[go: up one dir, main page]

JPH0694389A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0694389A
JPH0694389A JP24498092A JP24498092A JPH0694389A JP H0694389 A JPH0694389 A JP H0694389A JP 24498092 A JP24498092 A JP 24498092A JP 24498092 A JP24498092 A JP 24498092A JP H0694389 A JPH0694389 A JP H0694389A
Authority
JP
Japan
Prior art keywords
fluid
heat exchanger
heat transfer
plate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24498092A
Other languages
Japanese (ja)
Other versions
JP3029349B2 (en
Inventor
Natsuko Sawada
奈都子 澤田
Yoshikazu Matsubayashi
義和 松林
Takao Hagiwara
崇夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Toshiba Corp
Original Assignee
JGC Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Toshiba Corp filed Critical JGC Corp
Priority to JP4244980A priority Critical patent/JP3029349B2/en
Publication of JPH0694389A publication Critical patent/JPH0694389A/en
Application granted granted Critical
Publication of JP3029349B2 publication Critical patent/JP3029349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To provide a heat exchanger which can be coped with easy calculation of a strength while obtaining required straightening function. CONSTITUTION:A heat exchanger has a plurality of heat transfer tubes 11 arranged in a body 10 to heat exchange fluid to be guided from a fluid inlet 12 into the body 10 with fluid flowing in the tubes 11, and comprises straightening plates 14, 15 contained to be disposed in the body 10 to uniformly guide the fluid to the tubes 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は胴体の内部に複数配設し
た伝熱管を介して流体の加熱または冷却を行う熱交換器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for heating or cooling a fluid through a plurality of heat transfer tubes arranged inside a body.

【0002】[0002]

【従来の技術】一般に、流体を加熱または冷却する際に
用いる熱交換器は、伝熱管を使用したタイプのものがあ
る。すなわち、図6に示すように胴体1の内部に複数の
伝熱管2を配設し、流体入口配管3から胴体1内に導か
れる流体と、伝熱管2を流れる流体との間で熱交換を行
う。
2. Description of the Related Art Generally, a heat exchanger used for heating or cooling a fluid is of a type using a heat transfer tube. That is, as shown in FIG. 6, a plurality of heat transfer tubes 2 are arranged inside the body 1, and heat exchange is performed between the fluid introduced from the fluid inlet pipe 3 into the body 1 and the fluid flowing through the heat transfer tube 2. To do.

【0003】ここで、熱交換器は伝熱管2内の流体温度
の高低により冷却器にも加熱器にもなるが、構造として
は同一であるため、以下冷却器として適用した場合につ
いて説明する。
Here, the heat exchanger can be either a cooler or a heater depending on the temperature of the fluid in the heat transfer tube 2, but since it has the same structure, the case where it is applied as a cooler will be described below.

【0004】流体入口配管3および流体出口配管4の断
面積は、伝熱管2を設置した胴体1の断面積に比較する
と、胴体1の断面積の方が大きい。そのため、流体入口
配管3から胴体1内に流入する流体が一様に伝熱管2を
流れ、そして入口および出口には下部整流板5および上
部整流板6を設けて偏流が生じないようにしている。な
お、熱交換器は胴体1の側面に固定した支持脚7により
支持される。
The cross-sectional areas of the fluid inlet pipe 3 and the fluid outlet pipe 4 are larger than the cross-sectional area of the body 1 in which the heat transfer tubes 2 are installed. Therefore, the fluid flowing from the fluid inlet pipe 3 into the body 1 flows uniformly through the heat transfer tube 2, and the lower straightening vanes 5 and the upper straightening vanes 6 are provided at the inlet and the outlet to prevent uneven flow. . The heat exchanger is supported by support legs 7 fixed to the side surface of the body 1.

【0005】[0005]

【発明が解決しようとする課題】ところで、整流板の構
造および形状は、流体の種類、流量、胴体1の寸法、流
体入口配管3および流体出口配管4に接続される配管口
径などにより異なる。図6に示す従来の熱交換器の場
合、胴体1は四角柱であり、流体入口配管3および流体
出口配管4は円形であるため、角錐と曲面を組み合わせ
た複雑な形状となる。また、流量によりその寸法も異な
ることになる。
By the way, the structure and shape of the current plate vary depending on the type of fluid, the flow rate, the size of the body 1, the diameter of the pipes connected to the fluid inlet pipe 3 and the fluid outlet pipe 4, and the like. In the case of the conventional heat exchanger shown in FIG. 6, since the body 1 is a quadrangular prism and the fluid inlet pipe 3 and the fluid outlet pipe 4 are circular, it has a complicated shape in which pyramids and curved surfaces are combined. Also, the dimensions will differ depending on the flow rate.

【0006】ここで、熱交換器は一般に圧力容器として
その缶体の強度計算が必要になる。この強度計算は円筒
など一般的な形状の場合は、定まった計算方法があり、
容易に計算し得る。例えば、一般的にはJIS、圧力容
器構造規格、また原子力施設の場合、発電用原子力設備
に関する構造などの技術基準(科学技術庁、再処理施設
の構造等に関する技術基準(案))などにより、その採
り得る形状およびその強度計算の評価方法が規定されて
いる。
Here, the heat exchanger generally needs to calculate the strength of the can body as a pressure vessel. This strength calculation has a fixed calculation method for general shapes such as cylinders,
It can be calculated easily. For example, in general, JIS, pressure vessel structure standards, and in the case of nuclear facilities, technical standards such as structure related to nuclear power generation facilities (Science and Technology Agency, technical standards related to structure of reprocessing facility (draft)), etc. Its possible shape and the evaluation method of its strength calculation are specified.

【0007】すなわち、圧力容器の平板であって、ステ
ーによって支えられていないものの、計算上必要な厚さ
は、次式で算定する。
That is, the thickness required for calculation of the flat plate of the pressure vessel, which is not supported by the stay, is calculated by the following formula.

【0008】[0008]

【数1】t=d{(Z・C・P)/100・S}1/2 この項において、tは平板の計算上必要な厚さ(mm)、
dは直径または最小スパン(mm)、Cは平板の取付方法
によって定まる定数、Pは最高使用圧力(Kg/cm2 )、
Sは最高使用温度における材料の許容引張応力(Kg/mm
2 )、Zは平板の形状によって定まる定数で、円形平板
にあっては1とし、円形以外の平板にあっては、次式で
計算するものとする。但し、その値が2.5を越えると
きは、2.5とする。
[Formula 1] t = d {(Z · C · P) / 100 · S} 1/2 In this term, t is the thickness (mm) necessary for the calculation of the flat plate,
d is the diameter or minimum span (mm), C is a constant determined by the mounting method of the flat plate, P is the maximum working pressure (Kg / cm 2 ),
S is the allowable tensile stress of the material at the maximum operating temperature (Kg / mm
2 ) and Z are constants determined by the shape of the flat plate. For circular flat plates, it is set to 1, and for non-circular flat plates, the following formula is used. However, when the value exceeds 2.5, it is set to 2.5.

【0009】[0009]

【数2】Z=3.4−(2.4d/D) この式において、Dは最小スパンに直角に測った最大ス
パン(mm)を表すものとする。
## EQU2 ## Z = 3.4- (2.4d / D) In this formula, D represents the maximum span (mm) measured at right angles to the minimum span.

【0010】他方、図6に示す下部整流板5および上部
整流板6のように、複雑な形状に対する計算方式は規定
されていない。この場合、例えば有限要素法のように数
値解析を行うか、あるいは実証テストを行い、その強度
が妥当であることを特別に証明する必要がある。特に、
原子力施設などのように各機器の強度を審査する場合、
その強度を特別な方法で証明することは、極めて困難で
あり、その結果、数値解析や実証テストに要する時間と
手間がかかる問題点がある。
On the other hand, a calculation method for a complicated shape such as the lower straightening plate 5 and the upper straightening plate 6 shown in FIG. 6 is not specified. In this case, it is necessary to perform a numerical analysis such as the finite element method or perform a verification test to specifically prove that the strength is appropriate. In particular,
When examining the strength of each device, such as in a nuclear facility,
It is extremely difficult to prove its strength by a special method, and as a result, there is a problem that it takes time and effort for numerical analysis and verification test.

【0011】本発明は上述した事情を考慮してなされた
もので、要求される整流機能を確保しつつ、強度計算に
容易に対応可能な熱交換器を提供することを目的とす
る。
The present invention has been made in consideration of the above-mentioned circumstances, and an object thereof is to provide a heat exchanger which can easily cope with strength calculation while ensuring a required rectifying function.

【0012】[0012]

【課題を解決するための手段】本発明に係る熱交換器
は、上述した課題を解決するために、胴体の内部に複数
の伝熱管を配設し、上記胴体内に流体入口から導かれる
流体と上記伝熱管内を流れる流体とで熱交換を行う熱交
換器において、上記伝熱管へ流体を均一に導く整流板
を、上記胴体内に収納配置したものである。
In order to solve the above-mentioned problems, a heat exchanger according to the present invention has a plurality of heat transfer tubes arranged inside a body, and a fluid introduced from a fluid inlet into the body. In a heat exchanger for exchanging heat with the fluid flowing in the heat transfer tube, a rectifying plate that uniformly guides the fluid to the heat transfer tube is housed and arranged in the body.

【0013】[0013]

【作用】上記の構成を有する本発明においては、胴体内
に整流板を収納配置したことにより、強度計算を実施す
る部分は胴体だけとなり、整流板の強度計算は不要とな
る。
In the present invention having the above-mentioned structure, since the straightening vanes are housed and arranged in the body, only the body is subjected to the strength calculation, and the strength calculation of the straightening plate is not necessary.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1〜図5は本発明に係る熱交換器の一実
施例を示す。図1および図2に示すように、胴体10は
中間胴10a、上部胴10bおよび下部胴10cからな
り、全体を角柱状で、且つ肉厚を同一に形成されてお
り、胴体10における中間胴10aの内部に円筒状の多
数の伝熱管11が配設されている。
1 to 5 show an embodiment of the heat exchanger according to the present invention. As shown in FIGS. 1 and 2, the body 10 includes an intermediate body 10a, an upper body 10b, and a lower body 10c. The body 10 is formed into a prismatic shape and has the same wall thickness. A large number of cylindrical heat transfer tubes 11 are arranged inside the.

【0016】また、胴体10における下部胴10cの底
面には、流体入口配管12が固定され、この流体入口配
管12から流体が導かれる。一方、胴体10における上
部胴10bの上面には流体出口配管13が固定され、こ
の流体出口配管13から流体が排出される。
A fluid inlet pipe 12 is fixed to the bottom surface of the lower body 10c of the body 10, and a fluid is guided from the fluid inlet pipe 12. On the other hand, the fluid outlet pipe 13 is fixed to the upper surface of the upper body 10b of the body 10, and the fluid is discharged from the fluid outlet pipe 13.

【0017】流体入口配管12の直上の胴体10内には
下部整流板14が設置され、この下部整流板14により
流体を多数の伝熱管11へ均一に導くようにしている。
そして、流体出口配管13の直下の胴体10内には、図
1および図5に示すように流体出口配管13と連続して
上部整流板15が設置されている。これら下部整流板1
4および上部整流板15の所定箇所にはそれぞれ下部ド
レン抜き16および上部ドレン抜き17が設けられ、ド
レンの滞留を防止している。
A lower straightening vane 14 is installed in the body 10 immediately above the fluid inlet pipe 12, and the lower straightening vane 14 uniformly guides the fluid to a large number of heat transfer tubes 11.
Then, in the body 10 immediately below the fluid outlet pipe 13, as shown in FIGS. 1 and 5, an upper straightening plate 15 is installed continuously to the fluid outlet pipe 13. These lower straightening vanes 1
Lower drain drains 16 and upper drain drains 17 are provided at predetermined locations on the upper plate 4 and the upper flow straightening plate 15, respectively, to prevent the drain from staying.

【0018】さらに、胴体10における中間胴10aの
両側面には、互いに対向して水室21,22が設けら
れ、水室21の上下にそれぞれ冷却水入口配管23、冷
却水出口配管24が取り付けられている。そして、水室
21,22内には上下方向互いに位置を変えた仕切板2
5,26が固定され、冷却水入口配管23から伝熱管1
1に導いた冷却水を蛇行して通過させ、流体入口配管1
2から導いた流体と十分熱交換させるようにしている。
Further, water chambers 21 and 22 are provided on both sides of the intermediate body 10a of the body 10 so as to face each other, and a cooling water inlet pipe 23 and a cooling water outlet pipe 24 are attached above and below the water chamber 21, respectively. Has been. In the water chambers 21 and 22, the partition plates 2 whose positions are vertically different from each other are provided.
5, 26 are fixed, and the heat transfer pipe 1 is provided from the cooling water inlet pipe 23.
The cooling water led to 1 meanders and passes, and the fluid inlet pipe 1
It is designed to sufficiently exchange heat with the fluid derived from 2.

【0019】すなわち、流体入口配管3から胴体10内
に導かれる流体と、伝熱管11を通過する冷却水との間
で熱交換が行われ、熱交換の終了した流体は上部整流板
15を通り流体出口配管13から排出される。
That is, heat is exchanged between the fluid introduced from the fluid inlet pipe 3 into the body 10 and the cooling water passing through the heat transfer tube 11, and the fluid after the heat exchange passes through the upper straightening vane 15. It is discharged from the fluid outlet pipe 13.

【0020】なお、本実施例の熱交換器は、図1〜図4
に示すように胴体10の側面に固定した支持脚27によ
り支持される。
The heat exchanger of this embodiment is shown in FIGS.
It is supported by the support legs 27 fixed to the side surface of the body 10 as shown in FIG.

【0021】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0022】下部整流板14および上部整流板15は、
胴体10の内部に収納配置される内部構造物としている
ため、圧力容器として強度計算を実施する部分は胴体1
0だけとなり、下部整流板14および上部整流板15の
強度評価は不要になる。
The lower straightening plate 14 and the upper straightening plate 15 are
Since the internal structure is housed and arranged inside the body 10, the portion where the strength calculation is performed as the pressure vessel is the body 1
Since only 0, the strength evaluation of the lower straightening plate 14 and the upper straightening plate 15 becomes unnecessary.

【0023】また、胴体10部分は強度評価の確立され
ている角柱で構成されており、容易に強度計算ができ、
強度上妥当な圧力容器であることを示すことができる。
そして、下部整流板14および上部整流板15は耐圧強
度に関係なく、流体の整流効果上、最も適した形状を採
用することができる。
Further, the body 10 is composed of a prism whose strength evaluation has been established, and the strength can be easily calculated.
It can be shown that the pressure vessel is appropriate in terms of strength.
The lower rectifying plate 14 and the upper rectifying plate 15 can adopt the most suitable shape in terms of fluid rectifying effect regardless of the pressure resistance.

【0024】さらに、中間胴10a、上部胴10bおよ
び下部胴10cの肉厚を同一にすることにより、同一厚
さの材料を用いて製造することができ、板材の機械加工
が容易になり、組立において開先加工、溶接作業が容易
になる。その結果、製造し易くなり、信頼性も向上す
る。
Furthermore, by making the intermediate cylinder 10a, the upper cylinder 10b, and the lower cylinder 10c have the same thickness, it is possible to manufacture using materials having the same thickness, which facilitates machining of the plate material and assembly. The groove processing and welding work become easy. As a result, manufacturing becomes easier and reliability is improved.

【0025】複雑な形状の下部整流板14および上部整
流板15を胴体10内に閉じ込めることにより、強度部
材から除外したので、薄板にて製造可能となり、容易に
製作することができる。
Since the lower rectifying plate 14 and the upper rectifying plate 15 having a complicated shape are enclosed in the body 10 and excluded from the strength members, it is possible to manufacture them with a thin plate, which can be easily manufactured.

【0026】なお、本発明は上記実施例に限らず種々の
変形が可能である。例えば、上記実施例では胴体10を
角柱形に形成したが、他の形状、例えば円筒形において
も同様の効果が得られる。また、上記実施例において、
下部ドレン抜き16および上部ドレン抜き17は下部整
流板14および上部整流板15の全周に設けたが、小孔
を穿設するだけでも同様の効果が期待できる。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, although the body 10 is formed in a prismatic shape in the above-described embodiment, the same effect can be obtained even if the shape is other, for example, a cylindrical shape. In the above embodiment,
Although the lower drain drain 16 and the upper drain drain 17 are provided on the entire circumference of the lower straightening vane 14 and the upper straightening vane 15, the same effect can be expected only by forming a small hole.

【0027】[0027]

【発明の効果】以上説明したように、本発明に係る熱交
換器によれば、伝熱管へ流体を均一に導く整流板を胴体
内に収納配置したことにより、熱交換器の圧力強度計算
が確立されている方法により容易に解析ができ、製造し
易くなる。これにより、従来の熱交換器で要求されてい
る、例えば実証テストによる強度の妥当性の証明等を回
避することができる。
As described above, according to the heat exchanger of the present invention, the pressure intensity of the heat exchanger can be calculated by arranging the rectifying plate that uniformly guides the fluid to the heat transfer tube in the body. The established method allows easy analysis and facilitates manufacturing. As a result, it is possible to avoid the proof of the validity of the strength, which is required by the conventional heat exchanger, for example, by the proof test.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱交換器の一実施例を示す部分断
面正面図。
FIG. 1 is a partial cross-sectional front view showing an embodiment of a heat exchanger according to the present invention.

【図2】図1の熱交換器の外観図。FIG. 2 is an external view of the heat exchanger of FIG.

【図3】図1の熱交換器の平面図。FIG. 3 is a plan view of the heat exchanger of FIG.

【図4】図1におけるA−A線断面図。FIG. 4 is a cross-sectional view taken along the line AA in FIG.

【図5】図1の熱交換器の上部整流板および流体出口配
管を示す拡大斜視図。
5 is an enlarged perspective view showing an upper current plate and a fluid outlet pipe of the heat exchanger of FIG.

【図6】従来の熱交換器を示す部分断面正面図。FIG. 6 is a partial cross-sectional front view showing a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

10 胴体 10a 中間胴 10b 上部胴 10c 下部胴 11 伝熱管 12 流体入口配管 13 流体出口配管 14 下部整流板 15 上部整流板 16 下部ドレン抜き 17 上部ドレン抜き 21 水室 22 水室 23 冷却水入口配管 24 冷却水出口配管 25 仕切板 26 仕切板 27 支持脚 10 Body 10a Intermediate Body 10b Upper Body 10c Lower Body 11 Heat Transfer Tube 12 Fluid Inlet Piping 13 Fluid Outlet Piping 14 Lower Rectifier 15 Upper Upper Rectifier 16 Lower Drain 17 Upper Drain 21 Water Chamber 22 Water Chamber 23 Cooling Water Inlet Pipe 24 Cooling water outlet pipe 25 Partition plate 26 Partition plate 27 Support leg

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 崇夫 神奈川県横浜市南区別所一丁目14番1号 日揮株式会社横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Hagiwara 1-14-1, Minami-Biery, Yokohama-shi, Kanagawa JGC Corporation Yokohama Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 胴体の内部に複数の伝熱管を配設し、上
記胴体内に流体入口から導かれる流体と上記伝熱管内を
流れる流体とで熱交換を行う熱交換器において、上記伝
熱管へ流体を均一に導く整流板を、上記胴体内に収納配
置したことを特徴とする熱交換器。
1. A heat exchanger in which a plurality of heat transfer tubes are arranged inside a body, and heat is exchanged between a fluid introduced from a fluid inlet into the body and a fluid flowing in the heat transfer tube. A heat exchanger characterized in that a straightening plate for uniformly guiding a fluid to the inside is housed and arranged in the body.
JP4244980A 1992-09-14 1992-09-14 Heat exchanger Expired - Lifetime JP3029349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244980A JP3029349B2 (en) 1992-09-14 1992-09-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244980A JP3029349B2 (en) 1992-09-14 1992-09-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH0694389A true JPH0694389A (en) 1994-04-05
JP3029349B2 JP3029349B2 (en) 2000-04-04

Family

ID=17126808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244980A Expired - Lifetime JP3029349B2 (en) 1992-09-14 1992-09-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3029349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069905B2 (en) * 2003-06-11 2011-12-06 Usui Kokusai Sangyo Kaisha Limited EGR gas cooling device
AT518952A1 (en) * 2015-04-01 2018-02-15 Gen Electric Exhaust gas recirculation system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666688A (en) * 1979-11-05 1981-06-05 Nippon Petrochem Co Ltd Cooling apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666688A (en) * 1979-11-05 1981-06-05 Nippon Petrochem Co Ltd Cooling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069905B2 (en) * 2003-06-11 2011-12-06 Usui Kokusai Sangyo Kaisha Limited EGR gas cooling device
AT518952A1 (en) * 2015-04-01 2018-02-15 Gen Electric Exhaust gas recirculation system and method
AT518952B1 (en) * 2015-04-01 2019-03-15 Gen Electric Exhaust gas recirculation system and method

Also Published As

Publication number Publication date
JP3029349B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
Carnavos Heat transfer performance of internally finned tubes in turbulent flow
Wang et al. Experimental and numerical investigation on shell-side performance of a double shell-pass rod baffle heat exchanger
JPS6042843B2 (en) Waste heat boiler
Yin et al. Single-phase pressure drop measurements in a microchannel heat exchanger
CN113345611B (en) Multi-rectangular-flow-channel uniform heat release simulation test device for plate-type fuel element
JPH0250398B2 (en)
Zhou et al. Experimental study on heat transfer and flow resistance performance of a microchannel heat exchanger with zigzag flow channels
JPH0694389A (en) Heat exchanger
Halle et al. Shellside waterflow pressure drop distribution measurements in an industrial-sized test heat exchanger
US3930537A (en) Heat exchanger
JP4428648B2 (en) Heat exchanger for liquid metal cooling furnace
CN212645428U (en) Fluoroplastic frame heat exchanger
Ramu et al. Transition flow boiling heat transfer to water in a vertical annulus
Tripathi et al. A review on heat transfer and pressure drop correlations in solid circular finned tube boundles positioned at inline and staggered arrangement in cross flow
Carlson The Selection Evaluation and Rating of Compact Heat Exchangers (SEARCH) Software Suite? Code Capabilities and Experimental Comparison.
O'Brien et al. Heat transfer enhancement for finned-tube heat exchangers with vortex generators: experimental and numerical results
RU2231007C2 (en) Heat exchange pipe
Chen et al. Design and testing of helicallycoiled fluted tube heat exchangers for FHR applications
Hwang et al. Crossflow boiling heat transfer in tube bundles
JPH06323777A (en) Heat exchanger and manufacturing method thereof
Desai et al. Experimental study on enhancement of thermal performance of wire wound tube in tube helical coil heat exchanger
Patel et al. An overview of shell & tube type heat exchanger design by kern’s method
JPH0325038Y2 (en)
Bharti et al. Design analysis of shell and tube heat exchanger on different orientations of tubes
KR100745076B1 (en) Method and device for measuring contact strength between heat exchanger tubesheet and tube expansion part