JPH0656304B2 - Photoelectric encoder - Google Patents
Photoelectric encoderInfo
- Publication number
- JPH0656304B2 JPH0656304B2 JP1230906A JP23090689A JPH0656304B2 JP H0656304 B2 JPH0656304 B2 JP H0656304B2 JP 1230906 A JP1230906 A JP 1230906A JP 23090689 A JP23090689 A JP 23090689A JP H0656304 B2 JPH0656304 B2 JP H0656304B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- grating
- emitting element
- photoelectric encoder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 238000009795 derivation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000011295 pitch Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/36—Forming the light into pulses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は光電型エンコーダ、特にスケールと光学系の改
良に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in photoelectric encoders, particularly scales and optical systems.
[従来の技術] 各種測定器、工作機械、さらに最近は各種情報機械等に
も相対移動する二つの部材の変位量を検出するため各種
エンコーダが用いられており、非接触で変位量検出が可
能なところから光電型エンコーダが汎用されている。[Prior art] Various encoders are used to detect the amount of displacement of two members that move relative to each other, such as various measuring instruments, machine tools, and more recently, various information machines, and the amount of displacement can be detected without contact. Photoelectric encoders have been widely used for some reason.
該光電型エンコーダは相対移動する二つの部材のそれぞ
れに設けられた格子と、該格子の重なり合いを検出する
ための発光素子および受光素子より成る。The photoelectric encoder includes a grating provided on each of two members that move relative to each other, and a light emitting element and a light receiving element for detecting the overlapping of the gratings.
このような従来の光電型エンコーダとしては、通常の2
枚の格子の重なり合いを検出するエンコーダの他、第7
図に示すような3枚の格子の重なり合いの変化により変
位量を検出する、所謂3格子式(Journal of the potic
al society of America, 1965, vol,55, No,4, p373-38
1)、或いは第8図に示すような反射式の光電型エンコ
ーダ(特開昭57−198814)等が周知である。As such a conventional photoelectric encoder, an ordinary encoder
In addition to the encoder that detects the overlap of the gratings,
The so-called three-lattice system (Journal of the potic
al society of America, 1965, vol, 55, No, 4, p373-38
1), or a reflection type photoelectric encoder as shown in FIG. 8 (Japanese Patent Laid-Open No. 57-198814) is well known.
第7図に示す3格子式エンコーダ10は、平行配置され
た発光側格子12、検出側格子14と、両格子12,1
4の間に相対移動可能に平行配置された基準格子16
と、前記発光側格子12の図中左側に配置された発光素
子18と、前記検出側格子14の図中右側に配置された
受光素子20と、を含む。The three-grating encoder 10 shown in FIG. 7 includes a light-emitting side grating 12, a detection-side grating 14 and both gratings 12, 1 arranged in parallel.
Reference grid 16 arranged in parallel so as to be movable relative to each other
And a light receiving element 20 arranged on the left side of the light emitting side grating 12 in the drawing, and a light receiving element 20 arranged on the right side of the detection side grating 14 in the drawing.
そして、発光素子18から出射された光は発光側格子1
2、基準格子16、検出側格子14を介して受光素子2
0に至り、該受光素子20は各格子12,14,16で
制限された照射光を光電変換し、さらにプリアンプ22
により増幅して検出信号sを得る。Then, the light emitted from the light emitting element 18 is emitted from the light emitting side grating 1.
2, the light receiving element 2 through the reference grating 16 and the detection grating 14
0, the light receiving element 20 photoelectrically converts the irradiation light limited by the gratings 12, 14, 16 and further, the preamplifier 22
To obtain a detection signal s.
ここで、基準格子16が発光側格子12、検出側格子1
4に対し例えば矢印x方向に相対移動すると、発光素子
18からの照射光のうち格子12,16,14により遮
蔽される光量が徐々に変化し、検出信号sは略正弦波と
して出力される。Here, the reference grating 16 is the light emitting side grating 12 and the detection side grating 1.
4, the amount of light shielded by the gratings 12, 16 and 14 in the irradiation light from the light emitting element 18 gradually changes, and the detection signal s is output as a substantially sine wave.
そして、前記基準格子16のピッチP1と検出信号sの
波長が対応し、該検出信号sの波長およびその分割値よ
り前記基準格子16の相対移動量を測定するものであ
る。The pitch P 1 of the reference grating 16 and the wavelength of the detection signal s correspond to each other, and the relative movement amount of the reference grating 16 is measured based on the wavelength of the detection signal s and its division value.
従って、基準格子16をメインスケール24に、発光側
格子12,検出側格子14をインデックススケール26
にそれぞれ設置することにより、両スケールの相対移動
量を検出することができる。Therefore, the reference grating 16 is used as the main scale 24, and the light emitting side grating 12 and the detection side grating 14 are used as the index scale 26.
It is possible to detect the relative movement amount of both scales by installing the scales in each.
一方、第8図には反射式光電型エンコーダ10が示され
ており、前記第7図と対応する部分には同一符号を付し
説明を省略する。On the other hand, FIG. 8 shows a reflective photoelectric encoder 10, and the portions corresponding to those in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted.
図示例においてはメインスケール24およびインデック
ススケール26は光透過性のガラスより形成され、メイ
ンスケール24には反射性の基準格子16を形成し、イ
ンデックススケール26には受光素子20を格子状に形
成する。In the illustrated example, the main scale 24 and the index scale 26 are formed of light-transmissive glass, the main reference scale 16 is formed with a reflective reference grating 16, and the index scale 26 is formed with the light-receiving elements 20 in a lattice shape. .
従って、インデックススケール26は、受光素子20に
より前記第7図の発光側格子12及び検出側格子14に
対応するスリットが構成されることとなる。Therefore, in the index scale 26, the slits corresponding to the light emitting side grating 12 and the detecting side grating 14 of FIG.
そして、発光素子18からの光は、コリメータレンズ2
8により平行光に調整され、インデックススケール26
の裏面から照射される。Then, the light from the light emitting element 18 is emitted from the collimator lens 2
Adjusted to parallel light by 8, index scale 26
Is irradiated from the back side of the.
この結果、受光素子20が形成されていない部分からの
み光が透過しメインスケール24に照射される。As a result, the light is transmitted only from the portion where the light receiving element 20 is not formed, and the main scale 24 is irradiated with the light.
さらに、メインスケール24上の基準格子16に反射さ
れた光は再度インデックススケール26方向へ進行し、
受光素子20で光電変換される。Further, the light reflected by the reference grating 16 on the main scale 24 advances toward the index scale 26 again,
Photoelectric conversion is performed by the light receiving element 20.
ところが、基準格子16の間隙に照射された光は、メイ
ンスケール24がガラス製であるところから透過してし
まい、前記受光素子20には至らない。However, the light applied to the gaps of the reference grating 16 is transmitted through the main scale 24 made of glass and does not reach the light receiving element 20.
以上のようにしてメインスケール24とインデックスス
ケール26の相対移動量は前記第7図の方式と同様に受
光素子20に略正弦波として検出されることとなる。As described above, the relative movement amount of the main scale 24 and the index scale 26 is detected by the light receiving element 20 as a substantially sine wave, as in the system shown in FIG.
[発明が解決しようとする課題] しかしながら、例えば第7図に示したような透過式の3
格子式光電型エンコーダによれば、スケール24,26
の両側に発光素子18、受光素子20を配置しなければ
ならず、部品点数が多く製造が煩雑であると共に、その
形状が大きくなってしまうという課題があった。[Problems to be Solved by the Invention] However, for example, the transmission type 3 as shown in FIG.
According to the lattice type photoelectric encoder, the scales 24, 26 are
Since the light emitting element 18 and the light receiving element 20 must be disposed on both sides of the above, there are problems that the number of parts is large and the manufacturing is complicated, and that the shape is large.
この点は第8図に示した反射式光電型エンコーダにおい
ても全く同様で、特に同図に示すような方式ではコリメ
ータレンズ28を設けて光を分配しなければならず、や
はり装置の大型化は避けられないものであった。This point is exactly the same in the reflection type photoelectric encoder shown in FIG. 8. In particular, in the system shown in the figure, the collimator lens 28 must be provided to distribute the light, and the size of the device cannot be increased. It was inevitable.
本発明は前記従来技術の課題に鑑みなされたものであ
り、その目的は機構が簡単で、しかも小型軽量化を図る
ことのできる光電型エンコーダを提供することにある。The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a photoelectric encoder that has a simple mechanism and can be reduced in size and weight.
[課題を解決するための手段] 前記目的を達成するために、本出願の請求項1記載の発
明にかかる光電型エンコーダは、その発光側格子基板を
板状発光素子より形成し、該板状発光素子の基準格子対
向面に遮光材を一定間隔で発光側格子の形状に配置した
ことを特徴とする。[Means for Solving the Problems] In order to achieve the above object, in a photoelectric encoder according to the invention of claim 1 of the present application, the light emitting side grating substrate is formed of a plate light emitting element, and the plate The light-emitting element is characterized in that light-shielding materials are arranged in the shape of the light-emitting side grid at regular intervals on the surface facing the reference grid.
また、本出願の請求項2記載の光電型エンコーダは、そ
の発光側格子基板が板状発光素子より形成され、該板状
発光素子の一面に受光素子を一定間隔で整列配置したこ
とを特徴とする。The photoelectric encoder according to claim 2 of the present application is characterized in that the light-emitting side grating substrate is formed of a plate-shaped light emitting element, and the light receiving elements are arranged at regular intervals on one surface of the plate-shaped light emitting element. To do.
[作用] 本発明にかかる光電型エンコーダは前述した手段を有す
るので、発光側格子基板と発光素子が一体形成されるこ
ととなり、部品点数の削減、小型軽量化が図られること
となる。[Operation] Since the photoelectric encoder according to the present invention has the above-mentioned means, the light-emitting side grating substrate and the light-emitting element are integrally formed, so that the number of parts can be reduced and the size and weight can be reduced.
また、反射式光電型エンコーダにおいて、発光側格子基
板を構成する発光素子上に格子状受光素子を形成するこ
ととしたので、発光素子、受光素子、発光側格子、検出
側格子を全て一部材で構成することが可能となり、さら
に部品点数の削減、小型軽量化が図られることとなる。Further, in the reflective photoelectric encoder, since the grid-shaped light receiving element is formed on the light emitting element that constitutes the light emitting side grating substrate, the light emitting element, the light receiving element, the light emitting side grating, and the detection side grating are all made of one member. Therefore, the number of parts can be reduced, and the size and weight can be reduced.
[実施例] 以下、図面に基づいて本発明の好適な実施例を説明す
る。尚、前記従来技術と対応する部分には符号100を
加えて示し説明を省略する。[Embodiment] A preferred embodiment of the present invention will be described below with reference to the drawings. It should be noted that the reference numeral 100 is added to the portion corresponding to the above-mentioned prior art to omit the description.
第1図には本発明の一実施例にかかる光電型エンコーダ
に用いられる発光側格子基板の外観斜視図が示されてい
る。FIG. 1 is an external perspective view of a light emitting side grating substrate used in a photoelectric encoder according to an embodiment of the present invention.
同図に示す発光側格子基板130は、薄型長方形状に構
成され、極性の異なる半導体層140、142を積層配
置して両者間に発光用の接合面を形成している。The light-emission-side lattice substrate 130 shown in the figure is formed in a thin rectangular shape, and semiconductor layers 140 and 142 having different polarities are laminated and arranged to form a light-emission bonding surface between them.
本実施例においては、第1の半導体層140はP型Ga
As、第2の半導体層142はN型GaAsから成り、
主として近赤外光を発光する。In this embodiment, the first semiconductor layer 140 is made of P-type Ga.
As, the second semiconductor layer 142 is made of N-type GaAs,
It mainly emits near-infrared light.
そして、前記両半導体層140,142の端面には電極
用金属膜144,146が金の蒸着によって形成されて
いる。Then, metal films 144 and 146 for electrodes are formed on the end faces of the semiconductor layers 140 and 142 by vapor deposition of gold.
前記両電極用金属膜144,146にはそれぞれ高圧側
リード線148および低圧側リード線150がボンディ
ング接続されており、両電極を介して各半導体層14
0,142に正孔および電子の注入が行なわれる。A high-voltage side lead wire 148 and a low-voltage side lead wire 150 are bonded and connected to the metal films 144 and 146 for both electrodes, respectively, and each semiconductor layer 14 is connected via both electrodes.
Holes and electrons are injected into 0 and 142.
従って、このように注入された正孔および電子は両半導
体層140,142の接続面において再結合し、この時
電子励起エネルギーによって所定の周波数の発光が行な
われるのである。Therefore, the holes and electrons thus injected are recombined at the connection surface between the two semiconductor layers 140 and 142, and at this time, electron excitation energy causes light emission at a predetermined frequency.
本発明において特徴的なことは、このような発光素子自
体が発光側格子基板となっていることであり、このため
本実施例においては前記発光が外部に出射する側の金属
膜144が格子を形成している。すなわち、本実施例に
おいては電極用金属膜144には一定間隔でスリット1
44aが複数設けられているのである。A feature of the present invention is that such a light emitting element itself serves as a light emitting side grating substrate. Therefore, in this embodiment, the metal film 144 on the side where the emitted light is emitted to the outside has a grating. Is forming. That is, in this embodiment, the slits 1 are formed on the electrode metal film 144 at regular intervals.
That is, a plurality of 44a are provided.
このスリットは、例えば20μmピッチ、10μmスリッ
トで構成されている。This slit is composed of, for example, a 20 μm pitch and a 10 μm slit.
従って、前記接合面からの発光は電極用金属膜144の
スリット144aから外部に出射し、この光ビームの光
束形状は前記開口144aのスリット形状によって定め
られることとなる。Therefore, the light emitted from the bonding surface is emitted to the outside from the slit 144a of the electrode metal film 144, and the luminous flux shape of this light beam is determined by the slit shape of the opening 144a.
尚、本実施例において反対側の電極用金属膜146は第
2の半導体層142の端面全部を覆い、また両半導体層
140,142の側面はその厚みが薄く、更に接合面と
は直交しているので発光がこれらの面から外部に漏洩す
る量は僅かであり、接合面での発光は効率的にスリット
144aから出射することができる。無論、前記側面を
黒色塗料等で遮光することも好適である。In this embodiment, the electrode metal film 146 on the opposite side covers the entire end surface of the second semiconductor layer 142, and the side surfaces of both the semiconductor layers 140 and 142 are thin, and are perpendicular to the bonding surface. Therefore, the amount of emitted light leaking from these surfaces to the outside is small, and the emitted light at the joint surface can be efficiently emitted from the slit 144a. Of course, it is also preferable to shield the side surface with black paint or the like.
また、本発明において、両半導体層140,142はそ
の極性すなわちP型及びN型を逆転して配置することも
可能である。Further, in the present invention, both semiconductor layers 140 and 142 may be arranged so that their polarities, that is, P type and N type are reversed.
また、本実施例では近赤外光を発光することとしたが、
例えば半導体としてGaPあるいは(GaAl)As等
を用いることも好適であり、必要に応じて可視光の発光
を可能とする。Further, in the present embodiment, it was decided to emit near infrared light,
For example, it is also preferable to use GaP or (GaAl) As as a semiconductor, and it is possible to emit visible light as necessary.
また、電極用金属膜の形成には、前述した蒸着のほか、
スパッタリングその他任意の手法を用いることができ
る。In addition, in order to form the metal film for electrodes, in addition to the vapor deposition described above,
Any method such as sputtering can be used.
第2図には第1図に示した発光側格子基板130を光電
型リニアエンコーダに用いた状態が示されている。FIG. 2 shows a state in which the light emitting side grating substrate 130 shown in FIG. 1 is used in a photoelectric linear encoder.
即ち、被測定物の長さに応じて相対移動する基準格子1
16と発光側格子112,検出側格子14とで3格子シ
ステムを構成している。That is, the reference grating 1 that moves relative to the length of the object to be measured.
16 and the light emitting side grating 112 and the detecting side grating 14 constitute a three grating system.
そして、本実施例ではそれぞれがインデックススケール
よりなる4組の検出格子114a,114b,…114
cを備えており、各検出格子に対応して受光素子120
a,120b,…120cが配置されている。それぞれ
の検出格子114a,…114cは位相が互いに90度
ずつずれたピッチの縦縞状目盛りが形成されている。従
って、各受光素子120a,…120cからはそれぞれ
π/2ずつ位相のずれたA相、B相、相、相の信号
を得ることができ、A相−相により振幅増幅したA相
出力を、B相−相により同じく振幅増幅されたB相出
力を得る。該A相出力およびB相出力の位相のずれ方向
等よりスケールの相対移動方向の弁別および電気的に検
出信号の分割を行ない、分解能の高い変位量検出を行な
っている。In this embodiment, four sets of detection grids 114a, 114b, ...
c is provided, and the light receiving element 120 is provided corresponding to each detection grating.
a, 120b, ... 120c are arranged. Each of the detection gratings 114a, ... 114c is formed with vertical stripe-shaped scales whose pitches are shifted by 90 degrees from each other. Therefore, it is possible to obtain A-phase, B-phase, phase, and phase signals each having a phase difference of π / 2 from each of the light-receiving elements 120a, ... The B-phase output, which is also amplitude-amplified by the B-phase, is obtained. Discrimination in the relative movement direction of the scale from the phase shift directions of the A-phase output and the B-phase output and the like, and the detection signal are electrically divided to detect the displacement amount with high resolution.
ここで、本実施例においては、前述したように発光側格
子基板130が発光素子より形成され、該発光素子に直
接発光側格子112が形成されているので、前記第7図
と比較しても明らかなように部品点数の削減および形状
の小型化が図られている。Here, in this embodiment, since the light emitting side grating substrate 130 is formed of the light emitting element and the light emitting side grating 112 is directly formed on the light emitting element as described above, even in comparison with FIG. As is apparent, the number of parts is reduced and the size is reduced.
第3図には本発明の第2実施例にかかる光電型エンコー
ダの概略構成図が示されており、前記第2図と対応する
部分には符号200を加えて示し説明を省略する。FIG. 3 shows a schematic configuration diagram of a photoelectric encoder according to the second embodiment of the present invention, and a portion corresponding to that of FIG.
本実施例において特徴的なことは、発光側格子基板23
0を発光素子から形成すると共に、検出側格子基板23
2を受光素子と一体形成したことである。The characteristic of this embodiment is that the light emitting side grating substrate 23
0 is formed of a light emitting element, and the detection side grating substrate 23 is formed.
2 is integrally formed with the light receiving element.
即ち、本実施例にかかる検出側格子基板232は、第4
図に示すように構成されている。That is, the detection-side grating substrate 232 according to the present embodiment is the fourth
It is configured as shown in the figure.
第4図において、検出側格子基板232は、例えばガラ
スよりなる光透過性基材250上に光遮断性且つ導電性
材料、例えば金属膜より成る第1信号導出材層252
と、光を電気信号に変換するPN半導体層254と、光
透過性且つ導電性材料例えばIn2O3,SnO2,S
iまたはこれらの混合物からなる第2信号導出材層25
6と、をこの順序で積層形成した受光部258を細帯状
に一定ピッチで形成している。In FIG. 4, the detection-side grating substrate 232 has a first signal derivation material layer 252 made of a light-shielding and conductive material, for example, a metal film on a light-transmissive base material 250 made of, for example, glass.
A PN semiconductor layer 254 for converting light into an electric signal, and a light-transmissive and electrically conductive material such as In 2 O 3 , SnO 2 , S.
i or a second signal guiding material layer 25 made of a mixture thereof
6 and 6 are laminated in this order to form light receiving portions 258 in a strip shape at a constant pitch.
そして、検出側格子基板232は、その受光部258を
メインスケール224に対向して配置し、各受光部25
8が第2図において受光素子120および検出側格子1
14のスリットの役目を果すのである。In the detection-side grating substrate 232, the light receiving section 258 is arranged so as to face the main scale 224, and each light receiving section 25 is arranged.
In FIG. 2, reference numeral 8 denotes the light receiving element 120 and the detection side grating 1.
It plays the role of 14 slits.
なお、受光部258の第2信号導出材層256を通過し
た光はPN半導体層254に至り、N型非晶質シリコン
膜260とP型非晶質シリコン膜262の境界面で光電
変換され、出力端子264,266から外部に取り出さ
れる。The light that has passed through the second signal guiding material layer 256 of the light receiving portion 258 reaches the PN semiconductor layer 254, and is photoelectrically converted at the boundary surface between the N-type amorphous silicon film 260 and the P-type amorphous silicon film 262. It is taken out from the output terminals 264 and 266.
以上説明したように、本発明の第2実施例にかかる光電
型エンコーダによれば、発光側格子基板を発光素子と一
体形成すると共に、検出側格子基板を受光素子と一体形
成することとしたので、更に部品点数の削減、小型軽量
化が図られることとなる。As described above, according to the photoelectric encoder according to the second embodiment of the present invention, the light emitting side grating substrate is integrally formed with the light emitting element, and the detection side grating substrate is integrally formed with the light receiving element. In addition, the number of parts can be reduced and the size and weight can be reduced.
第5図には本発明の第3実施例にかかる光電型エンコー
ダが示されており、前記第2実施例と対応する部分には
符号300を加えて説明を省略する。FIG. 5 shows a photoelectric encoder according to the third embodiment of the present invention, and the portions corresponding to those in the second embodiment are designated by the reference numeral 300 and their explanations are omitted.
本実施例において特徴的なことは、反射式の光電型エン
コーダにおいて発光側格子基板、発光素子、検出側格子
基板、受光素子を一体形成したことにある。A feature of this embodiment is that the light emitting side grating substrate, the light emitting element, the detecting side grating substrate, and the light receiving element are integrally formed in the reflective photoelectric encoder.
即ち、第5図においてインデックススケール370は、
その基板が長尺状の発光素子372から構成され、その
一面に受光部358が形成されている。That is, the index scale 370 in FIG.
The substrate is composed of a long light emitting element 372, and a light receiving portion 358 is formed on one surface thereof.
従って、発光素子372から発した光は、メインスケー
ル324の基準格子316に反射され、受光部358に
至ることとなる。Therefore, the light emitted from the light emitting element 372 is reflected by the reference grating 316 of the main scale 324 and reaches the light receiving portion 358.
この際、発光素子372上に一定間隔で形成された受光
部358が発光側格子の役割を果し、更に受光部358
自体が格子状に形成されているため、検出側格子の役割
をも果すものである。At this time, the light receiving portions 358 formed on the light emitting element 372 at regular intervals serve as a light emitting side grating, and further, the light receiving portions 358.
Since it itself is formed in a grid shape, it also plays the role of a detection-side grid.
ここで、インデックススケール370の詳細な構成が第
6図に示されている。Here, the detailed structure of the index scale 370 is shown in FIG.
同図より明らかなように、発光素子372は、P型半導
体層340とN型半導体層342とから形成される。As is clear from the figure, the light emitting element 372 is formed of the P-type semiconductor layer 340 and the N-type semiconductor layer 342.
そして、該長尺状発光素子372上に一定間隔で受光部
358が形成される。Then, the light receiving portions 358 are formed on the elongated light emitting element 372 at regular intervals.
尚、各受光部358の構成は前記第4図に示した通りで
ある。The structure of each light receiving portion 358 is as shown in FIG.
次に、本実施例にかかるインデークススケール370の
製造方法について説明する。Next, a method of manufacturing the index scale 370 according to this embodiment will be described.
先ず、長尺状の発光素子372を常報により形成する。
そして、該発光素子372を真空蒸着装置内に装着し、
5×10-6torrの真空度の環境下で、150〜200℃
に加熱し、タングステンボードからCrを蒸着させ、発
光素子372上にCrを蒸着させて2000〜3000
Åの厚さの第1信号導出材層352となるCr膜を形成
する。First, the elongated light emitting element 372 is formed by a conventional method.
Then, the light emitting element 372 is mounted in a vacuum vapor deposition device,
150 to 200 ° C under a vacuum of 5 × 10 -6 torr
2000 to 3000 by heating and then depositing Cr from the tungsten board and depositing Cr on the light emitting element 372.
A Cr film to be the first signal derivation material layer 352 having a thickness of Å is formed.
次に、前記Cr膜を形成した発行素子372をブラズマ
チャンバーに入れて300℃に加熱し、SiH410%
を含むArガスをH2ガスにより10倍希釈したガスを
前記プラズマチャンバー内に導入する。そして、0.1
〜2torrの圧力下で高周波グロー放電により、N型非晶
質シリコン(N−a−Si)膜360およびP型非晶質
シリコン(P−a−Si)膜362を、前記第1信号導
出材層352上に積層し、これによって約1μmの厚さ
の半導体層354を形成する。Next, the issuing element 372 having the Cr film formed thereon is put into a plasma chamber and heated to 300 ° C., and SiH 4 10%
A gas obtained by diluting Ar gas containing 10 times with H 2 gas is introduced into the plasma chamber. And 0.1
The N-type amorphous silicon (N-a-Si) film 360 and the P-type amorphous silicon (P-a-Si) film 362 are formed by the high-frequency glow discharge under a pressure of about 2 torr and the first signal deriving material. Stacked over layer 352, thereby forming a semiconductor layer 354 about 1 μm thick.
前記N型非晶質シリコン膜360は、析出初期に微量の
PH3を反応ガス中に混入することにより、またP型非
晶質シリコン膜362は途中で前記PH3をB2H6に
切換えることによりそれぞれ析出させる。ここで、PN
半導体層354の形成は、熱分解法、スパッタリグ蒸着
法等の他の方法によっても形成することが可能である。The N-type amorphous silicon film 360 is formed by mixing a very small amount of PH 3 into the reaction gas at the initial stage of deposition, and the P-type amorphous silicon film 362 switches the PH 3 to B 2 H 6 on the way. To cause precipitation. Where PN
The semiconductor layer 354 can be formed by another method such as a thermal decomposition method or a sputtering rig evaporation method.
次に、PN半導体層354を形成した発光素子372を
真空蒸着層内に入れ、150℃に加熱し、アルミナ壷に
入れたIn2O3を電子ビーム蒸着法により約1000
Åの厚さのIn2O3膜として蒸着させ、これによって
前記PN半導体層354の上に第2信号導出材層356
を形成する。Next, the light emitting element 372 having the PN semiconductor layer 354 formed therein is placed in a vacuum deposition layer, heated to 150 ° C., and In 2 O 3 placed in an alumina pot is deposited by an electron beam deposition method to about 1000.
And a second signal lead layer 356 is deposited on the PN semiconductor layer 354 as an In 2 O 3 film having a thickness of Å.
To form.
次に、スピン塗装法によりホトレジストを約2μmの厚
さに塗布し乾燥させる。更にマスクにより出力端子部3
66を遮光した後、紫外線で露光して現像し、出力端子
部366のホトレジストを除去する。Next, a photoresist is applied to a thickness of about 2 μm by a spin coating method and dried. Further, by using a mask, the output terminal portion 3
After shielding 66 from light, it is exposed to ultraviolet rays and developed to remove the photoresist of the output terminal portion 366.
ついで、ケミカルエッチングあるいはプラズマエッチン
グ等の方法により、出力端子366部分の第2信号導出
材層356およびPN半導体層354を除去し、第1信
号導出材層352を露出させる。Then, the second signal lead-out material layer 356 and the PN semiconductor layer 354 in the output terminal 366 portion are removed by a method such as chemical etching or plasma etching to expose the first signal lead-out material layer 352.
同様にして、受光部358の間の光導出スリット374
部分以外の部分をホトレジストで覆い、該光導出スリッ
ト374に該当する第1,第2信号導出材層352,3
56およびPN半導体層354をプラズマエッチング等
により除去し、発光素子372を露出させる。Similarly, the light lead-out slit 374 between the light receiving portions 358 is formed.
A portion other than the portion is covered with photoresist, and the first and second signal derivation material layers 352 and 3 corresponding to the light derivation slit 374 are formed.
56 and the PN semiconductor layer 354 are removed by plasma etching or the like to expose the light emitting element 372.
尚、光導出スリット374の幅は受光部358の発光素
子372の表面からの高さの2倍以上とすると明暗を検
知するのに好適である。In addition, it is suitable to detect light and dark when the width of the light lead-out slit 374 is set to be twice or more the height of the light receiving portion 358 from the surface of the light emitting element 372.
次に、第1信号導出層352および第2信号導出層35
6から出力電流を取出すための導線を前記出力端子36
4,366に銅電線接着剤により取付け、最後にPN半
導体層を保護するために全体に薄くシリコンワニスを塗
布乾燥して完成させる。Next, the first signal derivation layer 352 and the second signal derivation layer 35
The lead wire for taking the output current from the output terminal 36 is connected to the output terminal 36.
4, 366 is attached with a copper wire adhesive, and finally a thin silicon varnish is applied to the entire surface to protect the PN semiconductor layer and dried to complete.
以上のように、本実施例にかかる光電型エンコーダによ
れば、インデックススケールとメインスケールの二部材
のみで3格子システムの光電型エンコーダを構成するこ
とが可能となり、部品点数の大幅な削減、装置の小型軽
量化を図ることができる。As described above, according to the photoelectric encoder according to the present embodiment, it is possible to configure the photoelectric encoder of the three-grating system with only the two members of the index scale and the main scale, and it is possible to significantly reduce the number of parts and the device. It is possible to reduce the size and weight.
尚、前記各実施例によれば、3格子式光電型エンコーダ
を主体に説明したが、本発明は通常の2格子式光電型エ
ンコーダ等にも適用可能である。In addition, according to each of the above-described embodiments, the description has been made mainly on the three-lattice photoelectric photoelectric encoder, but the present invention is also applicable to a normal two-lattice photoelectric encoder and the like.
また、前記各実施例によれば、リニアエンコーダを例に
とり説明したが、これに限られるものではなく例えばロ
ータリーエンコーダ等にも適用可能である。Further, according to each of the above-described embodiments, the linear encoder has been described as an example, but the present invention is not limited to this and can be applied to, for example, a rotary encoder.
[発明の効果] 以上説明したように、本出願の請求項1記載の光電型エ
ンコーダによれば、発光素子と発光側格子基板とを一体
形成したので、装置の小型軽量化、部品点数の削減を図
ることが可能となる。[Effects of the Invention] As described above, according to the photoelectric encoder according to claim 1 of the present application, since the light emitting element and the light emitting side grating substrate are integrally formed, the device is reduced in size and weight, and the number of parts is reduced. Can be achieved.
又、本出願の請求項2記載の光電型エンコーダによれ
ば、発光素子、発光側格子基板、受光素子、検出側格子
基板を一体形成することとしたので、更に部品点数の削
減、装置の小型軽量化を図ることが可能となる。Further, according to the photoelectric encoder of claim 2 of the present application, the light emitting element, the light emitting side grating substrate, the light receiving element, and the detecting side grating substrate are integrally formed, so that the number of parts can be further reduced and the apparatus can be downsized. It is possible to reduce the weight.
第1図は本発明の第一実施例に係る光電型エンコーダに
用いられる発光側格子基板の説明図、 第2図は第一実施例に係る光電型エンコーダの概略構成
図、 第3図は本発明の第二実施例に係る光電型エンコーダの
概略構成図、 第4図は第二実施例に用いられる検出側格子基板の説明
図、 第5図は本発明の第三実施例に係る光電型エンコーダの
説明図、 第6図は第三実施例に係る光電型エンコーダに用いられ
るインデックススケールの説明図、 第7図は従来の3格子式光電型エンコーダの概略構成
図、 第8図は従来の反射式光電型エンコーダの概略説明図で
ある。 10,110,210,310……エンコーダ、 24,124,224……メインスケール、 26,126,226……インデックススケール、 130,230……発光側格子基板、 232……受光側格子基板、 370……インデックススケール。FIG. 1 is an explanatory diagram of a light emitting side grating substrate used in a photoelectric encoder according to the first embodiment of the present invention, FIG. 2 is a schematic configuration diagram of the photoelectric encoder according to the first embodiment, and FIG. FIG. 4 is a schematic configuration diagram of a photoelectric encoder according to a second embodiment of the invention, FIG. 4 is an explanatory diagram of a detection-side grating substrate used in the second embodiment, and FIG. 5 is a photoelectric type according to the third embodiment of the present invention. FIG. 6 is an explanatory diagram of an encoder, FIG. 6 is an explanatory diagram of an index scale used in the photoelectric encoder according to the third embodiment, FIG. 7 is a schematic configuration diagram of a conventional three-grating photoelectric photoelectric encoder, and FIG. It is a schematic explanatory drawing of a reflective photoelectric encoder. 10, 110, 210, 310 ... Encoder, 24, 124, 224 ... Main scale, 26, 126, 226 ... Index scale, 130, 230 ... Light emitting side grating substrate, 232 ... Receiving side grating substrate, 370 …… Index scale.
Claims (2)
ルと、 前記メインスケールに対し相対移動可能に並列配置さ
れ、所定の発光側格子が形成されたインデックススケー
ルと、 を含み、前記基準格子及び発光側格子により制限された
光を受光して前記メインスケールとインデックススケー
ルとの相対移動量を出力する光電型エンコーダにおい
て、 発光側格子基板を面発光する板状発光素子により形成
し、その基準格子対向面に薄膜状遮光材を一定間隔で前
記発光側格子の形状に配置したことを特徴とする光電型
エンコーダ。1. A main scale on which a predetermined reference grid is formed, and an index scale which is arranged in parallel so as to be movable relative to the main scale and on which a predetermined light-emission-side grid is formed. In a photoelectric encoder that receives light limited by the light emitting side grating and outputs the relative movement amount of the main scale and the index scale, the light emitting side grating substrate is formed by a plate light emitting element that emits surface light, and its reference grating A photoelectric encoder, wherein thin film light-shielding materials are arranged on the opposite surface at regular intervals in the shape of the light emitting side grating.
ルと、 前記メインスケールに対し相対移動可能に並列配置さ
れ、発光側格子及び検出側格子が形成されるインデック
ススケールと、 を含み、前記発光側格子を介した光が基準格子で反射さ
れ、更に検出側格子により制限された光を受光して、メ
インスケールとインデックススケールとの相対移動量を
出力する光電型エンコーダにおいて、 前記発光側格子基板を板状発光素子より形成し、該板状
発光素子の一面に一定間隔で受光素子を整列配置し、 前記発光素子より出射した光が受光素子間を介してメイ
ンスケールの基準格子により反射され、発光素子上の受
光素子により受光されることを特徴とする光電型エンコ
ーダ。2. A light emitting device comprising: a main scale on which a predetermined reference grating is formed; and an index scale which is arranged in parallel so as to be movable relative to the main scale and on which a light emitting side grating and a detection side grating are formed. In the photoelectric encoder, the light passing through the side grating is reflected by the reference grating, and the light limited by the detecting grating is received to output the relative movement amount between the main scale and the index scale. Is formed of a plate-shaped light emitting element, the light receiving elements are arranged in an array at a constant interval on one surface of the plate light emitting element, the light emitted from the light emitting element is reflected by the reference grid of the main scale through the light receiving elements, A photoelectric encoder characterized by being received by a light receiving element on a light emitting element.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1230906A JPH0656304B2 (en) | 1989-09-05 | 1989-09-05 | Photoelectric encoder |
| PCT/JP1990/001138 WO1991003711A1 (en) | 1989-09-05 | 1990-09-05 | Photoelectric encoder |
| DE4091517A DE4091517C2 (en) | 1989-09-05 | 1990-09-05 | Photoelectric encoder with reference grid |
| DE19904091517 DE4091517T1 (en) | 1989-09-05 | 1990-09-05 | PHOTOELECTRIC CODING DEVICE |
| GB9109425A GB2243684B (en) | 1989-09-05 | 1991-05-01 | Photoelectric encoder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1230906A JPH0656304B2 (en) | 1989-09-05 | 1989-09-05 | Photoelectric encoder |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0392716A JPH0392716A (en) | 1991-04-17 |
| JPH0656304B2 true JPH0656304B2 (en) | 1994-07-27 |
Family
ID=16915147
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1230906A Expired - Fee Related JPH0656304B2 (en) | 1989-09-05 | 1989-09-05 | Photoelectric encoder |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JPH0656304B2 (en) |
| DE (1) | DE4091517C2 (en) |
| GB (1) | GB2243684B (en) |
| WO (1) | WO1991003711A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7132647B2 (en) | 2004-03-17 | 2006-11-07 | Canon Kabushiki Kaisha | Optical encoder |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6291839B1 (en) | 1998-09-11 | 2001-09-18 | Lulileds Lighting, U.S. Llc | Light emitting device having a finely-patterned reflective contact |
| DE19859670A1 (en) | 1998-12-23 | 2000-06-29 | Heidenhain Gmbh Dr Johannes | Readhead and method of making same |
| DE19917950A1 (en) | 1999-04-21 | 2000-10-26 | Heidenhain Gmbh Dr Johannes | Integrated optoelectronic thin film sensor, useful for scale scanning in a length, angle or two-dimensional measuring system, has a semiconductor layer of thickness corresponding to that of the detecting region of photodetectors |
| JP2002236034A (en) * | 2000-12-07 | 2002-08-23 | Harmonic Drive Syst Ind Co Ltd | Optical encoder |
| JP4880132B2 (en) * | 2001-05-11 | 2012-02-22 | 株式会社ミツトヨ | Photoelectric encoder |
| JP4498024B2 (en) | 2004-06-15 | 2010-07-07 | キヤノン株式会社 | Optical encoder |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4019196A (en) * | 1974-11-22 | 1977-04-19 | Stanley Electric Co., Ltd. | Indicating element and method of manufacturing same |
| JPS6032126B2 (en) * | 1981-06-01 | 1985-07-26 | 株式会社 三豊製作所 | Photoelectric encoder |
| GB2099993B (en) * | 1981-06-01 | 1985-11-27 | Mitutoyo Mfg Co Ltd | Photoelectric displacement encoder |
| JPS58147654A (en) * | 1982-02-26 | 1983-09-02 | Matsushita Electric Ind Co Ltd | optical frequency generator |
| JPS59221667A (en) * | 1983-05-31 | 1984-12-13 | Matsushita Electric Ind Co Ltd | Optical rotation detection device |
| JPS61283818A (en) * | 1985-06-10 | 1986-12-13 | Sharp Corp | Photoelectric type rotary encoder |
| JPS6324126A (en) * | 1986-06-25 | 1988-02-01 | Mitsutoyo Corp | Photoelectric encoder |
| US4943716A (en) * | 1988-01-22 | 1990-07-24 | Mitutoyo Corporation | Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations |
| JPH06324126A (en) * | 1993-05-10 | 1994-11-25 | Fujisaki Densetsu Kk | Protective relay testing device |
-
1989
- 1989-09-05 JP JP1230906A patent/JPH0656304B2/en not_active Expired - Fee Related
-
1990
- 1990-09-05 DE DE4091517A patent/DE4091517C2/en not_active Expired - Lifetime
- 1990-09-05 WO PCT/JP1990/001138 patent/WO1991003711A1/en active Application Filing
-
1991
- 1991-05-01 GB GB9109425A patent/GB2243684B/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7132647B2 (en) | 2004-03-17 | 2006-11-07 | Canon Kabushiki Kaisha | Optical encoder |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2243684A (en) | 1991-11-06 |
| WO1991003711A1 (en) | 1991-03-21 |
| DE4091517C2 (en) | 1997-04-30 |
| GB9109425D0 (en) | 1991-06-26 |
| GB2243684B (en) | 1993-07-07 |
| JPH0392716A (en) | 1991-04-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5155355A (en) | Photoelectric encoder having a grating substrate with integral light emitting elements | |
| US6486467B1 (en) | Optical detector for measuring relative displacement of an object on which a grated scale is formed | |
| US4499374A (en) | Photoelectrical encoder employing an optical grating | |
| CN104422469B (en) | Photoelectric encoder | |
| US7417218B2 (en) | Triple grating optical encoder with light transmitting area in optical path | |
| EP0577088B2 (en) | Displacement information detection apparatus | |
| JPH0132450B2 (en) | ||
| JP2010230409A (en) | Optical encoder | |
| JPS582501B2 (en) | Light receiving element | |
| JPS5980964A (en) | Photoelectric conversion element | |
| JPH0656304B2 (en) | Photoelectric encoder | |
| US6610975B2 (en) | Optical encoder | |
| JP4526003B2 (en) | Scanning unit for optical position measuring device | |
| GB2094974A (en) | Photoelectric encoder device | |
| GB2352810A (en) | Displacement measuring apparatus | |
| US6794638B2 (en) | Photoelectric encoder having improved light-emitting and photoreceptive sections | |
| Schmidt et al. | Position-sensitive photodetectors made with standard silicon-planar technology | |
| JP2010223631A (en) | Optical encoder | |
| JPS6032126B2 (en) | Photoelectric encoder | |
| JP2004271192A (en) | Optical encoder | |
| JP4444715B2 (en) | Optical displacement measuring device | |
| US20040262504A1 (en) | Projection encoder | |
| JPS6032125B2 (en) | Photoelectric encoder | |
| JP4880132B2 (en) | Photoelectric encoder | |
| JPS6014287B2 (en) | Photoelectric encoder scale |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |