JPH0695190A - Optical wavelength conversion element manufacturing equipment - Google Patents
Optical wavelength conversion element manufacturing equipmentInfo
- Publication number
- JPH0695190A JPH0695190A JP4241646A JP24164692A JPH0695190A JP H0695190 A JPH0695190 A JP H0695190A JP 4241646 A JP4241646 A JP 4241646A JP 24164692 A JP24164692 A JP 24164692A JP H0695190 A JPH0695190 A JP H0695190A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- optical wavelength
- capillary
- conversion element
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
(57)【要約】
【目的】 ファイバー型光波長変換素子の製造過程でコ
アを成す有機単結晶の配向方位ないし結晶状態を評価し
得る光波長変換素子製造装置を提供する。
【構成】 キャピラリー内に非線形光学効果を有する有
機単結晶を成長させてファイバー型光波長変換素子を製
造する光波長変換素子製造装置であって、キャピラリー
が挿通配置され、前記キャピラリーを外周面から加熱す
る環状炉と、前記環状炉に挿通配置されたキャピラリー
を軸方向に進退させる搬送機構と、前記キャピラリー内
にて成長する有機単結晶を検知・識別する偏光顕微ラマ
ン散乱分光システムとを具備して成ることを特徴とす
る。
(57) [Summary] [Object] To provide an optical wavelength conversion element manufacturing apparatus capable of evaluating the orientation direction or the crystalline state of an organic single crystal forming a core in the process of manufacturing a fiber type optical wavelength conversion element. An optical wavelength conversion device manufacturing apparatus for manufacturing a fiber-type optical wavelength conversion device by growing an organic single crystal having a non-linear optical effect in a capillary, wherein the capillary is inserted and arranged, and the capillary is heated from the outer peripheral surface. A ring furnace, a transport mechanism for axially advancing and retracting the capillary inserted through the ring furnace, and a polarization microscopic Raman scattering spectroscopy system for detecting and identifying an organic single crystal growing in the capillary. It is characterized by being formed.
Description
【0001】[0001]
【産業上の利用分野】本発明は光波長変換素子製造装置
に係り、特にコアを成す有機単結晶の配向方位の評価や
結晶状態の評価を製造過程で行い得る手段を付設した光
波長変換素子製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light wavelength conversion device manufacturing apparatus, and more particularly to a light wavelength conversion device provided with means for evaluating the orientation and orientation of the organic single crystal forming the core and the crystal state in the manufacturing process. Manufacturing equipment
【0002】[0002]
【従来の技術】レーザ光を用いたオプトロニクスの分野
では、たとえば記録密度を上げるため、光源の短波長
化,高出力化,小形化の要求が高まっており、半導体レ
ーザと第二高調波発生(SHG ) 、もしくは第三高調波発
生(THG )の現象を利用する光波長変換素子との組み合
わせがその一つの形態を成している。ここで、半導体レ
ーザと組み合わせる光波長変換素子としては、クラッド
としてのガラス製もしくはプラスチックス製のキャピラ
リー内部に、非線形光学効果を有する有機単結晶、より
具体的には SHG活性、もしくは THG活性の有機単結晶を
コアとして充填して成る SHG,もしくは THGファイバー
型光波長変換素子がよく知られている。図2はこのよう
なファイバー型光波長変換素子の構成例を断面的に示し
たもので、1は非線形光学効果を有する有機単結晶から
成るコア、2はキャピラリーから成るクラッドである。2. Description of the Related Art In the field of optronics using a laser beam, for example, in order to increase the recording density, there is an increasing demand for a light source having a shorter wavelength, a higher output and a smaller size. SHG) or a combination with an optical wavelength conversion element that uses the phenomenon of third harmonic generation (THG) constitutes one form. Here, as an optical wavelength conversion element to be combined with a semiconductor laser, an organic single crystal having a nonlinear optical effect, more specifically an SHG-active or THG-active organic organic material, is provided inside a glass or plastic capillary as a clad. SHG or THG fiber-type optical wavelength conversion devices that are filled with a single crystal as the core are well known. FIG. 2 is a cross-sectional view showing an example of the structure of such a fiber type optical wavelength conversion element. Reference numeral 1 is a core made of an organic single crystal having a nonlinear optical effect, and 2 is a clad made of capillaries.
【0003】そして、この種のファイバー型光波長変換
素子は、一般に次のようにして製造されている。すなわ
ち、長さ数10cmのガラス製もしくはプラスチックス製の
キャピラリーの内部に、前記 SHG活性,もしくは THG活
性の有機単結晶を恒温炉内で成長させ、キャピラリーを
クラッド,有機単結晶をコアとするファイバーを作製し
た後、このファイバーを 5〜10mm程度の長さに切断し、
ファイバー型光波長変換素子として使用している。The fiber type optical wavelength conversion element of this type is generally manufactured as follows. That is, an SHG-active or THG-active organic single crystal is grown inside a glass or plastics capillary with a length of several tens of centimeters in a constant-temperature furnace, and the capillary is the cladding and the fiber with the organic single crystal as the core. After making, cut this fiber to a length of about 5-10 mm,
It is used as a fiber type optical wavelength conversion element.
【0004】ところで、前記ファイバー型光波長変換素
子においては、コアを成す有機単結晶の配向方位(結晶
軸の方位)が、SHG ファイバー型光波長変換素子、THG
ファイバー型光波長変換素子の性能を左右する。つま
り、一般に有機物質は結晶方位によって屈折率および二
次,三次の非線形光学定数の値が異なるため、結晶の配
向方位の変化は、SHG ファイバー型光波長変換素子、TH
G ファイバー型光波長変換素子の変換効率および第二高
調波(SH) 光、第三高調波(TH)光の放射角度を変化さ
せるからである。したがって、ファイバー型光波長変換
素子では、コアを成す有機単結晶の配向方位を抑制しな
ければならず、またキャピラリー内で成長した有機単結
晶の配向方位評価する対策が求められている。By the way, in the fiber type optical wavelength conversion element, the orientation direction (crystal axis direction) of the organic single crystal forming the core is SHG fiber type optical wavelength conversion element, THG
It affects the performance of the fiber type optical wavelength conversion element. In other words, since the refractive index and the values of the second-order and third-order nonlinear optical constants of organic materials generally differ depending on the crystal orientation, changes in the orientation of the crystal depend on the SHG fiber type optical wavelength conversion element, TH
This is because the conversion efficiency of the G fiber type optical wavelength conversion element and the emission angle of the second harmonic (SH) light and the third harmonic (TH) light are changed. Therefore, in the fiber type optical wavelength conversion element, the orientation direction of the organic single crystal forming the core must be suppressed, and a measure for evaluating the orientation direction of the organic single crystal grown in the capillary is required.
【0005】しかしながら、ファイバー型光波長変換素
子においては、コアを導波する基本波のモードが単一で
ある方が、SHG ,THG の変換効率がよいので、コアの径
が一般的に 1〜10μm 程度に選択・設定されている。こ
のため、X線回折も不可能で、結果的に、結晶の配向方
位の評価をなし得ない。なお、コアの径が数10μm 程度
あれば、X線回折も可能であるが、この場合クラッド部
分をエッチングなどにより除去する必要があるので、一
度X線回折に供したものは、ファイバー型光波長変換素
子として使用し得ないことになる。However, in the fiber-type optical wavelength conversion element, the conversion efficiency of SHG and THG is better when the mode of the fundamental wave guided through the core is single. It is selected and set to about 10 μm. Therefore, X-ray diffraction is also impossible, and as a result, the orientation direction of the crystal cannot be evaluated. If the core diameter is about several tens of μm, X-ray diffraction is also possible, but in this case it is necessary to remove the clad part by etching, etc. It cannot be used as a conversion element.
【0006】[0006]
【発明が解決しようとする課題】上記したように、ファ
イバー型光波長変換素子では、これまでコウを成す有機
単結晶の配向方位を評価する適切な手段がなく、実際に
入射光を入射したときの変換効率および出力光の放射角
度を実測しなければ、性能を評価・確認し得ず、製品を
直ちに短波長レーザシステムに組み込むことはできなか
った。しかもこのとき、入射光の偏光方向を判別するに
はコアを成す有機単結晶の配向方位を判別しなければな
らないため、入射光の偏光方向についても、ファイバー
型光波長変換素子への入射を繰り返したうえでの試行錯
誤で決定されていた。すなわち、ファイバー型光波長変
換素子においては、入射光の偏光を試行錯誤で決定し、
変換効率および出力光の放射角度を実測して性能を確認
したうえで、良品のみが始めて短波長レーザシステムに
組み込まれるため、製造コストないし生産性,さらに歩
留まりが劣るなど実用上多くの問題があった。As described above, in the fiber type optical wavelength conversion element, there is no suitable means for evaluating the orientation direction of the organic single crystal forming the ko until now when the incident light is actually incident. The performance could not be evaluated and confirmed without measuring the conversion efficiency and the emission angle of the output light, and the product could not be immediately incorporated into the short wavelength laser system. Moreover, at this time, since it is necessary to determine the orientation direction of the organic single crystal that forms the core in order to determine the polarization direction of the incident light, the polarization direction of the incident light is repeatedly incident on the fiber-type optical wavelength conversion element. It was decided by trial and error. That is, in the fiber type optical wavelength conversion element, the polarization of the incident light is determined by trial and error,
After confirming the performance by measuring the conversion efficiency and the emission angle of the output light, only good products will be incorporated into the short wavelength laser system for the first time, so there are many practical problems such as manufacturing cost, productivity, and poor yield. It was
【0007】本発明は上記事情に対処してなされたもの
で、製造過程でコアを成す有機単結晶の配向方位ないし
結晶状態を評価でき、生産性高くファイバー型光波長変
換素子を製造することができる光波長変換素子製造装置
の提供を目的とする。The present invention has been made in consideration of the above circumstances, and the orientation direction or crystal state of an organic single crystal forming a core can be evaluated in the manufacturing process, and a fiber type optical wavelength conversion element can be manufactured with high productivity. It is an object of the present invention to provide an optical wavelength conversion element manufacturing apparatus capable of performing the same.
【0008】[0008]
【課題を解決するための手段】本発明に係る光波長変換
素子製造装置は、キャピラリー内に非線形光学効果を有
する有機単結晶を成長させてファイバー型光波長変換素
子を製造する光波長変換素子製造装置であって、キャピ
ラリーが挿通配置され、前記キャピラリーを外周面から
加熱する環状炉と、前記環状炉に挿通配置されたキャピ
ラリーを軸方向に進退させる搬送機構と、前記キャピラ
リー内にて成長する有機単結晶を検知・識別する偏光顕
微ラマン散乱分光システムとを具備して成ることを特徴
とする。すなわち、本発明は、いわゆるキャピラリー内
に収容した有機化合物をゾーンメルト的に処理し、一定
方向に有機単結晶を成長させてファイバー型光波長変換
素子を製造する装置に、成長させる有機単結晶の配向方
位などの評価を行う偏光顕微ラマン散乱分光システムを
付設したことを骨子とする。An optical wavelength conversion element manufacturing apparatus according to the present invention is an optical wavelength conversion element manufacturing method for manufacturing a fiber type optical wavelength conversion element by growing an organic single crystal having a non-linear optical effect in a capillary. An apparatus, in which a capillary is inserted and arranged, an annular furnace for heating the capillary from the outer peripheral surface, a transport mechanism for axially advancing and retracting the capillary inserted and arranged in the annular furnace, and an organic compound that grows in the capillary A polarization microscope Raman scattering spectroscopy system is provided for detecting and identifying a single crystal. That is, the present invention is an apparatus for producing a fiber type optical wavelength conversion element by treating an organic compound housed in a so-called capillary in a zone-melting manner and growing the organic single crystal in a certain direction. The essence is that a polarized light Raman scattering spectroscopic system that evaluates the orientation and orientation is attached.
【0009】なお、ここで偏光顕微ラマン散乱分光の光
源としては、Arイオンレーザ,He−Neレーザ,色素レー
ザ, YAGレーザ, YLFレーザ,Tiサファイアレーザ,半
導体レーザ,およびこれらの高調波光などが使用可能で
あり、光源の選択に当たっては、コアに用いる有機物質
の吸収波長を考慮する。Here, as a light source for the polarized light Raman scattering spectroscopy, Ar ion laser, He-Ne laser, dye laser, YAG laser, YLF laser, Ti sapphire laser, semiconductor laser, and harmonic light thereof are used. It is possible, and the absorption wavelength of the organic material used for the core is taken into consideration when selecting the light source.
【0010】[0010]
【作用】上記本発明において付設した偏光顕微ラマン散
乱分光システムによって、コア径が 1μm 程度の場合で
も、クラッド部分を除去せず、一定方向に成長する有機
単結晶の配向方位を容易に判定し得る。すなわち、 SH
G, THG活性の有機単結晶では、入射光の偏光方向によ
ってもラマンスペクトルが異なるので、予め使用する入
射光の偏光方向について結晶方位とラマンスペクトルと
の関係を把握しておけば、検出されたラマンスペクトル
によって結晶の配向方位を判定し得ることになる。また
このとき、結晶の配向方位を判定・確認することによ
り、必然的に入射光の偏光方向を決定することもでき、
本発明では不適切な配向方位の有機単結晶が成長した S
HG, THGファイバー型光波長変換素子の回避、あるいは
このような不良製品の判別なども可能となり、歩留ま
り,生産性,コストアップの回避に大きく寄与する。The polarized microscopic Raman scattering spectroscopy system additionally provided in the present invention makes it possible to easily determine the orientation direction of an organic single crystal that grows in a certain direction without removing the clad portion even when the core diameter is about 1 μm. . That is, SH
In G, THG active organic single crystals, the Raman spectrum differs depending on the polarization direction of the incident light. Therefore, if the relationship between the crystal orientation and the Raman spectrum of the polarization direction of the incident light used in advance is understood, it was detected. The orientation direction of the crystal can be determined by the Raman spectrum. At this time, it is also possible to inevitably determine the polarization direction of the incident light by determining and confirming the crystal orientation.
In the present invention, an S
It is also possible to avoid HG and THG fiber type optical wavelength conversion elements, or to identify such defective products, which greatly contributes to avoiding yield, productivity and cost increase.
【0011】[0011]
【実施例】以下図1を参照して本発明の実施例を説明す
る。Embodiments of the present invention will be described below with reference to FIG.
【0012】図1は本発明に係る光波長変換素子製造装
置の構成例を示すブロック図(概略図)であり、3は有
機物質を収納(収容)して一定方向に有機単結晶を成長
させるガラス製キャピラリー、4は前記ガラス製キャピ
ラリー3を挿通して外周面から加熱する環状炉である。
そして、この環状炉4は比較的低温の低温領域部4aと比
較的高温の高温領域部4bとから構成されている。また、
5は前記環状炉4に挿通配置されたガラス製キャピラリ
ー3を軸方向に進退および回転させる搬送機構、6,7
は前記ガラス製キャピラリー3内にて成長する有機単結
晶の端面,および側面部をそれぞれ検知・識別する偏光
顕微ラマン散乱分光システムである。この偏光顕微ラマ
ン散乱分光システム6,7はそれぞれ前記有機単結晶の
端面,および側面部に対向して配置された顕微レンズ6
a,7a、前記顕微レンズ6a,7aを介してラマン散乱分光
を行うためのラマン散乱励起用Arレーザ6b,7b、被検知
部を照射し反射したラマン散乱分光を顕微レンズ6a,7a
を介して受光する分光器6c,7c、前記分光器6c,7cでの
受光をスペクトル観察する光検出器6d,7d、および光検
出器6d,7dでの結果を整理・評価するコンピューター6e
(7e)とで構成されている。 次に、上記構成の光波長変
換素子製造装置の使用例を説明する。FIG. 1 is a block diagram (schematic diagram) showing a structural example of a light wavelength conversion device manufacturing apparatus according to the present invention. Reference numeral 3 is a container for accommodating (accommodating) an organic substance to grow an organic single crystal in a predetermined direction. Glass capillaries 4 are annular furnaces which are inserted through the glass capillaries 3 and heated from the outer peripheral surface.
The annular furnace 4 is composed of a relatively low temperature region 4a and a relatively high temperature region 4b. Also,
Reference numeral 5 is a transfer mechanism for axially advancing and retracting and rotating the glass capillary 3 inserted through the annular furnace 4, 6, 7
Is a polarized light microscopic Raman scattering spectroscopy system for detecting and identifying the end face and the side face of the organic single crystal growing in the glass capillary 3. The polarized light Raman scattering spectroscopic systems 6 and 7 are microscopic lenses 6 arranged so as to face the end face and the side face of the organic single crystal, respectively.
a, 7a, Ar lasers 6b, 7b for Raman scattering excitation for performing Raman scattering spectroscopy via the microscope lenses 6a, 7a, and Raman scattering spectra reflected from the detected part by irradiating the detected portion with the microscope lenses 6a, 7a.
Spectroscopes 6c and 7c for receiving light via the photodetectors, photodetectors 6d and 7d for spectrally observing the received light at the spectroscopes 6c and 7c, and a computer 6e for organizing and evaluating the results at the photodetectors 6d and 7d.
It consists of (7e) and. Next, an example of use of the optical wavelength conversion device manufacturing apparatus having the above configuration will be described.
【0013】先ず、たとえば内径 1μm のガラス製キャ
ピラリー3を用意し、予め、真空中140℃の温度で溶融
しておいた有機物質,2−メチル−4−ニトロアニリン
(MNA)(融点約 132℃)を毛細管現象によって、前記ガ
ラス製キャピラリー3内に吸い上げ収容した。一方、環
状炉4においては、低温領域部4aを20℃程度に、また高
温領域部4bを 140℃程度にそれぞれ設定しておき、この
環状炉4内に、前記有機物質を収容したガラス製キャピ
ラリー3を装着配置し、搬送機構5の駆動によって、ガ
ラス製キャピラリー3をゆっくり回転させながら、軸方
向に沿って低温領域部4a側へと引上げて、溶融・収容さ
れている有機物質( MNA)の単結晶を成長させる。この
単結晶の成長に当たり、ガラス製キャピラリー3の上端
面においては、偏光顕微ラマン散乱分光システム6によ
って、結晶方位が判別される。すなわち、ガラス製キャ
ピラリー3の引上げに伴い顕微レンズ6aも上方に移動し
ながら、顕微ラマン散乱分光およびスペクトル観察を行
って、生成した有機単結晶の結晶方位を判別する。一
方、引上げられるガラス製キャピラリー3の側面部にお
いては、偏光顕微ラマン散乱分光システム7によって、
成長する有機単結晶の側面部について同様に顕微ラマン
散乱分光およびスペクトル観察を行い、有機単結晶の結
晶方位を判別する。なお、この側面部について、顕微ラ
マン散乱分光およびスペクトル観察を行う場合、前記ガ
ラス製キャピラリー3、もしくは側面部に対向して配置
された顕微レンズ7aの少なくともいずれか一方を円周方
向に回転させ、全周面に亘って成長する有機単結晶の結
晶方位の判別を可能にする。First, for example, a glass capillary 3 having an inner diameter of 1 μm was prepared, and an organic substance, 2-methyl-4-nitroaniline (MNA) (melting point: about 132 ° C.) which had been melted in vacuum at a temperature of 140 ° C. ) Was sucked up and stored in the glass capillary 3 by a capillary phenomenon. On the other hand, in the annular furnace 4, the low temperature region 4a is set to about 20 ° C. and the high temperature region 4b is set to about 140 ° C., and the glass capillary containing the organic substance is placed in the annular furnace 4. 3, the glass capillary 3 is slowly rotated by driving the transport mechanism 5 while pulling it up to the low temperature region 4a side along the axial direction to remove the organic substance (MNA) melted and contained therein. Grow a single crystal. In growing the single crystal, the crystal orientation is discriminated by the polarization microscopic Raman scattering spectroscopy system 6 on the upper end surface of the glass capillary 3. That is, while Raising the glass capillary 3 also moves the microscope lens 6a upward, Raman scattering spectroscopy and spectrum observation are performed to determine the crystal orientation of the generated organic single crystal. On the other hand, on the side surface of the glass capillary 3 to be pulled up, the polarized microscopic Raman scattering spectroscopy system 7
Similarly, microscopic Raman scattering spectroscopy and spectrum observation are performed on the side surface of the growing organic single crystal to determine the crystal orientation of the organic single crystal. When performing microscopic Raman scattering spectroscopy and spectrum observation on this side surface portion, at least one of the glass capillary 3 or the microscopic lens 7a arranged facing the side surface portion is rotated in the circumferential direction, It enables to discriminate the crystal orientation of the organic single crystal grown over the entire peripheral surface.
【0014】上記光波長変換素子の製造過程において、
ガラス製キャピラリー内で成長する有機単結晶は、その
結晶方位の判別が連続的になされるため、結晶の配向方
位が好ましくない場合は、光波長変換素子の製造を中止
し、搬送機構5によってガラス製キャピラリー3を引き
下げて、再度ガラス製キャピラリー3内の有機物質を溶
融させ、単結晶の成長を進めることが可能となる。ま
た、結晶の多結晶化、不純物の混入や立体異性体の混在
も、前記偏光顕微ラマン散乱分光システム6,7によっ
て判別し得るので、特性的な面からの判別,摘出排除も
可能である。つまり、キャピラリーや有機物質を無駄な
く使用し得るばかりでなく、ファイバー型光波長変換素
子の製造過程で結晶方位が判別されるため、必然的に入
射光の偏光方向も決定し得ることになり、従来の試行錯
誤的な対応を要せずに短波長レーザーシステムに組み込
むことができる。In the process of manufacturing the above optical wavelength conversion element,
Since the crystal orientation of the organic single crystal grown in the glass capillary is continuously discriminated, when the crystal orientation is not preferable, the production of the optical wavelength conversion element is stopped and the glass is transferred by the transport mechanism 5. It is possible to pull down the capillaries 3 to melt the organic substances in the glass capillaries 3 again and to advance the growth of the single crystal. Further, polycrystallization of crystals, mixing of impurities, and mixing of stereoisomers can be discriminated by the polarized light Raman scattering spectroscopic systems 6 and 7, and therefore discrimination and removal from a characteristic aspect are also possible. That is, not only can capillaries and organic substances be used without waste, but since the crystal orientation is determined in the manufacturing process of the fiber-type optical wavelength conversion element, the polarization direction of incident light can be inevitably determined. It can be incorporated into a short wavelength laser system without the need for conventional trial and error.
【0015】なお、上記では環状炉4が縦型の光波長変
換素子製造装置の構成例を説明したが、環状炉4が横型
の構造であってもよい。また、上記では有機物質とし
て、2−メチル−4−ニトロアニリン (MNA)を用い、そ
の単結晶をコアとして成長させる使用例を説明したが、
たとえば3−アセトアミド−4−ジメチルアミノニトロ
ベンゼン (DAN),N−(4−ニトロフェニル)−(S)
−プロリノール (NPP),メチル(2,4−ジニトロフェ
ニル)アミノプロピオネート (MAP)などを用いた場合
も、同様に所要の結晶の配向を有するファイバー型光波
長変換素子を製造し得た。In the above, the configuration example of the optical wavelength conversion element manufacturing apparatus in which the annular furnace 4 is vertical is described, but the annular furnace 4 may have a horizontal structure. Further, in the above, an example of using 2-methyl-4-nitroaniline (MNA) as the organic substance and growing the single crystal as the core has been described.
For example, 3-acetamido-4-dimethylaminonitrobenzene (DAN), N- (4-nitrophenyl)-(S)
-When using prolinol (NPP), methyl (2,4-dinitrophenyl) aminopropionate (MAP), etc., a fiber-type optical wavelength conversion element having a desired crystal orientation could be produced in the same manner. .
【0016】[0016]
【発明の効果】上記説明したごとく、本発明に係る光波
長変換素子製造装置によれば、原料・素材などを無駄な
く利用でき、所要のすぐれた性能・特性を備えたファイ
バー型光波長変換素子を生産性高く製造することが可能
となる。As described above, according to the optical wavelength conversion element manufacturing apparatus of the present invention, it is possible to use the raw materials and materials without waste, and the fiber type optical wavelength conversion element having the required excellent performance and characteristics. Can be manufactured with high productivity.
【図1】本発明に係る光波長変換素子製造装置の概略構
成例を示すブロック図。FIG. 1 is a block diagram showing a schematic configuration example of an optical wavelength conversion element manufacturing apparatus according to the present invention.
【図2】ファイバー型光波長変換素子の構成例を示す断
面図。FIG. 2 is a cross-sectional view showing a configuration example of a fiber type optical wavelength conversion element.
1…コア(有機単結晶) 2…クラッド 3…ガラ
ス製キャピラリー 4…環状炉 4a…低温領域部 4b…高温領域部
5…搬送機構 6,7…偏光顕微ラマン散乱分光シス
テム 6a,7a…顕微レンズ 6b,7b…ラマン散乱励
起用Arレーザ 6c,7c…分光器 6d,7d…光検出器
6e,(7e)…コンピューター1 ... Core (organic single crystal) 2 ... Clad 3 ... Glass capillary 4 ... Annular furnace 4a ... Low temperature region 4b ... High temperature region
5 ... Transfer mechanism 6,7 ... Polarization microscope Raman scattering spectroscopy system 6a, 7a ... Microlens 6b, 7b ... Ar laser for Raman scattering excitation 6c, 7c ... Spectroscope 6d, 7d ... Photodetector
6e, (7e) ... Computer
Claims (1)
る有機単結晶を成長させてファイバー型光波長変換素子
を製造する光波長変換素子製造装置であって、キャピラ
リーが挿通配置され、前記キャピラリーを外周面から加
熱する環状炉と、前記環状炉に挿通配置されたキャピラ
リーを軸方向に進退させる搬送機構と、前記キャピラリ
ー内にて成長する有機単結晶を検知・識別する偏光顕微
ラマン散乱分光システムとを具備して成ることを特徴と
する光波長変換素子製造装置。1. An optical wavelength conversion element manufacturing apparatus for manufacturing a fiber type optical wavelength conversion element by growing an organic single crystal having a nonlinear optical effect in a capillary, wherein the capillary is inserted and disposed, and the capillary is provided with an outer peripheral surface. An annular furnace that heats from the tube, a transport mechanism that axially advances and retracts a capillary that is inserted through the annular furnace, and a polarization microscopic Raman scattering spectroscopy system that detects and identifies an organic single crystal growing in the capillary. An apparatus for manufacturing an optical wavelength conversion element, comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4241646A JPH0695190A (en) | 1992-09-10 | 1992-09-10 | Optical wavelength conversion element manufacturing equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4241646A JPH0695190A (en) | 1992-09-10 | 1992-09-10 | Optical wavelength conversion element manufacturing equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0695190A true JPH0695190A (en) | 1994-04-08 |
Family
ID=17077416
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4241646A Withdrawn JPH0695190A (en) | 1992-09-10 | 1992-09-10 | Optical wavelength conversion element manufacturing equipment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0695190A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6750064B2 (en) * | 2000-12-28 | 2004-06-15 | S.S.C.I. Inc. | Methods of screening for possible solid forms |
| US8018588B2 (en) | 2007-06-06 | 2011-09-13 | Aptuit, Inc. | Sample holder and sample preparation device |
-
1992
- 1992-09-10 JP JP4241646A patent/JPH0695190A/en not_active Withdrawn
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6750064B2 (en) * | 2000-12-28 | 2004-06-15 | S.S.C.I. Inc. | Methods of screening for possible solid forms |
| US8018588B2 (en) | 2007-06-06 | 2011-09-13 | Aptuit, Inc. | Sample holder and sample preparation device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Fabrication and application of single crystal fiber: review and prospective | |
| Siegel et al. | Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold | |
| US8351109B2 (en) | Nonlinear optic glassy fibers, methods of making and applications of the same | |
| JP2007526639A (en) | Photon source | |
| Chen et al. | Single crystal Ge core fiber produced via pressure assisted melt filling and CO 2 laser crystallization | |
| EP0737884B1 (en) | Second harmonic generation element and a process for producing the same | |
| Kerkoc et al. | Growth and characterization of 4‐(N, N‐dimethylamino)‐3‐acetamidonitrobenzene single‐crystal cored fibers | |
| JPH0695190A (en) | Optical wavelength conversion element manufacturing equipment | |
| Prokofiev et al. | Growth and characterization of photorefractive Bi12TiO20 single crystals | |
| Rahman et al. | Dendrimer dipole excitation: a new mechanism for terahertz generation | |
| Tang et al. | Femtosecond laser inscribed Yb: LuAG waveguides: guiding performance, micro-spectroscopy characterizations, and refractive index reconstruction | |
| Zhao et al. | Effect of CO2 laser annealing with different laser frequencies on Ge core fiber | |
| JP3368753B2 (en) | Wavelength conversion method | |
| JPH05264402A (en) | Crystal-orientation measuring method of lightguide-type nonlinear optical element | |
| Yen | Preparation of single crystal fibers | |
| Ozgur et al. | Wafer-scale arrays of high-Q silica optical microcavities | |
| Lipinska et al. | Ultrafast laser-generated structural modifications in an Er-doped heavy metal oxide glass | |
| Holdcroft et al. | The Growth of Organic Single Crystals in Glass Capillaries for Second Harmonic Generation | |
| JP2003114454A (en) | Wavelength conversion element and wavelength conversion method and laser apparatus | |
| Shareef et al. | Structural and nonlinear optical properties of melt grown single crystal 1-chloro 2, 4-dinitrobenzene | |
| Kudinova et al. | Silicon-core optical fiber with losses below 0.2 dB/cm | |
| JPH0565277A (en) | Molecular crystal and conversion of wavelength of light using the same | |
| Balasubramanian et al. | Growth and characterization of single crystal cored fibers (SCCF) of novel nonlinear organic optical materials | |
| Reichman et al. | Fluorescence spectroscopy of fiber gratings written with an ultrafast infrared laser and a phase mask | |
| JP2724641B2 (en) | Molecular crystal and method of converting light wavelength using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |