer mirror is expensive and large in size. Further, in the case of a polygon mirror, a motor with less rotation unevenness is required, and since a galvanometer is used in the forced vibration region (frequency region lower than the natural frequency), distortion of the excitation signal occurs and the scanning speed becomes uneven. Further, since it has a mechanical component, it has a problem in long-term use, and the entire configuration becomes complicated.
この考案は上記従来技術の問題点を解決するために成さ
れたもので,構成が簡単で小型,安価,更に特性の揃っ
た光偏向器を得ることを目的とするものである。The present invention was made in order to solve the above-mentioned problems of the prior art, and an object thereof is to obtain an optical deflector having a simple structure, small size, low cost, and uniform characteristics.
<問題点を解決するための手段> 上記問題点を解決するため本考案は、Z軸に垂直に切り
出された水晶板を用いてフォト・リングラフィの技術に
より形成された所定の長さを有する断面が矩形状のばね
部及びこのばめ部によって支持された可動部と,該可動
部に形成された反射鏡と,前記ばね部の長手方向をX軸
(若しくはY軸)とし,Y軸(若しくはX軸)方向に電界
が生じるようにに形成された電極と,前記電極に接続さ
れた自励振回路とからなり,前記反射鏡とばねにより決
まる固有振動周波数によりねじり振動させることを特徴
とするものである。<Means for Solving Problems> In order to solve the above problems, the present invention has a predetermined length formed by a photo-linography technique using a crystal plate cut out perpendicularly to the Z axis. A spring part having a rectangular cross section and a movable part supported by the fit part, a reflecting mirror formed on the movable part, and a longitudinal direction of the spring part as an X axis (or a Y axis) and a Y axis ( Alternatively, it is characterized by comprising an electrode formed so as to generate an electric field in the (X axis) direction and a self-exciting circuit connected to the electrode, and torsionally vibrating at a natural vibration frequency determined by the reflecting mirror and a spring. It is a thing.
<実施例> 第1図は本考案による光偏向器の一実施例を示す構成斜
視図である。図において,1は圧電効果を有する基板(例
えば水晶)であり,厚さ0.03〜0.5mm程度のZ板(Z軸
に垂直な基板)が用いられる。2は上部ばね,3は下部ば
ね,10は上下部のばね2,3に支持された可動部であり,こ
れらはフォトリソグラフィの技術により加工して形成さ
れる。可動部10には反射鏡(図示せず)が形成され,
(以下,可動部10のことを反射鏡という)下部ばねには
電極4a,4bが形成される。<Embodiment> FIG. 1 is a structural perspective view showing an embodiment of an optical deflector according to the present invention. In the figure, 1 is a substrate having a piezoelectric effect (for example, quartz), and a Z plate (substrate perpendicular to the Z axis) having a thickness of about 0.03 to 0.5 mm is used. Reference numeral 2 is an upper spring, 3 is a lower spring, and 10 is a movable part supported by upper and lower springs 2 and 3, which are formed by processing by a photolithography technique. A reflecting mirror (not shown) is formed on the movable part 10,
Electrodes 4a and 4b are formed on the lower spring (hereinafter, the movable portion 10 is referred to as a reflecting mirror).
第2図(イ),(ロ)は第1図に示す下部ばねに電極を
形成した例を示すX-X断面図であり,図(イ)では電極
がばねの長手(X軸)方向の隅に沿って両面に4箇所形
成されている。上記構成においてそれぞれ対角線上の電
極4a,4bに電圧を印加することにより,ばねは矢印で示
すように捩じり力を受ける。図(ロ)はばねの長手(Y
軸)方向の隅に沿って両面に4箇所電極を形成するとと
にも中心部にも電極4cを設けている。上記の電極形成に
おいてもばねは矢印に示すような捩じり力を受ける。こ
のような構成では,反射鏡を質量とした1自由度振動系
として考えることができ,その固有振動数fは次式で表
すことが出来る。2 (a) and 2 (b) are XX cross-sectional views showing an example in which an electrode is formed on the lower spring shown in FIG. 1. In FIG. 2 (a), the electrode is located at a corner in the longitudinal (X-axis) direction of the spring. Four locations are formed along both sides. In the above structure, by applying a voltage to the diagonal electrodes 4a and 4b, the spring receives a torsional force as indicated by the arrow. Figure (b) shows the length of the spring (Y
Four electrodes are formed on both sides along the corners in the (axis) direction, and an electrode 4c is also provided at the center. Even in the above electrode formation, the spring receives a torsional force as shown by the arrow. In such a configuration, it can be considered as a one-degree-of-freedom vibration system having a reflecting mirror as a mass, and its natural frequency f can be expressed by the following equation.
ここで,K;捩じりばねのばね定数 J;反射鏡の慣性モーメント 例えば反射鏡の形状を矩形とした場合の慣性モーメント
は J=1/12ρabt(a2+t2) a,b;矩形の一辺の長さ t;反射鏡の厚さ ρ;反射鏡の密度 また,基板を水晶とした場合,水晶は3つの剪断歪みを
発生出来るため,第2図(イ),(ロ)のように電極を
配置すれば容易に捩じり歪みを励起させることが出来
る。この場合剪断歪みと各結晶軸の圧電率と電界の関係
は次式で表すことが出来る。 Here, K; spring constant of the torsion spring J; moment of inertia in the case of the shape of the moment of inertia for example reflectors of the reflector was set to rectangle J = 1 / 12ρabt (a 2 + t 2) a, b; rectangular Length of one side t; Thickness of reflector ρ; Density of reflector If quartz is used as the substrate, quartz can generate three shear strains, as shown in Fig. 2 (a) and (b). If the electrodes are arranged, the torsional strain can be easily excited. In this case, the relationship between the shear strain, the piezoelectric coefficient of each crystal axis, and the electric field can be expressed by the following equation.
eyz=d14Ex ezx=‐d14Ey exy=‐d11Ey e;剪断歪み E;電界 d;圧電率 なお,上記剪断歪みの他に伸縮歪みを用いてもよい。e yz = d 14 Ex e zx = -d 14 Ey e xy = -d 11 Ey e; Shear strain E; Electric field d; Piezoelectric constant In addition to the above shear strain, stretching strain may be used.
第3図は第1図に示す光偏向器の電極部に自励振回路30
を接続した構成図であり,本構成により光偏向器は第1
図に示すように,そのばね部が矢印方向に捩じれ,反射
鏡10に入射する入射光(ホ)がその捩じり強さに応じて
θだけ偏向され反射鏡(ヘ)となって反射する。FIG. 3 shows a self-exciting circuit 30 in the electrode portion of the optical deflector shown in FIG.
FIG. 3 is a configuration diagram in which the optical deflector is the first
As shown in the figure, the spring part is twisted in the direction of the arrow, and the incident light (e) incident on the reflecting mirror 10 is deflected by θ according to the twisting strength and reflected as a reflecting mirror (f). .
第4図は第1図に示す光偏向器の上部,下部ばねに中空
状の歪み吸収ばね40a,40bを形成した構成斜視図で,上
記構成によれば光偏向器をケース(図示せず)等に固定
した場合,線膨脹係数の違いにより発生する歪みが固有
振動周波数を変化させたり,甚だしい場合ばねを破損し
たりする現象を防止することが出来る。FIG. 4 is a perspective view of a structure in which hollow strain absorbing springs 40a and 40b are formed in the upper and lower springs of the optical deflector shown in FIG. 1, and the optical deflector has a case (not shown) according to the above configuration. When it is fixed to, for example, it is possible to prevent the phenomenon that the strain caused by the difference in the coefficient of linear expansion changes the natural vibration frequency, and in extreme cases, damages the spring.
第5図は第4図に示すA部の吸収ばね部を拡大して示す
平面図で,吸収ばね部はロ字状に形成され,ばね部が矢
印方向の力を受けても吸収ばねが変形し,その力を吸収
した状態を示している。FIG. 5 is an enlarged plan view showing the absorption spring portion of the portion A shown in FIG. 4, and the absorption spring portion is formed in a square shape and the absorption spring is deformed even when the spring portion receives a force in the direction of the arrow. However, the state in which the force is absorbed is shown.
なお、本実施例においては可動部(反射鏡)の形状を矩
形状として示したがこの形状に限ることなく各種変型が
可能である。また,電極の形成方法も第2図の実施例に
限るものではない。また,本実施例においては電極を下
部ばねのみに形成したが上部,下部の両方のばねに形成
してもよい。この場合,反射鏡は低インピーダンスの振
動子となり,励振効率は更に向上する。また,ばね部は
上部または下部に1箇所のみ設けてもよい。In this embodiment, the shape of the movable portion (reflecting mirror) is shown as a rectangular shape, but the shape is not limited to this and various modifications are possible. Further, the method of forming the electrodes is not limited to the embodiment shown in FIG. Further, in this embodiment, the electrodes are formed only on the lower springs, but they may be formed on both the upper and lower springs. In this case, the reflector becomes a low-impedance oscillator, further improving the excitation efficiency. Further, the spring portion may be provided only at one place on the upper part or the lower part.
<考案の効果> 以上実施例とともに具体的に説明したように本考案によ
れば, 反射鏡が固有振動数で振動するため,ガルバノメータ
のような強制振動の場合に比較して数十〜数千倍の振動
振幅を得ることが出来,格段に歪みの少ない正弦波走査
を得ることが出来る。<Effect of the Invention> According to the present invention as specifically described in connection with the above embodiments, the reflecting mirror vibrates at the natural frequency, so that it is several tens to several thousand as compared with the case of forced vibration such as a galvanometer. Double vibration amplitude can be obtained, and sinusoidal scanning with significantly less distortion can be obtained.
上,下部ばね,反射鏡をフォト・リソグラフィの技術
により製作するため,小型で特性の揃った光偏向器を大
量に得ることが出来,コスト低減が可能である。Since the upper and lower springs and the reflecting mirror are manufactured by photolithography technology, a large number of small-sized optical deflectors with uniform characteristics can be obtained and cost can be reduced.
光偏向器と自励振回路だけで光偏向装置を構成するこ
とが出来るため構成が簡単となり,固有振動数により反
射鏡が振動するため振動振幅がQ倍発生する。従って励
振パワーが1/Qとなり低電力化をはかることができ,更
に強制振動(共振周波数以下の振動)に比較して励振波
形の歪みが1/Qとなるのでピュアな振動が得られ,歪み
の少ない光走査が可能となる。Since the optical deflector can be configured only by the optical deflector and the self-exciting circuit, the configuration is simplified, and since the reflecting mirror vibrates due to the natural frequency, the vibration amplitude is Q times. Therefore, the excitation power is 1 / Q, and the power consumption can be reduced, and the distortion of the excitation waveform is 1 / Q compared to the forced vibration (vibration below the resonance frequency), so pure vibration can be obtained. It is possible to perform optical scanning with less.
第1図は本考案の一実施例を示す構成斜視図,第2図
(イ),(ロ)は第1図に示すよ下部ばねのX-X断面
図,第3図は第1図に示す光偏向器の電極部に自励振回
路を接続した構成図,第4図は他の実施例を示す構成斜
視図,第5図は第4図に示すA部の吸収ばね部を拡大し
て示す平面図である。 1…基板,2…上部ばね,3…下部ばね,4a,4b…電極,10…
可動部(反射鏡),40a,40b…吸収ばね。FIG. 1 is a perspective view showing the structure of an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are sectional views taken along the line XX of the lower spring shown in FIG. 1, and FIG. 3 is the optical diagram shown in FIG. FIG. 4 is a configuration diagram in which a self-exciting circuit is connected to the electrode portion of the deflector, FIG. 4 is a configuration perspective view showing another embodiment, and FIG. 5 is a plan view showing an enlarged absorption spring portion of portion A shown in FIG. It is a figure. 1 ... Substrate, 2 ... Upper spring, 3 ... Lower spring, 4a, 4b ... Electrode, 10 ...
Moving parts (reflector), 40a, 40b ... Absorption springs.
Claims (2)
フォト・リソグラフィの技術により形成された所定の長
さを有する断面が矩形状のばね部及びこのばね部によっ
て支持された可動部と,該可動部に形成された反射鏡
と,前記ばね部の長手方向をX軸(若しくはY軸)と
し,Y軸(若しくはX軸)方向に電界が生じるように前記
長手方向に沿ったばね部の両面に形成された複数の電極
と,該前記電極に接続された自励振回路とからなり,前
記反射鏡とばねにより決まる固有振動周波数によりねじ
り振動させることを特徴とする光偏向器。1. A spring section having a rectangular cross section and having a predetermined length, which is formed by a photolithography technique using a quartz plate cut out perpendicularly to the Z axis, and a movable section supported by the spring section. A reflecting mirror formed on the movable part, and a spring part along the longitudinal direction so that an electric field is generated in the Y-axis (or X-axis) direction with the longitudinal direction of the spring part as the X-axis (or Y-axis). 2. An optical deflector comprising a plurality of electrodes formed on both surfaces of the electrode and a self-exciting circuit connected to the electrodes, and torsionally vibrating at a natural vibration frequency determined by the reflecting mirror and a spring.
ことを特徴とする実用新案登録請求の範囲第1項記載の
光偏向器。2. An optical deflector according to claim 1, wherein a strain absorbing spring is formed at the end of the spring.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1986028749U JPH0635214Y2 (en) | 1986-02-28 | 1986-02-28 | Optical deflector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1986028749U JPH0635214Y2 (en) | 1986-02-28 | 1986-02-28 | Optical deflector |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62142019U JPS62142019U (en) | 1987-09-08 |
| JPH0635214Y2 true JPH0635214Y2 (en) | 1994-09-14 |
Family
ID=30832001
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1986028749U Expired - Lifetime JPH0635214Y2 (en) | 1986-02-28 | 1986-02-28 | Optical deflector |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0635214Y2 (en) |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58189618A (en) * | 1982-04-28 | 1983-11-05 | Fujitsu Ltd | Light deflection device |
| JPS60107017A (en) * | 1983-11-16 | 1985-06-12 | Hitachi Ltd | light deflection element |
-
1986
- 1986-02-28 JP JP1986028749U patent/JPH0635214Y2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPS62142019U (en) | 1987-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101264136B1 (en) | Micro-mirror device using a moving structure | |
| KR101306847B1 (en) | Optical scanning device | |
| US5295014A (en) | Two-dimensional laser beam scanner using PVDF bimorph | |
| US8422109B2 (en) | Optical reflection element | |
| US8416484B2 (en) | Vibrating mirror element | |
| EP4075183A1 (en) | Micromirror device and optical scanning device | |
| JPH08280185A (en) | Ultrasonic actuator | |
| JP2570237B2 (en) | Optical scanner, vibrating device, optical device, and optical beam printer | |
| JP2008086067A (en) | Movable structural body and optical element equipped with the same | |
| JPH0635214Y2 (en) | Optical deflector | |
| JPH10123449A (en) | Optical scanner | |
| JPH04343318A (en) | Torsional vibrator | |
| JP2006525548A (en) | Scanning mirror | |
| JP2921218B2 (en) | Optical scanner | |
| WO2022163501A1 (en) | Optical scanning device and method for driving micromirror device | |
| JP4976063B2 (en) | Micro oscillating device and optical element | |
| JP3525555B2 (en) | Two-dimensional optical scanning device | |
| JP2000019446A (en) | Optical scanner | |
| JP2995836B2 (en) | Optical scanning device | |
| JP2538033B2 (en) | Planar ultrasonic actuator | |
| JPS6356181A (en) | Piezo-electric motor | |
| CN118605010A (en) | A two-dimensional scanning method of MEMS micromirror | |
| JP2007222970A (en) | Actuator | |
| JPS6363015A (en) | Deflector for optical scanner | |
| HK1152570A (en) | Movable structure and micro-mirror element using the same |