[go: up one dir, main page]

JPH0649561B2 - High-purity hydrogen gas purification method - Google Patents

High-purity hydrogen gas purification method

Info

Publication number
JPH0649561B2
JPH0649561B2 JP61021752A JP2175286A JPH0649561B2 JP H0649561 B2 JPH0649561 B2 JP H0649561B2 JP 61021752 A JP61021752 A JP 61021752A JP 2175286 A JP2175286 A JP 2175286A JP H0649561 B2 JPH0649561 B2 JP H0649561B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen gas
hydrogen
impurity
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61021752A
Other languages
Japanese (ja)
Other versions
JPS62182102A (en
Inventor
博 宮本
耕一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61021752A priority Critical patent/JPH0649561B2/en
Publication of JPS62182102A publication Critical patent/JPS62182102A/en
Publication of JPH0649561B2 publication Critical patent/JPH0649561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Gas Separation By Absorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素ガスの精製方法に関する。The present invention relates to a method for purifying hydrogen gas.

〔従来の技術〕[Conventional technology]

最近水素吸蔵合金の特性を利用した高純度水素ガスの精
製方法が開発されている。その主な方法は第3図に示す
ように水素吸蔵合金25に粗ガス26(純度99〜9
9.9%H2)を反応させて水素ガスのみを吸蔵させ、そ
の後合金の表面に吸着された不純物と容器空間に濃縮さ
せた不純物ガス(O2、N2、CO、CO2、CH4、他)を分離す
る訳であるが、この時容器の不純物ガス出口バルブ27
を開放し、水素吸蔵合金の水素ガス解離圧以下にするこ
とにより若干の水素ガスを放出させると同時に不純物ガ
スを不純物ガスライン28より放出させ、更にバルブを
閉鎖させることにより不純物ガスを容器内に均一に分散
させることを繰り返す操作を行い、その後精製ガスライ
ン29より精製ガスを得るものである。
Recently, a method for purifying high-purity hydrogen gas utilizing the characteristics of hydrogen storage alloy has been developed. As shown in FIG. 3, the main method is to use hydrogen storage alloy 25 with crude gas 26 (purity 99 to 9).
9.9% H 2 ) to occlude only hydrogen gas, and then the impurities adsorbed on the surface of the alloy and the impurity gases (O 2 , N 2 , CO, CO 2 , CH 4) concentrated in the container space. , Etc. are separated, but at this time, the impurity gas outlet valve 27 of the container
To release the impurity gas from the impurity gas line 28 at the same time as releasing the hydrogen gas by lowering the hydrogen gas dissociation pressure of the hydrogen storage alloy to below the hydrogen gas dissociation pressure, and further closing the valve to bring the impurity gas into the container. The operation of repeating the uniform dispersion is repeated, and then the purified gas is obtained from the purified gas line 29.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の方法であると、吸蔵終了時の不純物濃度は、水素
吸蔵合金層空間容積あるいは粗ガス中の不純物濃度及び
水素吸蔵量により差異はあるが、おおよそ10Vol %近
くまで濃縮されているのが通常である。この様な状態か
ら水素純度99.9999%以上に精製するには、前述の繰り
返し操作によって水素吸蔵量の約5%〜10%の水素を
放出する必要がある。
According to the conventional method, the impurity concentration at the end of absorption varies depending on the hydrogen storage alloy layer space volume or the impurity concentration in the crude gas and the hydrogen storage amount, but it is usually concentrated to about 10 Vol%. Is. In order to purify from such a state to a hydrogen purity of 99.9999% or more, it is necessary to release about 5% to 10% of the hydrogen storage amount by the above-mentioned repeated operation.

この繰り返し操作によって精製する為に放出しなければ
ならない吸蔵水素の量は、容器中の不純物濃度によって
大きく左右され、容器中の濃縮不純物濃度が低い程この
放出量は減少されるものである。そこで我々は吸蔵操作
を行っている時、ごく微量の充填ガスを外部に排出する
事により、吸蔵終了時に不純物濃度が減少する事を利用
し、精製操作の短縮された精製ガス歩留が向上する方法
を提供するものである。
The amount of stored hydrogen that must be released for purification by this repeated operation greatly depends on the concentration of impurities in the container, and the amount of released hydrogen decreases as the concentration of concentrated impurities in the container decreases. Therefore, we use the fact that the impurity concentration decreases at the end of the storage by discharging a very small amount of the filling gas to the outside during the storage operation, which improves the purified gas yield due to the shortened purification operation. It provides a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、水素吸蔵合金を使用した水素ガス精製方法に
おいて、粗水素ガスを水素ガス精製容器に注入すると共
に、同容器の排出口から細孔を通して連続的に不純物を
含む水素ガスを放出しつつ吸蔵させ、その後水素ガスを
脱着させることを特徴とする水素ガス精製方法を提供す
るものである。
The present invention, in a hydrogen gas purification method using a hydrogen storage alloy, while injecting crude hydrogen gas into a hydrogen gas purification container, while continuously releasing hydrogen gas containing impurities from the outlet of the container through pores The present invention provides a method for purifying hydrogen gas, which comprises occluding and then desorbing hydrogen gas.

〔作 用〕[Work]

精製容器の一部、好ましくは粗水素ガス中の不純物の最
もたまり易い所(例えば円筒形容器の一端から粗水素ガ
スを導入する場合、他の一端)に細孔を有する配管を設
け、少量のガスを連続的に排出する。この排出量は粗水
素ガス中不純物濃度及び容器空間容積にもよるが、平均
吸蔵速度(粗水素ガス注入速度l/min)の1〜5%が好
ましい。吸蔵時、水素吸蔵合金に吸蔵されない不純物
は、次々と容器と導入される粗水素ガスにより先端方向
に濃縮され、この後、前述の細孔から放出されて行き無
限にこの操作を行うと、不純物濃度は粗水素ガスと同濃
度となる。しかしながら処理能力向上の観点からは、適
当な状態、すなわち吸蔵完了時の容器内不純物濃度が粗
水素ガス中不純物濃度の約5〜8倍となる様な状態から
精製(不純物放出)操作を行う必要がある。
A part of the purification vessel, preferably a place where impurities in the crude hydrogen gas are most likely to accumulate (for example, when the crude hydrogen gas is introduced from one end of the cylindrical vessel to the other end) is provided with a pipe having pores, and a small amount of The gas is continuously discharged. Although this discharge amount depends on the impurity concentration in the crude hydrogen gas and the space volume of the container, it is preferably 1 to 5% of the average storage rate (crude hydrogen gas injection rate l / min). During storage, impurities that are not stored in the hydrogen storage alloy are concentrated in the tip direction by the crude hydrogen gas that is successively introduced into the container and then released from the aforementioned pores. The concentration is the same as that of crude hydrogen gas. However, from the viewpoint of improving the treatment capacity, it is necessary to carry out the purification (impurity release) operation from an appropriate state, that is, the state in which the impurity concentration in the container at the time of completion of storage is about 5 to 8 times the impurity concentration in the crude hydrogen gas. There is.

この様に吸蔵完了時の容器内不純物濃度を減少させる事
により、精製に必要な水素放出量が減少され、またその
操作時間も短縮されるものである。
By reducing the concentration of impurities in the container at the time of completion of occlusion, the amount of hydrogen released necessary for refining can be reduced and the operating time can be shortened.

〔実施例〕〔Example〕

第1図は、3重管式精製容器を用いた水素ガス精製装置
に本発明の絞り配管を組み込んだ実施例の説明図であ
る。
FIG. 1 is an explanatory view of an embodiment in which the throttle pipe of the present invention is incorporated in a hydrogen gas purification device using a triple pipe type purification container.

第1図において精製容器1は水素吸吸蔵合金層2と、そ
れをはさむように水室(A)3、水室(B)4がある。この両
端には粗水素ガス導入口5及びガス排出口8が設けられ
ており、粗水素ガスは粗水素ガスライン7、粗水素ガス
バルブ6、粗水素ガス入口5を経て、水素吸蔵合金層2
に流入し、吸蔵される。ガス排出口8から出たガスは、
排出ガス切替バルブ9を経て、一方は、精製ガスライン
10に、また他方は低純度ガスバルブ12、または絞り
配管11を経て不純物ガス分離容器13に低純度ガス導
入口14より導びかれる。不純物ガス分離容器13は、
精製容器1と同様の構造を有している。不純物ガス分離
容器13のガス排出口18から排出されるガスは、排ガ
ス切替バルブ15を経て一方は、不純物ガスバルブ16
を介し不純物ガスライン17に排出され、他方は分離粗
ガスライン19を経て、粗ガスライン7に接続される。
精製容器1、不純物ガス分離容器13には各々加熱及び
冷却の為の水あるいは温水、熱媒油等の循環の為の熱媒
入口20、22及び熱媒出口21、23が設けられてい
る。
In FIG. 1, a refining vessel 1 has a hydrogen storage / absorption alloy layer 2 and a water chamber (A) 3 and a water chamber (B) 4 sandwiching the hydrogen storage / absorption alloy layer 2. A crude hydrogen gas inlet 5 and a gas outlet 8 are provided at both ends of this, and the crude hydrogen gas passes through the crude hydrogen gas line 7, the crude hydrogen gas valve 6 and the crude hydrogen gas inlet 5, and then the hydrogen storage alloy layer 2
Flows in and is occluded. The gas emitted from the gas outlet 8 is
One is led to the purified gas line 10 via the exhaust gas switching valve 9, and the other is led to the impurity gas separation container 13 from the low purity gas inlet 14 via the low purity gas valve 12 or the throttle pipe 11. The impurity gas separation container 13 is
It has the same structure as the purification container 1. The gas discharged from the gas discharge port 18 of the impurity gas separation container 13 passes through the exhaust gas switching valve 15 and, on the one hand, the impurity gas valve 16
Is discharged to the impurity gas line 17 via, and the other is connected to the crude gas line 7 via the separation crude gas line 19.
The refining vessel 1 and the impurity gas separation vessel 13 are respectively provided with heat medium inlets 20 and 22 and heat medium outlets 21 and 23 for circulating water or hot water for heating and cooling, heat medium oil and the like.

粗水素ガスライン7より、粗水素ガス導入口5を経て水
素吸蔵合金層2に導びかれた粗水素ガスは水素吸蔵合金
に吸蔵されると共に、水素ガスのみを選択的に吸蔵され
た残りの不純物を多く含む水素ガスは、ガス排出口8よ
り排出ガス切替バルブ9を介し、絞り配管11より定流
量で、不純物ガス分離容器13に導びかれる。吸蔵が完
了すると粗水素ガスバルブ6を閉じ低純度ガスバルブ1
2を間欠的に開、閉操作を行い、精製容器1空間部ガス
の放出と、吸蔵合金より放出される水素ガスによる希釈
を繰り返す事による不純物ガスの放出を行う。以上の操
作により、精製された水素ガスは精製ガスライン10よ
り排出される。
The crude hydrogen gas introduced from the crude hydrogen gas line 7 to the hydrogen storage alloy layer 2 through the crude hydrogen gas inlet 5 is stored in the hydrogen storage alloy, and at the same time, only the remaining hydrogen gas is selectively stored. Hydrogen gas containing a large amount of impurities is introduced into the impurity gas separation container 13 at a constant flow rate from the gas outlet 8 through the exhaust gas switching valve 9 and the throttle pipe 11. When the occlusion is completed, the crude hydrogen gas valve 6 is closed and the low purity gas valve 1 is closed.
2 is intermittently opened and closed to release the gas in the space of the purification container 1 and to release the impurity gas by repeating the dilution with the hydrogen gas released from the storage alloy. By the above operation, the purified hydrogen gas is discharged from the purified gas line 10.

不純物ガス分離容器13に導かれた不純物を多く含む水
素ガスは、水素吸蔵合金2に吸蔵される。所定量吸蔵さ
れたらガス排出口18から排出ガス切替バルブ15を介
し、不純物ガスバルブ16を上記と同様、間欠的に開閉
操作を行い不純物ガスを不純物ガスライン17より大気
中に放出する。粗水素ガス程度まで精製されたならば、
排出ガス切替バルブ15を分離粗水素ガスライン19に
切り替え、粗水素ガスライン7に合流させ、再び粗水素
ガスと共に精製容器1に導き同様の操作を行う。
The hydrogen gas containing a large amount of impurities introduced into the impurity gas separation container 13 is stored in the hydrogen storage alloy 2. When a predetermined amount is stored, the impurity gas valve 16 is intermittently opened and closed through the exhaust gas switching valve 15 through the exhaust gas switching valve 15 to discharge the impurity gas from the impurity gas line 17 into the atmosphere. Once purified to the level of crude hydrogen gas,
The exhaust gas switching valve 15 is switched to the separated crude hydrogen gas line 19, is joined to the crude hydrogen gas line 7, and is introduced again into the purification container 1 together with the crude hydrogen gas, and the same operation is performed.

水素吸蔵合金層2の両端には合金飛散防止の他のフィル
ター24が設けられている。
Other filters 24 for preventing alloy scattering are provided at both ends of the hydrogen storage alloy layer 2.

第2図は下記の装置仕様及び操作条件で、水素ガスを精
製した場合の不純物濃度と不純物含有水素ガス放出量と
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the impurity concentration and the amount of impurity-containing hydrogen gas released when hydrogen gas is purified under the following device specifications and operating conditions.

装置仕様及び操作条件 (1)装置形状及びタイプ:60.5φ D×7003重管 (2)水素吸蔵合金:LaNi5 (3)粗水素ガス不純物成分:N2=325ppm、CH4=0.4ppm
CO2=1.2ppm、O2=1.0ppm (4)吸蔵圧力・温度:10atm 30℃ (5)不純物分離:背圧5atm下に80℃加熱 図中実線は本発明の場合、点線は従来法の場合を示す。
Equipment specifications and operating conditions (1) Equipment shape and type: 60.5 φ D × 700 L triple tube (2) Hydrogen storage alloy: LaNi 5 (3) Crude hydrogen gas Impurity component: N 2 = 325 ppm , CH 4 = 0.4 ppm ,
CO 2 = 1.2 ppm , O 2 = 1.0 ppm (4) Storage pressure / temperature: 10 atm 30 ° C. (5) Impurity separation: Heating at 80 ° C. under a back pressure of 5 atm In the figure, the solid line indicates the case of the present invention, and the dotted line indicates that of the conventional method. Indicate the case.

なお不純物は最も濃度の高い窒素についてその効果を説
明する。
The effect of nitrogen having the highest concentration of impurities will be described.

従来の方法の場合、約105ppm程度まで濃縮された不純
物を103ppm程度まで減少させるのに要する不純物含有
水素ガスの放出量は水素吸蔵量390の内の約9%を
要していたが、本発明の方法によると約4%(約15
)で同程度まで減少させる事が出来、99.9999%以上
の高純度水素とする場合、不純物含有水素ガス放出量は
従来の方法の約70%でよい。また、吸蔵操作時に不純
物濃度が低減される為、精製容器1及び不純物ガス分離
容器13を数器並列に組み込んだ連続精製システムで見
ると、それだけ時間削減が計られ合金活用度等効率向上
が計れる。
In the case of the conventional method, the amount of released hydrogen gas containing impurities required to reduce the concentration of impurities concentrated to about 10 5 ppm to about 10 3 ppm requires about 9% of the hydrogen storage amount 390. However, according to the method of the present invention, about 4% (about 15%
), The amount of hydrogen gas containing impurities can be reduced to about 70% of that in the conventional method when high purity hydrogen of 99.9999% or more is obtained. Further, since the impurity concentration is reduced during the occlusion operation, when viewed in a continuous refining system in which several refining vessels 1 and impurity gas separation vessels 13 are installed in parallel, the time can be reduced and the efficiency of alloy utilization can be improved. .

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、精製操作の時間の短縮ができ、
精製水素ガスの歩留が向上し、水素吸蔵合金の活用度等
効率が向上する。
According to the method of the present invention, the time required for the purification operation can be shortened,
The yield of purified hydrogen gas is improved, and the efficiency of utilization of the hydrogen storage alloy is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法の実施例の説明図、第2図は不純
物濃度と不純物含有水素ガス放出量との関係を示すグラ
フ、第3図は従来の方法による高純度水素ガス精製方法
の説明図である。 1……精製容器、2……水素吸蔵合金層、3……水室
(A)、4……水室(B)、5……粗水素ガス導入口、6……
粗水素ガスバルブ、7……粗ガスライン、8……ガス排
出口、9……排出ガス切替バルブ(3方バルブ)、10
……精製ガスライン、11……絞り配管、12……低純
度ガスバルブ、13……不純物ガス分離容器、14……
低純度ガス導入口、15……排出ガス切替バルブ、16
……不純物ガスバルブ、17……不純物ガスライン、1
8……ガス排出口、19……分離粗ガスライン、20、
22……熱媒入口、21、23……熱媒出口、24……
フィルター
FIG. 1 is an explanatory view of an embodiment of the method of the present invention, FIG. 2 is a graph showing the relationship between the impurity concentration and the amount of hydrogen gas containing impurities, and FIG. 3 is a conventional high-purity hydrogen gas purification method. FIG. 1 ... Purification container, 2 ... Hydrogen storage alloy layer, 3 ... Water chamber
(A), 4 ... Water chamber (B), 5 ... Crude hydrogen gas inlet, 6 ...
Crude hydrogen gas valve, 7 ... Coarse gas line, 8 ... Gas outlet, 9 ... Exhaust gas switching valve (3-way valve), 10
...... Refined gas line, 11 ...... Throttle pipe, 12 ...... Low purity gas valve, 13 ...... Impurity gas separation container, 14 ......
Low-purity gas inlet, 15 ... Exhaust gas switching valve, 16
…… Impurity gas valve, 17 …… Impurity gas line, 1
8 ... Gas outlet, 19 ... Separation coarse gas line, 20,
22 ... Heat medium inlet, 21, 23 ... Heat medium outlet, 24 ...
filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金を使用した水素ガス精製方法
において、粗水素ガスを水素ガス精製容器に注入すると
共に、同容器の排出口から細孔を通して連続的に不純物
を含む水素ガスを放出しつつ吸蔵させ、その後水素ガス
を脱着させることを特徴とする水素ガス精製方法。
1. A method for purifying hydrogen gas using a hydrogen storage alloy, wherein crude hydrogen gas is injected into a hydrogen gas purification container, and hydrogen gas containing impurities is continuously discharged from an outlet of the container through pores. A method for purifying hydrogen gas, characterized in that the hydrogen gas is occluded while being occluded, and then the hydrogen gas is desorbed.
JP61021752A 1986-02-03 1986-02-03 High-purity hydrogen gas purification method Expired - Lifetime JPH0649561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61021752A JPH0649561B2 (en) 1986-02-03 1986-02-03 High-purity hydrogen gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61021752A JPH0649561B2 (en) 1986-02-03 1986-02-03 High-purity hydrogen gas purification method

Publications (2)

Publication Number Publication Date
JPS62182102A JPS62182102A (en) 1987-08-10
JPH0649561B2 true JPH0649561B2 (en) 1994-06-29

Family

ID=12063792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61021752A Expired - Lifetime JPH0649561B2 (en) 1986-02-03 1986-02-03 High-purity hydrogen gas purification method

Country Status (1)

Country Link
JP (1) JPH0649561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557591B2 (en) * 2001-07-17 2003-05-06 Air Products And Chemicals, Inc. Bulk gas built-in purifier with dual valve bulk container

Also Published As

Publication number Publication date
JPS62182102A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
US4444727A (en) Hydrogen gas purification apparatus
US4030896A (en) Regeneration of adsorbents
US3996028A (en) Process for purification of argon from oxygen
US4316880A (en) Process for producing carbon monoxide and hydrogen from methanol
CA1125478A (en) Self-regenerating method and system of removing oxygen and water impurities from hydrogen gas
JPH04338206A (en) Gas separation
JPH11335102A (en) High-concentration ozone continuous generation method and apparatus
JPS6156009B2 (en)
JPH0649561B2 (en) High-purity hydrogen gas purification method
JP3710520B2 (en) Apparatus for removing impurities from hydrogen gas and method of operating the same
JP3172886B2 (en) Helium gas purification apparatus and operating method thereof
JP3897854B2 (en) Hydrogen gas purification method
JPH01126203A (en) Method for producing high-purity hydrogen gas
JP2010248037A (en) Hydrogen purification method and reaction vessel for hydrogen-storage alloy
JP2002068712A (en) High concentration ozone gas supply method and apparatus
JPH0531331A (en) Separation of hydrogen isotope
JP2020193126A (en) Nitrogen manufacturing method and apparatus therefor
KR100556097B1 (en) Nitrogen gas purification device and its purification method
JP3181687B2 (en) Hydrogen recovery / purification apparatus and operation method thereof
JPH0753563B2 (en) Method for producing high-purity purified hydrogen gas
JPH0692605A (en) Hydrogen recovery and purification method and apparatus
JPH0261403B2 (en)
JPH085646B2 (en) Hydrogen gas purification method
JP2598927B2 (en) Hydrogen gas purification equipment
JP3676464B2 (en) Purification equipment