[go: up one dir, main page]

JPH0653585B2 - Heat treatment method for glass plate - Google Patents

Heat treatment method for glass plate

Info

Publication number
JPH0653585B2
JPH0653585B2 JP17796189A JP17796189A JPH0653585B2 JP H0653585 B2 JPH0653585 B2 JP H0653585B2 JP 17796189 A JP17796189 A JP 17796189A JP 17796189 A JP17796189 A JP 17796189A JP H0653585 B2 JPH0653585 B2 JP H0653585B2
Authority
JP
Japan
Prior art keywords
glass plate
glass
cooling
heat
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17796189A
Other languages
Japanese (ja)
Other versions
JPH0345526A (en
Inventor
一幸 明吉
修 塩▲塚▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP17796189A priority Critical patent/JPH0653585B2/en
Publication of JPH0345526A publication Critical patent/JPH0345526A/en
Publication of JPH0653585B2 publication Critical patent/JPH0653585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス板にクラックが入った時にもクラック
が自走しないとともに耐風圧強度が充分で、且つ熱割れ
しない高層ビルの窓用として最適熱処理ガラスを製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is intended for a window of a high-rise building, in which even when a glass plate is cracked, the crack does not run by itself, wind pressure strength is sufficient, and thermal cracking does not occur. The present invention relates to a method for producing an optimal heat treated glass.

[従来の技術] 高層ビルに於いては、窓ガラス板の耐風圧向上を図る
為、10mm〜20mm程度の特厚のガラス板が使用されてい
る。この様に特厚のガラス板を使用すると重量が著しく
増大するという欠点があるとともに、板厚の厚い熱線吸
収ガラスや着色コートガラス板を使用した場合には、特
に熱割れの危険性が高くなるという欠点がある。軽量化
対策、熱割れ防止対策の為に風冷強化ガラス板を使用す
ることも可能であるが、風冷強化ガラス板は破損時細か
い多くの破片になる為、高層ビルに風冷強化ガラス板を
使用すると破損した時高層ビルの窓からガラス板の破片
が降り落ちるという危険があり、好ましくない。
[Prior Art] In high-rise buildings, glass plates with a special thickness of about 10 mm to 20 mm are used in order to improve the wind pressure resistance of window glass plates. In this way, the use of extra-thick glass plates has the drawback of significantly increasing the weight, and the use of thick heat-absorbing glass or colored coated glass plates increases the risk of thermal cracking in particular. There is a drawback that. It is possible to use air-cooled tempered glass plate as a measure for weight reduction and heat crack prevention, but since air-cooled tempered glass plate becomes many small pieces when broken, it is used for high-rise buildings. Is not preferable because there is a risk that fragments of the glass plate will fall from the windows of the skyscraper when damaged.

ソーダライムよりなるガラス板を軟化点温度域 600〜70
0 ℃迄加熱した後直ちに、このガラス板の両面に空気を
吹き付けて急冷して強化した従来の普通の強化ガラス板
は、1000kg/cm2〜1500kg/cm2の表面圧縮応力とその断面
方向の中心部に表面圧縮応力の1/2 の引張応力が発生
し、その断面応力分布は第1図に示した様になる。そし
て、この強化ガラス板が破壊した時は、ガラス板に発生
したクラックが自走し、そして上記中央引張応力の大き
さによって一義的に決まる破砕密度、例えば40〜200 /
5cm角をもって細かく割れてしまう。又、ガラス板の強
化度を調整した所謂半強化ガラス板は、 300〜600kg/cm
2 の表面圧縮応力σと 250〜400kg/cm2 の中央引張応
力σと、1.5未満のσcの比を有し、その断面応
力分布は第2図に示した様になり、この半強化ガラス板
が破壊した場合には、細かい破片をもって割れないもの
の、破壊時ガラス板に発生したクラックは自走し、ガラ
ス板の端部まで及んでしまう。又、化学強化ガラス板
は、1000kg/cm2〜3000kg/cm2の表面圧縮応力と10〜60kg
/cm2の中央引張応力とを有するものであり、その応力分
布は第3図に示した様で、破砕時の破片数密度の小さい
ものもあるが、この化学強化ガラス板は表面圧縮応力層
が薄いため傷がついた時の衝撃強度が著しく低下する欠
点を有するとともに、強化処理工程に長時間を要するた
め実用上適当でない。
A glass plate made of soda lime is used in the softening temperature range 600-70
Immediately after heating up to 0 ° C., the both sides of the glass plate of the conventional reinforced quenched by blowing air ordinary tempered glass plate, 1000kg / cm 2 ~1500kg / cm 2 of surface compressive stress and its cross-sectional direction Tensile stress, which is half of the surface compressive stress, is generated at the center, and the cross-sectional stress distribution is as shown in Fig. 1. When the tempered glass plate is broken, the cracks generated in the glass plate are self-propelled, and the crushing density uniquely determined by the magnitude of the central tensile stress, for example, 40 to 200 /
It has a 5 cm square and breaks finely. In addition, the so-called semi-tempered glass plate with the degree of tempering of the glass plate adjusted is 300-600 kg / cm.
2 has a ratio of the surface compressive stress σ c to the central tensile stress σ t of 250 to 400 kg / cm 2 and the σ c / σ t of less than 1.5, and the sectional stress distribution is as shown in Fig. 2. When the semi-tempered glass plate is broken, fine cracks do not break, but the cracks generated in the glass plate at the time of breakage are self-propelled and extend to the end of the glass plate. Further, chemically tempered glass sheet, a surface compressive stress of 1000kg / cm 2 ~3000kg / cm 2 10~60kg
It has a central tensile stress of / cm 2 , and its stress distribution is as shown in Fig. 3, and there are some with a small fragment number density at the time of crushing, but this chemically strengthened glass plate has a surface compressive stress layer. Since it is thin, it has a drawback that the impact strength when scratched is remarkably lowered, and it is not suitable for practical use because it requires a long time for the strengthening treatment step.

[発明の解決しようとする課題] 以上のような従来の強化ガラスを高層ビル等の窓ガラス
として用いる際に発生する問題点を解決するために、ガ
ラス板にクラックが入った時にもクラックが自走せず、
かつ耐風圧強度が充分で熱割れしない高層ビルの窓ガラ
ス用或いはスパンドレル用として最適な熱処理ガラス、
即ち板厚が5〜12mmの熱処理ガラスであって、その熱処
理ガラス板の中央引張応力σが85kg/cm2〜200kg/cm2
の範囲にあり、かつ、その表面の圧縮応力σと中央引
張応力σとの比σcが1.5 〜3.0 の範囲にある断
面応力分布を持つ熱処理ガラス板が提案されている。
[Problems to be Solved by the Invention] In order to solve the problems occurring when the conventional tempered glass as described above is used as a window glass for a high-rise building or the like, even when a glass plate is cracked, cracks are generated by itself. Don't run,
And heat-treated glass that is ideal for window glass or spandrel of high-rise buildings that has sufficient wind pressure resistance and does not crack by heat,
That is, the heat-treated glass having a plate thickness of 5 to 12 mm, and the center tensile stress σ t of the heat-treated glass plate is 85 kg / cm 2 to 200 kg / cm 2
A heat-treated glass plate having a cross-sectional stress distribution in which the ratio σ c / σ t of the compressive stress σ c of the surface to the central tensile stress σ t is in the range of 1.5 to 3.0 is proposed.

またこの様な熱処理ガラス板の製法として、ガラス板を
加熱炉内を通して 600〜660 ℃に加熱した後、このガラ
ス板を加熱炉から取出し、その後直ちにこのガラス板表
面に風を吹き付けてガラス板の冷却速度を通常の風冷強
化ガラスの1/3 〜1/4 に遅くしてガラス板の歪点温度以
下迄冷却することが知られている。しかしながら、この
様な製造方法では、ガラス板の冷却速度が小さいため、
通常の強化ガラスの約2〜3倍の冷却時間を必要とする
ため、生産性が低く、大量生産に向かないという欠点が
あった。
In addition, as a method for producing such a heat-treated glass plate, after heating the glass plate through a heating furnace to 600 to 660 ° C, the glass plate is taken out of the heating furnace, and immediately thereafter, air is blown to the surface of the glass plate to blow it. It is known that the cooling rate is slowed down to 1/3 to 1/4 of that of ordinary tempered glass to cool the glass sheet to a temperature below the strain point. However, in such a manufacturing method, since the cooling rate of the glass plate is small,
Since it requires a cooling time that is about 2 to 3 times that of ordinary tempered glass, it has the drawback of low productivity and unsuitable for mass production.

本発明は、高層ビル等の窓ガラスとして従来の特厚ガラ
ス板の板厚より薄くて、クラックが自走せず、且つ熱割
れがなく実用上の不都合もなく、更に量産化が可能な熱
処理ガラスの製法を提供することを目的とするものであ
る。
INDUSTRIAL APPLICABILITY The present invention is a heat treatment that is thinner than a conventional extra-thick glass plate as a window glass for a high-rise building, does not cause self-propagation of cracks, has no thermal cracks, is practically inconvenient, and can be mass-produced. It is intended to provide a glass manufacturing method.

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、板厚が5mm〜12mmのガラス板を570 ℃〜660 ℃に加
熱する加熱工程と、このガラスを加熱炉から取出し、そ
の後直ちにこのガラス表面に風を吹き付けてガラス板表
面の冷却熱伝達率を40〜60kcal/m2h℃としてガラス板の
歪点温度以下迄冷却する初期冷却工程と、次いで冷却熱
伝達率を漸増しながらガラス板を冷却する移行工程と、
冷却熱伝達率が 100〜 120kcal/m2h℃に達したところで
冷却熱伝達率を保持しつつガラス板を冷却する二次冷却
工程を有し、この処理されたガラス板の中央引張応力σ
が85〜200kg/cm2 の範囲となり、かつその表面圧縮応
力σと中央引張応力σとの比σ/σが1.5 〜3.
0 の範囲となる様に制御することを特徴とするガラス板
の熱処理方法を提供するものである。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problems, and includes a heating step of heating a glass plate having a plate thickness of 5 mm to 12 mm to 570 ° C to 660 ° C, and The glass is taken out of the heating furnace, and immediately thereafter an air is blown to the glass surface to cool the glass plate surface to a cooling heat transfer coefficient of 40 to 60 kcal / m 2 h ℃, and an initial cooling step of cooling the glass plate to a strain point temperature or less, Then, a transition step of cooling the glass sheet while gradually increasing the cooling heat transfer rate,
When the cooling heat transfer rate reaches 100 to 120 kcal / m 2 h ℃, there is a secondary cooling step of cooling the glass sheet while maintaining the cooling heat transfer rate, and the central tensile stress σ of this treated glass sheet is
t is 85~200kg / cm 2's range, and the ratio sigma c / sigma t is from 1.5 to 3 and the surface compressive stress sigma c and the central tensile stress sigma t.
The present invention provides a method for heat treating a glass plate, which is controlled so as to fall within a range of 0.

本発明の熱処理ガラス板は、その中央引張応力σが85
〜200kg/cm2 の間に低くコントロールされ、かつその表
面圧縮応力σと中央引張応力σとの比σ/σ
1.5〜3.0 の範囲にコントロールされて表面圧縮応力も
127〜600kg/cm2 の範囲、更に好ましくは 250〜350kg/
cm2に低く押えられ、第4図に示した様な断面応力分布
にされているので、この熱処理ガラス板にクラックが入
った時その破壊線が自走せず、細かい破片で割れない。
しかもこの熱処理ガラス板は板厚5mm以上12mm以下を有
し、かつ127 〜600kg/cm2、更に好ましくは 250〜350 k
g/cm2の表面圧縮応力を持っているので耐風圧強度は、
同一厚みの生板の2倍以上で実用上充分な強度であり、
かつ熱割れすることもない。
The heat-treated glass sheet of the present invention has a central tensile stress σ t of 85.
Is ~200Kg / control low during cm 2, and the ratio σ c / σ t and the surface compressive stress sigma c and the central tensile stress sigma t
The surface compressive stress can be controlled by controlling the range from 1.5 to 3.0.
127 to 600 kg / cm 2 , more preferably 250 to 350 kg / cm 2.
Since it is held down to cm 2 and has a cross-sectional stress distribution as shown in FIG. 4, when the heat-treated glass plate has cracks, the fracture line does not self-propagate and does not break into fine fragments.
Moreover, this heat-treated glass plate has a plate thickness of 5 mm or more and 12 mm or less, and 127 to 600 kg / cm 2 , more preferably 250 to 350 k.
Since it has a surface compressive stress of g / cm 2, the wind pressure resistance is
It is more than twice the strength of a raw plate of the same thickness and has sufficient strength for practical use.
And there is no heat crack.

例えば、板厚が6mmで中央引張応力σが250kg/cm2
表面圧縮力σが500kg/cm2(σct=2)の熱処理ガ
ラス板は、中央引張応力が高すぎる為にガラス板にクラ
ックが入った場合、クラックが自走するとともに破砕片
が細かくなって第9図に示す様な破砕パターンとなり、
破砕片が窓から落下する危険性が高くなって好ましくな
い。又板厚が8mmて中央引張応力σが300kg/cm2、表
面圧縮応力σが580kg/cm2(即ちσct=1.93)のガ
ラス板も同様である。
For example, the plate thickness is 6 mm, the central tensile stress σ t is 250 kg / cm 2 ,
A heat-treated glass plate with a surface compressive force σ c of 500 kg / cm 2c / σ t = 2) has a central tensile stress that is too high. Becomes finer and becomes a crushing pattern as shown in Fig. 9,
This is not preferable because the risk of crushed pieces falling from the window increases. The same applies to a glass plate having a plate thickness of 8 mm, a central tensile stress σ t of 300 kg / cm 2 and a surface compressive stress σ c of 580 kg / cm 2 (that is, σ c / σ t = 1.93).

一方、本発明により製造される熱処理ガラス板、例えば
実施例1〜3のサンプルの熱処理ガラス板の破砕パター
ンはそれぞれ第6〜8図の様になり、ガラス板にクラッ
クが入った場合クラックの自走が抑えられ、破砕線が何
本もガラス板の一端から他端迄入ることがなく、窓から
ガラス板の破壊片が落下するのを防ぐことができる。
又、熱割れ防止及び風圧破壊防止に要求される表面圧縮
応力127kg/cm2以上、特に好ましくは200kg/cm2 より高
い表面圧縮応力を有しているので、熱割れする危険性が
少く、又耐風圧強度も充分である。
On the other hand, the crushing patterns of the heat-treated glass sheets manufactured according to the present invention, for example, the heat-treated glass sheets of the samples of Examples 1 to 3 are as shown in FIGS. 6 to 8, respectively. The running is suppressed, and the shredding lines do not enter from one end of the glass plate to the other end, and it is possible to prevent the fragments of the glass plate from falling through the window.
Further, since it has a surface compressive stress of 127 kg / cm 2 or more, particularly preferably higher than 200 kg / cm 2 , which is required to prevent thermal cracking and wind pressure damage, there is little risk of thermal cracking, and The wind pressure resistance is also sufficient.

尚、ガラス板が割れる時、クラックの自走が抑えられて
破壊線(ヒビ)がガラスの一辺から他辺に及ばない様に
されたものが窓ガラス板の破砕片が落下する危険性が少
なく好ましいが、ガラス板の一辺から他辺迄及ぶ破壊線
(ヒビ)が一本程度あっても窓からの破砕片の落下の危
険性が実際上少ないので、この種の一本程度の破砕線
(ヒビ)の存在は、本発明により製造された熱処理ガラ
スの破砕パターンとして許される。例えば、第7、8図
はこの許される例である。
When the glass plate breaks, the self-propelled cracks are suppressed so that the breaking line (crack) does not extend from one side of the glass to the other. Although it is preferable, even if there is only one breaking line (crack) extending from one side to the other side of the glass plate, the risk of falling fragments from the window is practically low, so this kind of breaking line ( The presence of cracks) is allowed as a fracture pattern in the heat treated glass produced according to the invention. For example, Figures 7 and 8 are examples of this permissibility.

第10図は、本発明の熱処理ガラス板を製造するために
使用される−具体例を示したものであり、図に於いて、
1は熱処理される5〜10mm厚のガラス板、2はローラー
ハース、3はガラス板の搬送ロール、4はガラス板の加
熱装置、5は上下に対向して設けられた風吹出口、6は
上下に対向して設けられた冷却炉表面被覆面を示す。風
吹出口5については第10図の様に1つだけ設けてお
き、風吹出口5からの風の強さをプログラム等で制御す
ることによりガラス板表面の冷却熱伝達率をコントロー
ルしても良いし、2つ以上の風吹出口を設けて風量を変
化させる様にしても良い。熱処理されるガラス板1はロ
ーラーハース内2を搬送ロール3により水平に搬送され
ながら、或いは、水平に摺動されながらガラス板を強化
するのに充分な温度迄、例えば 570℃〜660 ℃迄加熱さ
れる。(加熱工程)そしてローラーハース2から取出さ
れたガラス板1は、上下に対向した風吸出口間に移動さ
れ、この風吸出口から風をガラス板面に吹き付けて、ガ
ラス板表面の冷却熱伝達率が40〜60kcal/m2h℃になる様
にし、ガラス板の温度が歪点以下(通常のソーダライム
ガラスの場合には 520℃以下、好ましくは 480℃以下)
になる迄冷却する。(初期冷却工程)この際の、最適な
冷却熱伝達率は6mm厚のガラス板で約60kcal/m2h℃、8
mm厚のガラス板で約50kcal/m2h℃、10mm厚のガラス板で
約40kcal/m2h℃である。またこの時、吹き付ける空気の
温度を50℃〜 400℃の熱風にすれば、吹き付ける風の圧
力は0.1 〜10mmAgにすることにより、ガラス板表面の熱
伝達率が40〜60kca1/m2h℃になる様に制御できる。さら
にこの場合、風吹出口或いは冷却炉壁は、鏡面加工した
SUS304等で輻射率を0.1 以下にし、輻射による冷却を押
えれば、ガラス板表面の冷却熱伝達率をより制御し易く
なるので好ましい。
FIG. 10 is used to produce the heat-treated glass sheet of the present invention-showing a specific example.
1 is a glass plate having a thickness of 5 to 10 mm to be heat-treated, 2 is a roller hearth, 3 is a glass plate transport roll, 4 is a heating device for the glass plate, 5 is a wind blower provided to face each other vertically, and 6 is up and down. 3 shows a cooling furnace surface coating surface provided so as to face each other. Only one air outlet 5 may be provided as shown in FIG. 10, and the cooling heat transfer coefficient of the glass plate surface may be controlled by controlling the intensity of the air from the air outlet 5 by a program or the like. Two or more air outlets may be provided to change the air volume. The glass plate 1 to be heat-treated is heated in the roller hearth 2 while being conveyed horizontally by the conveying rolls 3 or while being horizontally slid to a temperature sufficient to strengthen the glass plate, for example, 570 ° C to 660 ° C. To be done. (Heating step) Then, the glass plate 1 taken out from the roller hearth 2 is moved between vertically opposed air inlets, and the wind is blown from the air inlets to the glass plate surface to transfer the heat of cooling the glass plate surface. rate is the manner become 40~60kcal / m 2 h ℃, the temperature of the glass plate strain point less (520 ° C. or less in the case of ordinary soda lime glass, preferably not more than 480 ° C.)
Cool until. (Initial cooling process) At this time, the optimum cooling heat transfer coefficient is about 60 kcal / m 2 h ℃ for 6 mm thick glass plate, 8
mm to about 50kcal / m 2 h ℃ in thick glass plate, about 40kcal / m 2 h ℃ glass plate 10mm thick. At this time, if the temperature of the air to be blown is hot air of 50 ° C to 400 ° C, the pressure of the blowing air is 0.1 to 10 mmAg, and the heat transfer coefficient of the glass plate surface is 40 to 60 kca1 / m 2 h ° C. Can be controlled. Furthermore, in this case, the air outlet or the cooling furnace wall was mirror-finished.
It is preferable to use SUS304 or the like to reduce the emissivity to 0.1 or less and suppress the cooling due to the emissivity, because it becomes easier to control the cooling heat transfer coefficient of the glass plate surface.

このようにして、ガラス板の温度が歪点以下に下がった
ら、次いで、冷却能を漸増させながら、即ち通常はガラ
ス板表面の冷却熱伝達率を漸増させながら冷却を行な
う。(移行工程)この漸増の割合は、あまり大きすぎる
とガラス板の破損等を生ずる原因になり、あまり小さす
ぎると生産性を向上するという本発明の効果が小さいた
め、ガラス板の厚みに応じてある程度の幅のなかに設定
することが好ましい。
In this way, when the temperature of the glass plate falls below the strain point, cooling is then performed while gradually increasing the cooling capacity, that is, usually while gradually increasing the cooling heat transfer coefficient of the glass plate surface. (Transition step) If the ratio of this gradual increase is too large, it will cause damage to the glass plate, and if it is too small, the effect of the present invention of improving productivity will be small, and therefore, depending on the thickness of the glass plate. It is preferable to set the width within a certain range.

具体的には、6mm厚のガラス板では、 2〜4kcal/m2h℃s 8mm厚のガラス板では、 1〜3kcal/m2h℃s 10mm厚のガラス板では、 0.5〜2.5kcal/m2h℃s にするのが好ましい。Specifically, a glass plate having a thickness of 6 mm is 2 to 4 kcal / m 2 h ° Cs, a glass plate having a thickness of 8 mm is 1 to 3 kcal / m 2 h ° Cs, a glass plate having a thickness of 10 mm is 0.5 to 2. It is preferably set to 5 kcal / m 2 h ° C.

ガラス板表面の冷却熱伝達率が100 〜 120kcal/m2h℃s
に達したら、以後はその熱伝達率を保持しながら冷却す
る。(二次冷却工程) 以上のことから容易に理解されるように、移行工程に要
する時間は、ガラス板の厚みに依存するが、おおよそ20
〜40秒である。
Cooling heat transfer coefficient of glass plate surface is 100 ~ 120kcal / m 2 h ℃
After that, cooling is performed while maintaining the heat transfer coefficient. (Secondary cooling step) As can be easily understood from the above, the time required for the transition step depends on the thickness of the glass plate, but is about 20
~ 40 seconds.

典型的なガラス板表面の冷却熱伝達率の推移をガラス板
厚ごとに第16図に示した。ここにおいて、横軸は時
間、縦軸は冷却熱伝達率を示している。
FIG. 16 shows changes in the cooling heat transfer coefficient of a typical glass plate surface for each glass plate thickness. Here, the horizontal axis represents time and the vertical axis represents cooling heat transfer coefficient.

こうして表面の冷却熱伝達率を増加させて冷却したもの
については、240 秒〜420 秒程度の時間で1サイクルの
熱処理が行なえる。これは従来の熱処理法に比べて約1/
2〜1/3の時間であり、本発明に係るガラス板の熱処理方
法を採用することにより、大幅な生産性の向上が可能と
なることがわかる。
In this way, the one that is cooled by increasing the cooling heat transfer coefficient of the surface can be heat-treated for one cycle in a time of about 240 seconds to 420 seconds. This is about 1 / th compared to the conventional heat treatment method.
The time is 2 to 1/3, and it is understood that the productivity can be significantly improved by adopting the glass plate heat treatment method according to the present invention.

このあと、風吹出口からガラス板を取り出し、所定の応
力値及び応力分布をもった強化ガラス板製品とする。
Then, the glass plate is taken out from the air outlet to obtain a tempered glass plate product having a predetermined stress value and stress distribution.

前述した本発明の熱処理ガラス板の製法は、ローラーハ
ースを利用したものであるが、この方法に限らず、ガス
ハースを利用してガラス板を水平に搬送しながら加熱
し、ガスハースの出口から出た直後、加熱ガラス板を熱
処理する方法、あるいはガラス板を吊手により吊下げて
搬送しながら加熱炉内で加熱し、この加熱炉の出口から
出た直後、加熱ガラス板を熱処理する方法などによって
も同様に製造できる。
The manufacturing method of the heat-treated glass plate of the present invention described above uses a roller hearth, but the method is not limited to this, and the glass plate is heated while being horizontally conveyed using a gas hearth, and exited from the gas hearth outlet. Immediately after that, a method of heat-treating the heated glass plate, or a method of heat-treating the heated glass plate immediately after exiting from the outlet of the heating furnace by heating the glass plate in a heating furnace while suspending and transporting the glass plate by a hanging hand, etc. It can be manufactured similarly.

[作 用] 本発明の方法により、中央引張応力σが85〜200kcal/
cm2 の範囲となり、かつその表面圧縮応力σと中央引
張応力σとの比σcが1.5 〜3.0 の範囲にある熱
処理ガラスが得られる理由については、次の様に考えら
れる。
[Operation] By the method of the present invention, the central tensile stress σ t is 85 to 200 kcal /
The reason why a heat-treated glass having a range of cm 2 and a ratio of the surface compressive stress σ c to the central tensile stress σ t of σ c / σ t of 1.5 to 3.0 can be obtained is considered as follows. .

軟化したガラス板を急冷すると、ガラス板断面方向の温
度分布はある遷移状態を経過したのちに定常状態とな
る。通常ガラス板中心部の温度が固化温度(560〜5
70℃)を通過するときの温度分布(表面と中心の温度
差)がガラス板の強化度即ち中央引張応力と表面圧縮応
力を決定する。
When the softened glass plate is rapidly cooled, the temperature distribution in the glass plate cross-sectional direction becomes a steady state after passing through a certain transition state. Usually, the temperature at the center of the glass plate is the solidification temperature (560-5
The temperature distribution (temperature difference between the surface and the center) when passing through 70 ° C. determines the strengthening degree of the glass plate, that is, the central tensile stress and the surface compressive stress.

本発明の方法はこの軟化したガラス板が固化するときの
温度分布の制御に着目したものである。即ち、ガラス板
断面の温度分布は板厚が決まると冷却条件により一義的
に決まるので、この冷却条件を制御して、発生する強化
応力を制御するものである。
The method of the present invention focuses on controlling the temperature distribution when the softened glass plate is solidified. That is, since the temperature distribution of the cross section of the glass plate is uniquely determined by the cooling condition when the plate thickness is determined, this cooling condition is controlled to control the strengthening stress generated.

[実施例] 上記した装置を用いて通常のソーダ・ライムガラス板
(歪点 511℃、軟化点 740℃)を第1表に示した条件で
熱処理し、その熱処理条件、得られた熱処理ガラス板の
中央引張応力σt、表面圧縮応力σc、σc、耐風圧
性を示す許容荷重(破壊確率1/1000以下)、熱割れ試験
結果(熱割れするまでのガラス板中央部と周辺部の温度
差)、一回の処理サイクルに必要な時間等実施例1〜
3、比較例1〜4として第1表に示した。又、実施例1
〜3の熱処理ガラス板及び比較例1〜3の熱処理ガラス
板についてJIS R 3206の6-5 に規定された破壊試験を行
なった時の破砕パターンを第5〜8図に示す。
Example An ordinary soda-lime glass plate (strain point 511 ° C., softening point 740 ° C.) was heat-treated under the conditions shown in Table 1 using the above-mentioned apparatus, the heat-treatment conditions, and the obtained heat-treated glass plate Central tensile stress σ t , surface compressive stress σ c , σ c / σ t , allowable load indicating wind pressure resistance (fracture probability 1/1000 or less), thermal cracking test results (central part of glass plate until thermal cracking and surroundings) Temperature difference between parts), time required for one treatment cycle, etc.
3 and Comparative Examples 1 to 4 are shown in Table 1. In addition, Example 1
The fracture patterns of the heat-treated glass sheets of Nos. 3 to 3 and the heat-treated glass sheets of Comparative Examples 1 to 3 when subjected to the destructive test specified in JIS R 3206 6-5 are shown in FIGS.

第1表の実施例1〜3を比較例1〜3と比べることによ
り、本発明に係るガラス板の熱処理方法によれば、従来
法とほぼ同様の破砕パターンを示すガラス板が極めて短
い処理サイクルにて得られることがわかる。
By comparing Examples 1 to 3 in Table 1 with Comparative Examples 1 to 3, according to the heat treatment method for a glass plate according to the present invention, a glass plate showing a crushing pattern substantially similar to the conventional method has a very short treatment cycle. You can see that

上記実施例及び比較例におけるガラス板の表面圧縮応力
は東芝風冷強化硝子表面応力計FSM-30により測定し、
又、中央引張応力は次の様に測定したものである。
The surface compressive stress of the glass plate in the above Examples and Comparative Examples is measured by Toshiba wind-cooled tempered glass surface stress meter FSM-30,
The central tensile stress is measured as follows.

・中央引張応力の測定 第11図の様にガラス・サンプル11を水平に保持し、端
面に垂直にHe-Ne レーザ12を、光源に偏光子13、レンズ
14、絞り15を通した直線偏光Aを入射する。ガラス板11
面に平行および垂直な方向を各々y,z、入射方向をx
とする。
・ Measurement of central tensile stress As shown in Fig. 11, the glass sample 11 is held horizontally, the He-Ne laser 12 is perpendicular to the end face, the light source is the polarizer 13, and the lens.
Linearly polarized light A that has passed through 14 and the diaphragm 15 is incident. Glass plate 11
The directions parallel and perpendicular to the plane are y and z, and the incident direction is x.
And

入射光の振動方向はy−z面で各軸に対し、45゜の角度
になるようにする。
The vibration direction of the incident light should be at an angle of 45 ° with respect to each axis in the yz plane.

ガラス板の端面から入射された直線偏光Aはガラスに内
在するy−z平面の主応力差によって、位相差を生じ、
第12図の様にy−z軸と45゜の角度に軸を持つ楕円→
円→楕円→直線(入射光と直交)→楕円→円→楕円→直
線と偏向が変わり、位相差 360゜で元の入射光と振動方
向が同じ直線偏光に戻る。
The linearly polarized light A incident from the end surface of the glass plate causes a phase difference due to the principal stress difference in the yz plane existing in the glass,
An ellipse having an axis at an angle of 45 ° with the yz axis as shown in Fig. 12 →
The polarization changes from circle → ellipse → straight line (orthogonal to the incident light) → ellipse → circle → ellipse → straight line, and with the phase difference of 360 °, the original incident light and the direction of vibration return to the same linearly polarized light.

この偏光はガラスの中で散乱され、光軸と直角をなすy
−z平面内のy,z軸と45゜の方向から観察すると、第
13図のB又は第14図の様に1波長ごとのドット状に
見える。
This polarized light is scattered in the glass and is perpendicular to the optical axis, y
When observed from the directions of 45 ° with the y and z axes in the −z plane, it looks like dots for each wavelength as shown in B of FIG. 13 or FIG.

フロート・ガラス板の散乱は非常に小さいため、観察し
ようとする散乱光は微弱である。このため、マイクロ・
チャンネル・イメージ・インテンシファイヤーを内蔵し
た暗視装置を使い、高感度テレビ・カメラ16を通してモ
ニタテレビ17上に散乱光のドット・パターンの映し出
す。ボジション・アナライザー18と組み合わせで実時間
で長さを読みとる。
Since the scattering of the float glass plate is very small, the scattered light to be observed is weak. For this reason,
Using a night-vision device with a built-in channel image intensifier, a dot pattern of scattered light is projected on the monitor TV 17 through the high-sensitivity TV camera 16. Read the length in real time in combination with the Vision Analyzer 18.

このドット1つが 360゜(1波長)の位相差に対応する
ので、この実長さを測定すれば、光弾性定数をから主応
力差が計算できる。
Since each dot corresponds to a phase difference of 360 ° (1 wavelength), if the actual length is measured, the principal stress difference can be calculated from the photoelastic constant.

ここで求めた主応力差△σより中央引張応力σを下式
により求める。
The central tensile stress σ y is calculated from the principal stress difference Δσ calculated here by the following formula.

主応力差 △σ σ:応力の平面方向の成分、即ち中央引張応力σ σ:応力の厚み方向の成分(σ≒0) λ:レーザ光波長(632.8 mμ-He-Neレーザ) lλ:360 ゜の位相差に対応する光路差(cm) c:光弾性定数 2.63mμ/cm/kg/cm2 (フロート板) なお、本発明により製造される中央引張応力σが85〜
200kg/cm2、表面圧縮応力σが127 〜600kg/cm2、更に
好ましくは 200〜300kg/cm2の熱処理ガラス板の上記各
応力値とは、第15図の様に熱処理ガラス板の周辺部の
4点Pと中央部の1点Qの5点における測定値を平均し
たものを示したものであり、平均値として捕えたもので
ある。
Principal stress difference Δσ σ y : component in the plane direction of stress, that is, central tensile stress σ t σ z : component in the thickness direction of stress (σ z ≈0) λ: laser light wavelength (632.8 mμ-He-Ne laser) lλ: 360 ° Optical path difference (cm) corresponding to phase difference c: Photoelastic constant 2.63 mμ / cm / kg / cm 2 (float plate) The central tensile stress σ t produced by the present invention is 85 to
200 kg / cm 2, surface compressive stress sigma c is 127 ~600kg / cm 2, more preferably the above stress value of the heat treatment the glass plate 200~300kg / cm 2, the periphery of the heat treatment the glass plate as in Fig. 15 This is an average of the measured values at 5 points of 4 points P of the part and 1 point Q of the central part, which is captured as the average value.

[発明の効果] 本発明によれば、耐風圧強度が実用上充分で、且つ熱割
れすることがなく、更にクラックがガラス板に入っても
クラックが自走せず、細かい破砕に割れることがない熱
処理ガラスを生産性良く提供することが出来る。このガ
ラス板は割れても破片の一部或いは全体が窓枠から脱落
する危険性が少なく、ビル、住宅等の建築用のガラス板
として有用である。特にガラス板の破片の落下の危険性
のないガラス板が要求される中、高層ビル用の窓用ビル
ガラス板として本発明の熱処理ガラス板は最適である。
[Advantages of the Invention] According to the present invention, the wind pressure resistance is practically sufficient, thermal cracking does not occur, and even when the crack enters the glass plate, the crack does not self-propagate and may break into fine crushes. It is possible to provide unheated glass with high productivity. Even if this glass plate is broken, there is little risk that some or all of the fragments will fall out of the window frame, and it is useful as a glass plate for buildings such as buildings and houses. In particular, while a glass plate that is free from the risk of falling fragments of the glass plate is required, the heat-treated glass plate of the present invention is most suitable as a building glass plate for windows for high-rise buildings.

中でも、熱割れの危険性の高い窓用、あるいはスパンド
レル用に使用される熱線吸収ガラス板、着色コートガラ
ス板、熱線反射ガラス板等のガラス板に対し、本発明の
熱処理ガラス板は好適である。
Among them, for a window having a high risk of heat cracking, or a heat ray absorbing glass sheet used for a spandrel, a colored coated glass sheet, a glass sheet such as a heat ray reflecting glass sheet, the heat treated glass sheet of the present invention is suitable. .

又、本発明によるガラス板は耐風圧強度及び熱割れ強度
が向上され、又クラック自走防止がなされているので、
例えば、従来10mm厚のガラス板が使用されていた。中高
層用の生板窓ガラス板を本発明による6mm厚の熱処理ガ
ラス板に、又12mm厚の従来の生板窓ガラス板を本発明に
よる8mm厚の熱処理ガラス板に置き変えることができ、
ガラス板の軽量化を図れる。
Further, since the glass sheet according to the present invention has improved wind pressure resistance and thermal cracking strength, and crack self-propelled prevention,
For example, a glass plate having a thickness of 10 mm has been conventionally used. It is possible to replace the raw plate window glass plate for the middle and high layers with a heat-treated glass plate having a thickness of 6 mm according to the present invention, and the conventional raw plate window glass plate having a thickness of 12 mm with a heat-treated glass plate having a thickness of 8 mm according to the present invention.
The weight of the glass plate can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1〜第3図は、従来の強化ガラス板の厚さ方向の断面
の応力分布図、第4図は本発明の方法により製造された
熱処理ガラス板の厚さ方向の断面の応力分布図、第5図
は比較例に係るガラス板の破砕パターン図、第6〜8図
は本発明の方法により製造された熱処理ガラス板の破砕
パターン図、第9図は通常の強化ガラスの破砕パターン
図、第10図は本発明を実施する為の装置の一具体例に
係る概略図、第11図はガラス板の中央引張応力を測定
する為の装置の概略図、第12〜14図はガラス板の中
央引張応力の測定原理を示す為の説明図、第15図は応
力の測定点を示す説明図、第16図は本発明に係るガラ
ス板の熱処理時におけるガラス板表面の冷却熱伝達率の
推移を示すグラフである。 1:熱処理されるガラス板、2:ローラーハース炉、
3:搬送ロール、4:ガラス板の加熱装置、5:風吹出
口。
1 to 3 are stress distribution diagrams of a cross section in the thickness direction of a conventional tempered glass plate, and FIG. 4 is a stress distribution diagram of the cross section in the thickness direction of a heat-treated glass plate manufactured by the method of the present invention. FIG. 5 is a crushing pattern diagram of a glass plate according to a comparative example, FIGS. 6 to 8 are crushing pattern diagrams of a heat-treated glass plate manufactured by the method of the present invention, and FIG. 9 is a crushing pattern diagram of normal tempered glass, FIG. 10 is a schematic view of a specific example of an apparatus for carrying out the present invention, FIG. 11 is a schematic view of an apparatus for measuring the central tensile stress of a glass plate, and FIGS. FIG. 15 is an explanatory view showing the principle of measuring the central tensile stress, FIG. 15 is an explanatory view showing stress measurement points, and FIG. 16 is a transition of the cooling heat transfer coefficient of the glass plate surface during heat treatment of the glass plate according to the present invention. It is a graph which shows. 1: Glass plate to be heat treated, 2: Roller hearth furnace,
3: Transport rolls, 4: Glass plate heating device, 5: Air blowout port.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】板厚が5mm〜12mmのガラス板を570 ℃〜66
0 ℃に加熱する加熱工程と、このガラスを加熱炉から取
出し、その後直ちにこのガラス表面に空気を吹き付けて
ガラス板表面の冷却熱伝達率を40〜60kcal/m2h℃として
ガラス板の歪点温度以下迄冷却する初期冷却工程と、次
いで冷却熱伝達率を漸増しながらガラス板を冷却する移
行工程と、冷却熱伝達率が 100〜 120kcal/m2h℃に達し
たところで冷却熱伝達率を保持しつつガラス板を冷却す
る二次冷却工程を有し、この処理されたガラス板の中央
引張応力σが85〜200kg/cm2 の範囲となり、かつその
表面圧縮応力σと中央引張応力σとの比σc
1.5 〜3.0 の範囲となる様に制御することを特徴とする
ガラス板の熱処理方法。
1. A glass plate having a thickness of 5 mm to 12 mm is 570 ° C. to 66.
A heating step of heating to 0 ° C, taking out this glass from the heating furnace, and immediately blowing air onto this glass surface to set the cooling heat transfer coefficient of the glass plate surface to 40 ~ 60 kcal / m 2 h ° C and the strain point of the glass plate. The initial cooling step of cooling to below the temperature, the transition step of cooling the glass sheet while gradually increasing the cooling heat transfer coefficient, and the cooling heat transfer coefficient when the cooling heat transfer coefficient reaches 100 to 120 kcal / m 2 h ℃. It has a secondary cooling step of cooling the glass plate while holding it, and the central tensile stress σ t of the treated glass plate is in the range of 85 to 200 kg / cm 2 , and its surface compressive stress σ c and central tensile stress. The ratio of σ t to σ c / σ t is
A heat treatment method for a glass plate, which is controlled to be in the range of 1.5 to 3.0.
JP17796189A 1989-07-12 1989-07-12 Heat treatment method for glass plate Expired - Fee Related JPH0653585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17796189A JPH0653585B2 (en) 1989-07-12 1989-07-12 Heat treatment method for glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17796189A JPH0653585B2 (en) 1989-07-12 1989-07-12 Heat treatment method for glass plate

Publications (2)

Publication Number Publication Date
JPH0345526A JPH0345526A (en) 1991-02-27
JPH0653585B2 true JPH0653585B2 (en) 1994-07-20

Family

ID=16040107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17796189A Expired - Fee Related JPH0653585B2 (en) 1989-07-12 1989-07-12 Heat treatment method for glass plate

Country Status (1)

Country Link
JP (1) JPH0653585B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20045452A7 (en) * 2004-11-22 2006-05-23 Tamglass Ltd Oy Method and device for controlling the processing process of safety glass production
CN102942300B (en) * 2012-12-03 2014-09-10 洛阳兰迪玻璃机器股份有限公司 Glass geometric parameter measurement system based on linear array ultraviolet detector
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US20160031752A1 (en) 2014-07-31 2016-02-04 Corning Incorporated Glass or glass-ceramic for windows, countertops, and other applications
US12338159B2 (en) 2015-07-30 2025-06-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
EP3402762B1 (en) 2016-01-12 2023-11-08 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
WO2019040818A2 (en) 2017-08-24 2019-02-28 Corning Incorporated Glasses with improved tempering capabilities
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
WO2020219290A1 (en) 2019-04-23 2020-10-29 Corning Incorporated Glass laminates having determined stress profiles and methods of making the same
KR20220044538A (en) 2019-08-06 2022-04-08 코닝 인코포레이티드 Glass laminate with buried stress spikes to arrest cracks and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925734B2 (en) 2013-07-12 2016-05-25 シャープ株式会社 Information notification apparatus, control method for information notification apparatus, and portable terminal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925734B2 (en) 2013-07-12 2016-05-25 シャープ株式会社 Information notification apparatus, control method for information notification apparatus, and portable terminal

Also Published As

Publication number Publication date
JPH0345526A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
CN109912238B (en) Glass-based article with stress distribution for high energy storage and method of manufacture
US3107196A (en) Heat treatment of glass and product
JPH0653585B2 (en) Heat treatment method for glass plate
US8074473B2 (en) Method for quenching formed glass sheets
JPH0649586B2 (en) Heat-treated glass plate and its manufacturing method
US20020106519A1 (en) Laminated glass and glass plate used for producing laminated glass
TW201623169A (en) Glass or glass ceramics for windows, work benches and other applications
JPS5925736B2 (en) Improved method for manufacturing heat-treated glass plates
JP2017206434A (en) Asymmetrization method of hydrogen content, manufacturing method of tabular glass article capable of being chemically reinforced at high level, glass article obtained according to the method
JPS5925734B2 (en) Glass plate heat treatment method
JP2003040635A (en) Production method for fireproof glass
JPS598627A (en) Heat treated glass plate and its manufacturing method
JPS6238288B2 (en)
US20190047893A1 (en) Thermally strengthened photochromic glass and related systems and methods
JPS598626A (en) Heat treated glass plate and its manufacturing method
JPS5925735B2 (en) Manufacturing method of heat treated glass plate
JP3238322B2 (en) Heat strengthened flat glass
US20110271716A1 (en) Method for producing thermally tempered glasses
JPH09208246A (en) Fireproof glass
JP4438149B2 (en) Glass substrate for display
Shinkai The fracture and fractography of flat glass
CN112285058A (en) Nondestructive testing method for fireproof glass
JP3133652B2 (en) Thermally strengthened flat glass for fire protection
WO2020262292A1 (en) Reinforced glass plate and method for manufacturing same
JP2009179552A5 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees