JPH0678413B2 - Thermoplastic resin composition - Google Patents
Thermoplastic resin compositionInfo
- Publication number
- JPH0678413B2 JPH0678413B2 JP59236727A JP23672784A JPH0678413B2 JP H0678413 B2 JPH0678413 B2 JP H0678413B2 JP 59236727 A JP59236727 A JP 59236727A JP 23672784 A JP23672784 A JP 23672784A JP H0678413 B2 JPH0678413 B2 JP H0678413B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- reaction
- resin composition
- average molecular
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyurethanes Or Polyureas (AREA)
Description
【発明の詳細な説明】 産業上の利用分野: 本発明は、耐候性、可撓性および耐磨耗性にすぐれた新
規な熱可塑性樹脂組成物に関する。TECHNICAL FIELD The present invention relates to a novel thermoplastic resin composition having excellent weather resistance, flexibility and abrasion resistance.
従来技術とその問題点: 従来よりポリウレタン樹脂は可撓性および耐磨耗性にす
ぐれた物性を有することから、多くの用途を期待されて
きたが、全般に耐候性が不良なことと樹脂の製造過程に
おいて副反応による分枝構造を作り易いことの為に、射
出成型等による成型が困難で熱可塑性樹脂としての利用
が十分なされていないのが実状であり、主として熱硬化
性樹脂として利用されてきた。Conventional technology and its problems: Conventionally, polyurethane resins have been expected to be used for many purposes because they have excellent physical properties such as flexibility and abrasion resistance, but generally, they have poor weather resistance and Since it is easy to form a branched structure by a side reaction in the manufacturing process, it is difficult to mold by injection molding etc. and it has not been fully used as a thermoplastic resin, and it is mainly used as a thermosetting resin. Came.
問題点を解決するための手段: 本発明は、従来の熱可塑性ポリウレタン樹脂の欠点を克
服し、かつ耐候性及び可撓性を維持し、押出加工や射出
成型が容易であり、且つ耐候性にすぐれた新規なポリエ
ステルポリウレタン系熱可塑性樹脂組成物を提供するも
のである。Means for Solving the Problems: The present invention overcomes the disadvantages of conventional thermoplastic polyurethane resins, maintains weather resistance and flexibility, is easy to extrude and injection mold, and is weather resistant. An excellent novel polyester polyurethane-based thermoplastic resin composition is provided.
すなわち (A)数平均分子量300〜3,000のヒドロキシル基末端ポ
リアルキレンフタレートと、 (B)鎖延長剤として式(I) で表わされるジイソシアネートとを、 当量比(OH/NCO)0.9〜1.1の割合で反応せしめ、重量平
均分子量が2万〜30万となるまでウレタン化鎖延長反応
を行って得られることを特徴とする熱可塑性樹脂組成物
である。That is, (A) a hydroxyl group-terminated polyalkylene phthalate having a number average molecular weight of 300 to 3,000, and (B) a chain extender of the formula (I) It is obtained by reacting a diisocyanate represented by the formula (1) with an equivalent ratio (OH / NCO) of 0.9 to 1.1 and carrying out a urethanization chain extension reaction until the weight average molecular weight becomes 20,000 to 300,000. It is a thermoplastic resin composition.
上記(A)のポリアルキレンフタレートは、例えばテレ
フタル酸、テレフタル酸ジメチル、イソフタル酸、無水
フタル酸、オルソフタル酸の如きフタル酸、フタル酸無
水物およびフタル酸のアルコールエステル類等のフタル
酸系化合物、例えば、エチレングリコール、プロピレン
グリコール、1,4ブタンジオール、1,3ブタンジオール、
ネオペンチルグリコール、1,5−ペンタンジオール、1,6
ヘキサンジオール、ドデカンジオール等のアルキレング
リコール類とのエステルであつて、従来公知の方法によ
つて脱水縮合またはエステル交換反応によつて作られ
る。Examples of the polyalkylene phthalate (A) include phthalic acid-based compounds such as terephthalic acid, dimethyl terephthalate, isophthalic acid, phthalic anhydride such as phthalic anhydride, orthophthalic acid, phthalic anhydride and alcohol esters of phthalic acid. For example, ethylene glycol, propylene glycol, 1,4 butanediol, 1,3 butanediol,
Neopentyl glycol, 1,5-pentanediol, 1,6
Esters with alkylene glycols such as hexanediol and dodecanediol can be produced by dehydration condensation or transesterification by a conventionally known method.
この際、アルキレングリコールのヒドロキシル基の当量
数をフタル酸類のカルボキシル基(無水物及びアルコー
ルエステル基をも含む)当量数より過剰にすることによ
つて、ポリアルキレンフタレートの数平均分子量は調整
され、従つて上記の脱水縮合またはエステル交換反応を
出来る限り完結せしめてポリアルキレンフタレートの両
分子末端をヒドロキシル基とすることが重要であり、反
応終了時のOH価の測定によつて論理値との対比から反応
率は算出され、カルボキシル(又はカルボキシルアルキ
ルエステル)基準の反応率が95%以上、好ましくは98%
以上になるようにする。又、上記の(A)ポリアルキレ
ンフタレートの数平均分子量は、OH価の測定から算出さ
れ、反応率が十分高いことからOH基1個あたりの当量重
量の2倍を数平均分子量として定義する。At this time, the number average molecular weight of the polyalkylene phthalate is adjusted by making the equivalent number of the hydroxyl group of the alkylene glycol excess over the equivalent number of the carboxyl group (including the anhydride and alcohol ester groups) of the phthalic acids, Therefore, it is important to complete the above dehydration condensation or transesterification reaction as much as possible to make both molecular terminals of polyalkylene phthalate hydroxyl groups, and to compare with the theoretical value by measuring the OH value at the end of the reaction. The reaction rate is calculated from, and the reaction rate based on carboxyl (or carboxyl alkyl ester) is 95% or more, preferably 98%
Try to be above. Further, the number average molecular weight of the above-mentioned (A) polyalkylene phthalate is calculated from the measurement of OH value, and since the reaction rate is sufficiently high, twice the equivalent weight per OH group is defined as the number average molecular weight.
而して数平均分子量が300未満では、可撓性が不十分で
あり、又、3,000以上では耐摩耗性が低下し、不適であ
り、特に数平均分子量が500〜2,000の範囲であることが
好ましい。Thus, if the number average molecular weight is less than 300, the flexibility is insufficient, and if the number average molecular weight is 3,000 or more, the abrasion resistance decreases, which is unsuitable, and particularly, the number average molecular weight is in the range of 500 to 2,000. preferable.
又、上記したフタル酸系化合物の中では、テレフタル酸
骨格及びイソフタル酸骨格を有するものが好適であり、
又上記したアルキレングリコール類の中では、エチレン
グリコール、1,4−ブタンジオール、1,5−ペンタンジオ
ール、ネオペンチルグリコール、1,6−ヘキサンジオー
ルが特に好ましい。Further, among the above-mentioned phthalic acid compounds, those having a terephthalic acid skeleton and an isophthalic acid skeleton are preferable,
Among the above alkylene glycols, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol are particularly preferable.
上記の(B)一般式 の構造を有するジイソシアネートは、α,α,α′,
α′−テトラメチルメタキシリレンジイソシアネート及
びα,α,α′,α′−テトラメチルパラキシリレンジ
イソシアネートである。The above (B) general formula The diisocyanate having the structure of α, α, α ′,
α'-Tetramethylmethaxylylene diisocyanate and α, α, α ', α'-tetramethylparaxylylene diisocyanate.
上記の(B)ジイソシアネートは、そのイソシアネート
基が上記の(A)のポリアルキレンフタレートのヒドロ
キシル基と当量比が1:0.9〜1:1.1、好ましくは1:0.95〜
1:1.05となるような重量割合で付加縮合させて本発明の
熱可塑性樹脂組成物をうる。この際、(A)のポリアル
キレンフタレートを2種以上、又(B)のジイソシアネ
ートを2種以上同時に使用しても差し支えない。The above-mentioned (B) diisocyanate has an equivalent ratio of the isocyanate group to the hydroxyl group of the above-mentioned polyalkylene phthalate (A) of 1: 0.9 to 1: 1.1, preferably 1: 0.95 to
The thermoplastic resin composition of the present invention is obtained by addition condensation at a weight ratio of 1: 1.05. At this time, two or more kinds of polyalkylene phthalate (A) and two or more kinds of diisocyanate (B) may be used at the same time.
従来広く用いられているジイソシアネート、例えばトリ
レンジイソシアネート或いはジフエニルメタンジイソシ
アネート等のポリヒドロキシ化合物の反応では、生成す
る樹脂の粘度が混合可能で均一に反応を進行せしめうる
温度においては、アロフアネートの副生に伴う分枝化が
おこり、成型可能な樹脂は得難く、また副反応を制御す
る為の低温においては多量の有機溶剤中で反応を進める
必要があることからその有機溶媒の除去に要するエネル
ギーや容積効率の点で著しく生産性が劣る。これに対し
上記の(B)のジイソシアネートは、ヒドロキシル基に
対する反応が緩まんであり、又アロフアネートの副生が
おこりにくいので、均一な反応が可能な粘度を呈する温
度、例えば100〜200℃の温度において、有機溶媒を用い
ることなく本発明の樹脂組成物を製造することが出来
る。勿論、この反応過程において不活性な有機溶媒を使
用することを妨げるものではない。In the reaction of conventionally widely used diisocyanates, for example, polyhydroxy compounds such as tolylene diisocyanate or diphenylmethane diisocyanate, the by-product of allophanate is produced at a temperature at which the viscosities of the resulting resins are mixed and the reaction can proceed uniformly. As a result, branching occurs, and it is difficult to obtain a moldable resin. Also, since it is necessary to proceed the reaction in a large amount of organic solvent at a low temperature for controlling side reactions, the energy and Productivity is extremely poor in terms of volumetric efficiency. On the other hand, the above-mentioned diisocyanate (B) has a slow reaction to the hydroxyl group and is less likely to produce allophanate as a by-product. Therefore, at a temperature at which a viscosity capable of a uniform reaction is exhibited, for example, a temperature of 100 to 200 ° C. The resin composition of the present invention can be manufactured without using an organic solvent. Of course, it does not prevent the use of an inert organic solvent in this reaction process.
通常、上記の(A)アルキレンフタレートを100〜200℃
に加熱溶解した中に、上記の(B)のジイソシアネート
を分割又は連続的に添加して付加縮合を行うが、好まし
い温度条件は120〜180℃、有機溶媒を全く用いない場合
には140〜180℃の範囲が特に好ましい。Usually, the above (A) alkylene phthalate is added at 100 to 200 ° C.
The above-mentioned diisocyanate (B) is dividedly or continuously added to the solution to be subjected to addition condensation during heating and dissolution. The preferred temperature condition is 120 to 180 ° C., and 140 to 180 when no organic solvent is used. The range of ° C is particularly preferred.
但し有機溶媒を用いる場合には、100℃以下の反応温度
でも差し支えなく、又、例えば有機錫、有機鉛、第3級
アミン等の反応促進剤を併用してもよい。有機溶媒を用
いた場合には、真空で有機溶媒を留去するか或いは本発
明の樹脂組成物を溶解しない溶媒、例えば炭化水素類中
に撹拌しながら投入し、凝集沈澱せしめ、乾燥して本発
明の熱可塑性樹脂組成物を得ることができる。However, when an organic solvent is used, the reaction temperature may be 100 ° C. or lower, and a reaction accelerator such as organic tin, organic lead, and a tertiary amine may be used in combination. When an organic solvent is used, the organic solvent is distilled off in a vacuum, or the resin composition of the present invention is poured into a solvent that does not dissolve, for example, hydrocarbons with stirring, to cause coagulation and precipitation, and then to dry the product. The thermoplastic resin composition of the invention can be obtained.
本発明の熱可塑性樹脂組成物は、重量平均分子量が2万
以上であることが、得られる成型物シート等の強度等か
ら好ましく、特に3〜30万の範囲であることが成型性と
強度の両面からみて好ましい。It is preferable that the thermoplastic resin composition of the present invention has a weight average molecular weight of 20,000 or more from the viewpoint of strength of the obtained molded product sheet and the like, and particularly in the range of 30,000 to 300,000 for moldability and strength. It is preferable from both sides.
本発明の熱可塑性樹脂組成物は、耐候性、可撓性、接着
性および耐磨耗性にすぐれることから、包装資材、建築
資材、金属被覆材、ホツトメルト型の接着剤、パイプ、
ガスケツト類、電線、光フアイバー等の線材の被覆剤等
の多様な用途に用いることが出来、また押出成型による
フイルム化、射出成型、押出しコーテイング、プレス加
工等の通常の熱可塑性樹脂の加工方法によつて上記用途
への応用がなされる。The thermoplastic resin composition of the present invention has excellent weather resistance, flexibility, adhesiveness and abrasion resistance, so that packaging materials, building materials, metal coating materials, hot melt adhesives, pipes,
It can be used for a variety of applications such as coating materials for gaskets, electric wires, wire materials such as optical fibers, etc., and also for ordinary thermoplastic resin processing methods such as film formation by extrusion molding, injection molding, extrusion coating, and press processing. Therefore, the above-mentioned applications are applied.
又、本発明の熱可塑性樹脂組成物の実用に際しては、着
色顔料、体質顔料、ガラスフアイバー、メタルフアイバ
ーの如き強化フアイバー等の充填剤、酸化防止剤、紫外
線吸収剤、離型剤、滑剤、等の助剤類を目的に応じて使
用することが可能である。Further, in the practical use of the thermoplastic resin composition of the present invention, a filler such as a coloring pigment, an extender pigment, a glass fiber, a reinforcing fiber such as a metal fiber, an antioxidant, an ultraviolet absorber, a release agent, a lubricant, etc. It is possible to use the auxiliary agents according to the purpose.
又、本発明の熱可塑性樹脂組成物を、他の熱可塑性樹脂
又は熱硬化性樹脂と混合使用することも可能である。It is also possible to use the thermoplastic resin composition of the present invention in combination with other thermoplastic resin or thermosetting resin.
以下実施例を示し、本発明を具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.
実施例 ポリアルキレンフタレートの合成: 撹拌機、凝縮器、温度計を備えた反応器中に、表1に示
す(A)〜(D)の夫々の原料を仕込み、加熱して内温
が150℃に達した時点で反応促進剤として原料仕込重量
に対し0.1重量%のテトラブトキシチタンを加え、生成
する水またはメタノールを溜去しながら、内温を毎時15
℃の速度で昇温し、最後は210℃に保つて、表1に示す
時間(脱水又は脱メタノールの開始から反応終了までの
時間)反応させて、夫々のポリアルキレンフタレート
(A)〜(D)を得た。(A)〜(D)のOH価の測定か
ら求めた反応率及び数平均分子量を併せて表1に記載し
た。Example Synthesis of polyalkylene phthalate: In a reactor equipped with a stirrer, a condenser, and a thermometer, the respective raw materials (A) to (D) shown in Table 1 were charged and heated to an internal temperature of 150 ° C. When the reaction temperature reached 0.1%, tetrabutoxytitanium was added as a reaction accelerator in an amount of 0.1% by weight based on the charged weight of the raw materials, and the produced water or methanol was distilled off while the internal temperature was adjusted to 15 hours / hour.
The temperature is raised at a rate of ℃, and the temperature is maintained at 210 ℃ at the end, and the reaction is carried out for the time shown in Table 1 (the time from the start of dehydration or demethanol to the end of the reaction) to give each polyalkylene phthalate (A) to (D). ) Got. The reaction rates and number average molecular weights obtained by measuring the OH values of (A) to (D) are also shown in Table 1.
付加縮合によるポリエステルポリウレタン系熱可塑性樹
脂の合成: 表2の実験番号(1)〜(6)に示す重量の前記のポリ
アルキレンフタレート及び溶媒(実験番号(2)の場
合)を、撹拌機、温度計、凝集器及び窒素導入口を備え
た反応器に入れ、加熱溶解し表2の各実験番号に記載す
る温度に達した時点で表2に記載するジイソシアネート
を10分割して10分毎に加えた。この間、気相に窒素を流
し撹拌をつづけ、表2記載の温度にジイソシアネートの
添加開始から合計3時間保つて反応を行つた。Synthesis of Polyester Polyurethane Thermoplastic Resin by Addition Condensation: The polyalkylene phthalate and solvent (in the case of experiment number (2)) in the weights shown in experiment numbers (1) to (6) of Table 2 are stirred with a stirrer and at a temperature. The mixture was placed in a reactor equipped with a meter, an aggregator and a nitrogen inlet, dissolved by heating, and when the temperature reached to each experiment number in Table 2 was reached, the diisocyanate described in Table 2 was divided into 10 parts and added every 10 minutes. It was During this period, nitrogen was flown into the gas phase and stirring was continued, and the reaction was carried out while maintaining the temperature shown in Table 2 for a total of 3 hours from the start of the addition of diisocyanate.
実験番号(2)の場合、160℃に昇温した後、真空で溶
媒を溜去した。得られた実験番号(1)〜(6)の熱可
塑性樹脂は、残溜イソシアネート基の赤外線吸収スペク
トルからはほぼ定量的に反応が進行していることが確か
められた。又、各々の樹脂の重量平均分子量をGPC法
(ポリスチレン換算値)で測定し併せて表2に記載し
た。In the case of the experiment number (2), the temperature was raised to 160 ° C., and then the solvent was distilled off in a vacuum. It was confirmed from the infrared absorption spectrum of the residual isocyanate groups that the reactions of the obtained thermoplastic resins of the experiment numbers (1) to (6) proceeded almost quantitatively. The weight average molecular weight of each resin was measured by the GPC method (polystyrene conversion value) and is also shown in Table 2.
熱可塑性樹脂の評価: 実験番号(1)〜(6)の各々の熱可塑性樹脂を、スク
リユー径40mmφの押出機を用い表3記載の各温度でTダ
イを通して押出し、50℃の冷却ロールを通して巻き取り
約50μのフイルムを得た。Evaluation of thermoplastic resin: Each of the thermoplastic resins of Experiment Nos. (1) to (6) was extruded through a T-die at each temperature shown in Table 3 using an extruder having a screw diameter of 40 mmφ and wound through a cooling roll of 50 ° C. A film of about 50 μm was obtained.
得られたフイルムの抗張力、伸度、耐磨耗性及びウエザ
ーオメーターの照射テストを行い、その結果を表3に記
載した。The obtained film was tested for tensile strength, elongation, abrasion resistance and irradiation with a weather ometer, and the results are shown in Table 3.
比較例1 前記のポリアルキレンフタレート(A)1,000重量部
を、前記実施例の熱可塑性樹脂と同様な反応器に仕込み
加熱し、150℃に達したところで176重量部のトリレンジ
イソシアネートを10分割し、10分毎に添加した。150℃
に保ち気相に窒素を流し撹拌をつづけたが、6回目のト
リレンジイソシアネートを添加した直後にゲル化を起
し、撹拌不能となつて反応を中和した。Comparative Example 1 1,000 parts by weight of the above polyalkylene phthalate (A) was charged into a reactor similar to the thermoplastic resin of the above example and heated, and when reaching 150 ° C., 176 parts by weight of tolylene diisocyanate was divided into 10 parts. , Every 10 minutes. 150 ° C
The mixture was kept under a constant flow of nitrogen and was continuously stirred, but gelation occurred immediately after the sixth addition of tolylene diisocyanate, and the reaction was neutralized by making stirring impossible.
比較例2 前記のポリアルキレンフタレート(A)を1,000重量部
とジメチルホルムアミド1,176重量部とを、前記と同様
な反応器に仕込み加熱し、80℃に達したところで176重
量部のトリレンジイソシアネートを10分割し、10分毎に
添加した。この間気相に窒素を流し撹拌を続けトリレン
ジイソシアネートの添加開始から合計3時間、80℃に保
つて反応を行つた。次に徐々に昇温しながら真空でジメ
チルホルムアミドを溜去した。得られた樹脂は、残留イ
ソシアネート基の赤外線吸収スペクトルからほぼ定量的
に反応が進行していることが確められた。この樹脂の重
量平均分子量は7.5万であつた。Comparative Example 2 1,000 parts by weight of the above polyalkylene phthalate (A) and 1,176 parts by weight of dimethylformamide were charged into a reactor similar to the above and heated, and when reaching 80 ° C., 176 parts by weight of tolylene diisocyanate was added to 10 parts by weight. It was divided and added every 10 minutes. During this time, nitrogen was flown into the gas phase and stirring was continued, and the reaction was carried out at 80 ° C. for a total of 3 hours from the start of the addition of tolylene diisocyanate. Next, dimethylformamide was distilled off in a vacuum while gradually raising the temperature. From the infrared absorption spectrum of the residual isocyanate group, it was confirmed that the reaction of the obtained resin proceeded almost quantitatively. The weight average molecular weight of this resin was 75,000.
上記の樹脂を実施例と全く同様な方法で約50μのフイル
ムとなし、実施例と同様にして評価を行つた。この比較
例の評価結果を表3に併せて記載した。The above resin was formed into a film of about 50 μm in the same manner as in the example, and the evaluation was performed in the same manner as in the example. The evaluation results of this comparative example are also shown in Table 3.
Claims (1)
シル基末端ポリアルキレンフタレート と、 (B)鎖延長剤として式(I) で表わされるジイソシアネート とを、 当量比(OH/NCO)0.9〜1.1の割合で反応せしめ、重量平
均分子量が2万〜30万となるまでウレタン化鎖延長反応
を行って得られることを特徴とする熱可塑性樹脂組成
物。1. A hydroxyl group-terminated polyalkylene phthalate having a number average molecular weight of 300 to 3,000, and (B) a chain extender of the formula (I). It is obtained by reacting a diisocyanate represented by the formula (1) with an equivalence ratio (OH / NCO) of 0.9 to 1.1 and performing a urethanization chain extension reaction until the weight average molecular weight becomes 20,000 to 300,000. Thermoplastic resin composition.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59236727A JPH0678413B2 (en) | 1984-11-12 | 1984-11-12 | Thermoplastic resin composition |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59236727A JPH0678413B2 (en) | 1984-11-12 | 1984-11-12 | Thermoplastic resin composition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS61115928A JPS61115928A (en) | 1986-06-03 |
| JPH0678413B2 true JPH0678413B2 (en) | 1994-10-05 |
Family
ID=17004887
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59236727A Expired - Fee Related JPH0678413B2 (en) | 1984-11-12 | 1984-11-12 | Thermoplastic resin composition |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0678413B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4107136A1 (en) * | 1991-03-06 | 1992-09-10 | Basf Lacke & Farben | METHOD FOR PRODUCING A MULTILAYER, PROTECTIVE AND / OR DECORATIVE PAINT |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4546167A (en) * | 1984-07-30 | 1985-10-08 | American Cyanamid Company | P-TMXDI Polyurethane elastomers with good compression set properties |
-
1984
- 1984-11-12 JP JP59236727A patent/JPH0678413B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPS61115928A (en) | 1986-06-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102803331B (en) | Crosslinkable thermoplastic polyurethane | |
| JPH0635561B2 (en) | Coil coating coating composition | |
| CN113980230B (en) | Moisture-heat resistant thermoplastic polyurethane elastomer material and preparation method thereof | |
| CN114773559A (en) | TPU pneumatic hose | |
| WO1988005447A1 (en) | Process for producing polyurethane | |
| WO1993013152A1 (en) | Process for producing high-molecular aliphatic polyester, and film | |
| JP2545704B2 (en) | Method for producing aliphatic copolyester film | |
| CN106414549B (en) | Terminal-modified polyethylene terephthalate resin, method for producing the same, and molded article | |
| CN105330828B (en) | A kind of polyester elastomer and its preparation method and toughening agent | |
| CN112920363A (en) | Thermoplastic polyurethane elastomer compatibilizer and preparation method and application thereof | |
| JPH0678413B2 (en) | Thermoplastic resin composition | |
| JPS61115927A (en) | Thermoplastic resin | |
| CN113912812B (en) | Preparation method of degradable TPU (thermoplastic polyurethane) based on recycled PET (polyethylene terephthalate) | |
| JP3046658B2 (en) | Method for producing polyester containing urethane bond | |
| JPH02160820A (en) | Polyurethane resin composition | |
| KR102316790B1 (en) | Biodegradable polyester resin made by addition of biomass derived reaction rate control agent and molecular weight extender and the manufacturing method thereof | |
| TWI704204B (en) | Waterborne polyurethane and preparation method thereof | |
| JP3079711B2 (en) | Film formed using polyester containing urethane bond | |
| JP3079712B2 (en) | Film formed using polyester containing urethane bond | |
| JPH0349284B2 (en) | ||
| JPH05295071A (en) | Production of aliphatic polyester having high molecular weight | |
| JPS61115924A (en) | Thermoplastic block copolymer | |
| JP3046659B2 (en) | Method for producing aliphatic polyester containing urethane bond | |
| JPH0557286B2 (en) | ||
| JPH05140286A (en) | Film formed from polyester having urethane linkage |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |