[go: up one dir, main page]

JPH0698664B2 - Insulation pipe manufacturing method - Google Patents

Insulation pipe manufacturing method

Info

Publication number
JPH0698664B2
JPH0698664B2 JP61008740A JP874086A JPH0698664B2 JP H0698664 B2 JPH0698664 B2 JP H0698664B2 JP 61008740 A JP61008740 A JP 61008740A JP 874086 A JP874086 A JP 874086A JP H0698664 B2 JPH0698664 B2 JP H0698664B2
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral surface
layer
coating layer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61008740A
Other languages
Japanese (ja)
Other versions
JPS62167023A (en
Inventor
幸雄 山本
進 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP61008740A priority Critical patent/JPH0698664B2/en
Publication of JPS62167023A publication Critical patent/JPS62167023A/en
Publication of JPH0698664B2 publication Critical patent/JPH0698664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属管の周囲に発泡ポリエチレン製の被覆層
を設けた断熱パイプの製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a heat insulating pipe in which a metal polyethylene pipe is provided with a covering layer made of expanded polyethylene.

(従来技術及びその問題点) この種の断熱パイプの製造に際しては、上流側から金属
管を走行させ、押出機で被覆層を金属管の外周面に被覆
しながら、下流側からキャタピラ機構で断熱パイプを引
張るようになっている。
(Prior art and its problems) When manufacturing this type of heat-insulating pipe, the metal pipe is run from the upstream side, and while the coating layer is coated on the outer peripheral surface of the metal pipe by the extruder, heat insulation is performed by the caterpillar mechanism from the downstream side. It is designed to pull a pipe.

しかしながら、キャタピラ機構は被覆層の外周面を掴ん
で断熱パイプを引張るので、被覆層と金属管の付着力が
弱いと、被覆層だけが金属管から剥がれてしまうという
問題がある。特に断熱パイプの軽量化のために、被覆層
を形成する発泡ポリエチレンの発泡度を上げた場合に
は、前述の問題が顕著に発生する。
However, since the caterpillar mechanism grasps the outer peripheral surface of the coating layer and pulls the heat insulating pipe, if the adhesive force between the coating layer and the metal pipe is weak, only the coating layer is peeled off from the metal pipe. In particular, when the foaming degree of the foamed polyethylene forming the coating layer is increased in order to reduce the weight of the heat insulating pipe, the above-mentioned problem remarkably occurs.

被覆層の発泡ポリエチレンは益々発泡度が高くなる傾向
にあり、被覆層と金属管の付着力を向上させることが要
望されている。
The foamed polyethylene of the coating layer tends to have a higher degree of foaming, and it is desired to improve the adhesive force between the coating layer and the metal tube.

(発明の目的) 本発明は、被覆層と金属管の付着力を向上させて被覆層
だけが金属管から剥がれてしまうことを防止し得る断熱
パイプの製造方法を提供することを目的としている。
(Object of the invention) An object of the present invention is to provide a method for manufacturing a heat insulating pipe capable of improving the adhesive force between a coating layer and a metal pipe and preventing only the coating layer from peeling off from the metal pipe.

(発明の構成) (1)技術的手段 本発明は、銅又はアルミからなる金属管の周囲に発泡ポ
リエチレン製の被覆層12を設けた断熱パイプの製造方法
であって、送出しリール20から送出された金属管をミー
タリング機構24で真直ぐに引伸ばし、予熱機構26で金属
管を50℃〜60℃まで予熱した後に第1段スクリュー28a
に続き第2段スクリュー28bを有する押出機28で発泡度5
0%〜85%の高発泡度の発泡ポリエチレンを金属管の外
周面10aに直接被覆し、直ちにサイジングダイ30と水槽3
2をこの順序で通し、外周面56を2個の引取ベルト36aの
間に掴んで引張る引取機36で引取ることを特徴とする断
熱パイプの製造方法である。
(Structure of the Invention) (1) Technical Means The present invention is a method for manufacturing a heat insulating pipe in which a covering layer 12 made of foamed polyethylene is provided around a metal pipe made of copper or aluminum, and is delivered from a delivery reel 20. The metal tube thus drawn is stretched straight by the metering mechanism 24, the metal tube is preheated to 50 ° C to 60 ° C by the preheating mechanism 26, and then the first-stage screw 28a is used.
The extruder 28 having a second-stage screw 28b is followed by a foaming degree of 5
The outer peripheral surface 10a of the metal tube is directly coated with 0% to 85% high-foaming polyethylene foam, and immediately sizing die 30 and water tank 3
2 is passed in this order, and the outer peripheral surface 56 is gripped between the two take-up belts 36a and pulled by the pulling machine 36 for pulling.

(2)作用 高発泡度の発泡ポリエチレンが金属管に強固に付着する
予定の温度にまで金属管を予熱するので、金属管の外周
面に直接被覆しても、発泡ポリエチレンの付着力が強く
なる。
(2) Function Since the metal pipe is preheated to a temperature at which the high-expansion polyethylene foam will firmly adhere to the metal pipe, even if the metal pipe is directly coated on the outer peripheral surface, the adhesive force of the polyethylene foam becomes strong. .

(実施例) 本発明を採用して製造した断熱パイプを示す第1図にお
いて、10は例えば給水給湯用の水を通す銅管(金属管)
である。銅管10の外周面10aには詳しくは後述する被覆
層12が直接に被覆されている。被覆層12は水密性を有す
る独立発泡ポリエチレン製であり、被覆層12の発泡度は
約80%の高発泡度に設定されている。
(Example) In FIG. 1 showing a heat insulating pipe manufactured by adopting the present invention, 10 is, for example, a copper pipe (metal pipe) through which water for supplying hot water is supplied.
Is. The outer peripheral surface 10a of the copper tube 10 is directly coated with a coating layer 12 described later in detail. The coating layer 12 is made of water-tight closed-cell polyethylene, and the coating layer 12 has a high degree of foaming of about 80%.

被覆層12は銅管10の外周面10aへの付着力が弱く、通常
の被覆工程では被覆層12が外周面10aから剥がれてしま
うので、第2図に示すような製造設備で製造される。
The coating layer 12 has a weak adhesion to the outer peripheral surface 10a of the copper tube 10, and the coating layer 12 is peeled off from the outer peripheral surface 10a in a normal coating process, so that the coating layer 12 is manufactured by a manufacturing facility as shown in FIG.

第2図において、20は送出しリールであり、送出しリー
ル20から銅管10が矢印A方向に巻き取りリール22へ向か
って所定の速度で走行している。送出しリール20と巻き
取りリール22の間には、ミータリング機構24、予熱機構
26、押出機28、サイジングダイ30、水槽32、カウンタ3
5、引取機36が順次に配置されている。
In FIG. 2, 20 is a delivery reel, and the copper tube 10 is traveling from the delivery reel 20 in the direction of arrow A toward the take-up reel 22 at a predetermined speed. A metering mechanism 24 and a preheating mechanism are provided between the delivery reel 20 and the take-up reel 22.
26, extruder 28, sizing die 30, water tank 32, counter 3
5, the take-up machine 36 is arranged in sequence.

ミータリング機構24は送出しリール20に巻き取られてい
る銅管10を真直ぐに引伸ばすための機構である。予熱機
構26は銅管10の外周面10a(第1図)に被覆層12を直接
に被覆し得るような詳しくは後述する所定の温度まで銅
管10を予熱するものである。
The metering mechanism 24 is a mechanism for straightly stretching the copper tube 10 wound around the delivery reel 20. The preheating mechanism 26 preheats the copper tube 10 to a predetermined temperature described later in detail so that the outer peripheral surface 10a (FIG. 1) of the copper tube 10 can be directly coated with the coating layer 12.

押出機28は高発泡度ポリエチレン樹脂を外周面10aに被
覆するものであり、押出機28は第1段スクリュー28aと
第2段スクリュー28bを有する所謂2段スクリュータイ
プである。第1段スクリュー28aより第2段スクリュー2
8bが大径であり、前記樹脂を一定の安定した状態で被覆
するようになっている。
The extruder 28 coats the outer peripheral surface 10a with a high-foaming polyethylene resin, and the extruder 28 is a so-called two-stage screw type having a first stage screw 28a and a second stage screw 28b. 2nd stage screw 2 from 1st stage screw 28a
8b has a large diameter so that the resin can be coated in a constant and stable state.

サイジングダイ30は外周面10a(第1図)に被覆された
後の被覆層12(第1図)の直径を高精度に維持するため
の機構である。水槽32は被覆層12を冷却するために設け
られている。外径測定器34は冷却後の被覆層12の直径を
測定する測定機である。引取機36は被覆層12の外周面を
2個の引取ベルト36aの間に掴んで、断熱パイプ全体を
矢印A方向に引張る駆動源である。
The sizing die 30 is a mechanism for maintaining the diameter of the coating layer 12 (FIG. 1) after coating the outer peripheral surface 10a (FIG. 1) with high accuracy. The water tank 32 is provided to cool the coating layer 12. The outer diameter measuring instrument 34 is a measuring instrument for measuring the diameter of the coating layer 12 after cooling. The take-up machine 36 is a drive source that holds the outer peripheral surface of the coating layer 12 between the two take-up belts 36a and pulls the entire heat insulating pipe in the direction of arrow A.

押出機28での被覆層12の被覆工程を示す第3図におい
て、銅管10は予熱機構26(第2図)で50〜60℃の温度に
予熱されている。銅管10の半径方向外方には周知のニッ
プル40、ダイス42が配置されており、ニップル40とダイ
ス42間の環状通路に第1段スクリュー28a、第2段スク
リュー28b(第2図)から発泡ポリエチレン樹脂44が供
給されている。発泡ポリエチレン樹脂44の発泡度は80%
に設定されている。
In FIG. 3 showing the coating process of the coating layer 12 in the extruder 28, the copper tube 10 is preheated to a temperature of 50 to 60 ° C. by the preheating mechanism 26 (FIG. 2). A well-known nipple 40 and a die 42 are arranged on the outer side of the copper pipe 10 in the radial direction. The first-stage screw 28a and the second-stage screw 28b (Fig. 2) are provided in an annular passage between the nipple 40 and the die 42. Foamed polyethylene resin 44 is supplied. Foaming degree of foamed polyethylene resin 44 is 80%
Is set to.

外周面10aの外周面に約140℃で押出された発泡ポリエチ
レン樹脂44は、第4図に示すように、外周面10aに接触
して発泡ポリエチレン樹脂44の内周面46が一旦冷却さ
れ、内周層48が形成される。内周層48は中央部の気泡層
50と比較すると速く固化するので、内周層48内には気泡
52が混入しない。
The expanded polyethylene resin 44 extruded onto the outer peripheral surface of the outer peripheral surface 10a at about 140 ° C. comes into contact with the outer peripheral surface 10a, and the inner peripheral surface 46 of the expanded polyethylene resin 44 is once cooled, and A peripheral layer 48 is formed. Inner layer 48 is a bubble layer in the center
As it solidifies faster than 50, air bubbles in the inner layer 48
52 does not mix.

発泡ポリエチレン樹脂44の外周層54は冷却されたサイジ
ングダイ30を通すことにより平滑な外周面56が形成され
る。内周層48と外周層54の間の気泡層50には気泡52が略
均一に分布し、気泡層50は大きな断熱効果を有してい
る。
The outer peripheral layer 54 of the foamed polyethylene resin 44 is passed through the cooled sizing die 30 to form a smooth outer peripheral surface 56. Bubbles 52 are substantially uniformly distributed in the bubble layer 50 between the inner peripheral layer 48 and the outer peripheral layer 54, and the bubble layer 50 has a large heat insulating effect.

以上の各工程を工程順に説明すると、次のようになる。Each of the above steps will be described below in the order of steps.

工程1:ミータリング機構24で銅管10を真直ぐに引伸ば
す。
Step 1: The copper tube 10 is stretched straight by the metering mechanism 24.

工程2:予熱機構26で銅管10を50〜60℃まで予熱する。Step 2: The preheating mechanism 26 preheats the copper tube 10 to 50 to 60 ° C.

工程3:押出機28で銅管10の外周面10aに発泡ポリエチレ
ン樹脂44を被覆する。
Step 3: The extruder 28 coats the outer peripheral surface 10a of the copper tube 10 with the foamed polyethylene resin 44.

工程4:サイジングダイ30で発泡ポリエチレン樹脂44の外
径の精度を上げる。
Step 4: Increase the accuracy of the outer diameter of the expanded polyethylene resin 44 with the sizing die 30.

工程5:水槽32で発泡ポリエチレン樹脂44を冷却し、被覆
層12を形成する。
Step 5: The expanded polyethylene resin 44 is cooled in the water tank 32 to form the coating layer 12.

工程5:外径測定器34で被覆層12の外径を測定する。Step 5: The outer diameter of the coating layer 12 is measured by the outer diameter measuring device 34.

工程6:カウンタ35で長さを測定する。Step 6: Measure the length with the counter 35.

工程7:引取機36で断熱パイプを巻き取りリール22へ送
る。
Process 7: The heat insulating pipe is sent to the take-up reel 22 by the take-up machine 36.

次に作用を説明する。第4図で内周層48の内周面46には
内周層48が形成され、該内周層48は外周面10aを強く把
持し、引取機36(第2図)で被覆層12の外周面を掴んで
矢印A方向に引張っても、被覆層12が外周面10aから剥
がれてしまうことはない。
Next, the operation will be described. In FIG. 4, an inner peripheral layer 48 is formed on the inner peripheral surface 46 of the inner peripheral layer 48, and the inner peripheral layer 48 strongly grips the outer peripheral surface 10a, and the take-up machine 36 (FIG. 2) removes the cover layer 12 from the inner peripheral layer 48. Even if the outer peripheral surface is grasped and pulled in the direction of arrow A, the coating layer 12 does not peel off from the outer peripheral surface 10a.

したがって第5図に示す従来のように、銅管10の外周面
10aにポリエチレン層60(非発泡)を被覆した後に、ポ
リエチレン層60の外周面に被覆層12を被覆する必要がな
くなる。このため第2図の予熱機構26と押出機28の間に
第1段押出機62(第2図仮想線図)を設けることも不要
になる。
Therefore, as in the conventional case shown in FIG.
After coating the polyethylene layer 60 (non-foamed) on 10a, it becomes unnecessary to coat the outer peripheral surface of the polyethylene layer 60 with the coating layer 12. Therefore, it is not necessary to provide the first stage extruder 62 (phantom diagram in FIG. 2) between the preheating mechanism 26 and the extruder 28 in FIG.

また第4図の外周層53の外周面56は平滑であるので、被
覆層12の外周面から水が被覆層12の内部に染込むことも
なくなる。
Further, since the outer peripheral surface 56 of the outer peripheral layer 53 in FIG. 4 is smooth, water does not permeate from the outer peripheral surface of the coating layer 12 into the coating layer 12.

第3図、第4図において、各データを次のように設定し
た場合には、銅管10の予熱温度は54℃が最適である。こ
の場合内周層48の厚さδ1が0.15mm、外周層54の厚さδ
2が2.0mmになる。
In FIGS. 3 and 4, when each data is set as follows, the optimum preheating temperature of the copper tube 10 is 54 ° C. In this case, the inner peripheral layer 48 has a thickness δ1 of 0.15 mm, and the outer peripheral layer 54 has a thickness δ1.
2 becomes 2.0 mm.

銅管10の直径D1=9.52mm 銅管10の肉厚T1=0.5mm 銅管10の送り速度S=10m/min. 被覆層12の肉厚T2=2.0mm 発泡ポリエチレン樹脂44の供給量W=300cc/min. (発明の効果) 以上説明したように本発明による断熱パイプの製造方法
では、ミータリング機構24で銅管10を真直ぐに引伸ば
し、予熱機構26で銅管10を所定の温度にまで予熱した後
に、押出機28で発泡ポリエチレン樹脂44を直接外周面10
aに被覆し、第4図の内周層48で被覆層12を外周面10aに
強固に付着させるようにしたので、引取機36で被覆層12
の外周面を掴んで断熱パイプを矢印A方向に引張って
も、被覆層12が外周面10aから剥がれてしまうことがな
くなり、第5図のポリエチレン層60を省くことができ
る。
Diameter of copper tube 10 D1 = 9.52 mm Thickness of copper tube 10 T1 = 0.5 mm Feed rate of copper tube 10 S = 10 m / min. Thickness of coating layer 12 T2 = 2.0 mm Supply amount of expanded polyethylene resin 44 W = 300cc / min. (Effect of the invention) As described above, in the method for manufacturing an adiabatic pipe according to the present invention, the metering mechanism 24 stretches the copper pipe 10 straight and the preheating mechanism 26 brings the copper pipe 10 to a predetermined temperature. After preheating, the expanded polyethylene resin 44 is directly applied to the outer peripheral surface 10 by the extruder 28.
Since the inner peripheral layer 48 shown in FIG. 4 is used to firmly adhere the outer peripheral surface 10a to the outer peripheral surface 10a, the take-up machine 36 covers the outer peripheral layer 10a.
Even if the outer peripheral surface is grasped and the heat insulating pipe is pulled in the direction of arrow A, the coating layer 12 will not be peeled off from the outer peripheral surface 10a, and the polyethylene layer 60 in FIG. 5 can be omitted.

したがって第2図の予熱機構26と押出機28の間に第1段
押出機62を設ける必要もなくなり、断熱パイプの製造設
備を簡略化できる。
Therefore, it is not necessary to provide the first-stage extruder 62 between the preheating mechanism 26 and the extruder 28 shown in FIG. 2, and the facility for manufacturing the heat insulating pipe can be simplified.

外周面10aに約140℃で押出された発泡ポリエチレン樹脂
44は、外周面10aが比較的低い50℃〜60℃に予熱された
外周面10a(第4図)に接触して発泡ポリエチレン樹脂4
4の内周面44が一旦冷却され、内周層48が形成される。
内周層48は中央部の気泡層50と比較すると速く固化する
ので、内周層48内には気泡52が混入せず、外周面10aと
の結合が強固になる。押出機28を出た被覆層12はすぐに
比較的に低温のサイジングダイ30を通過するので、外周
面56が冷却され、気泡52を含まない丈夫な外周層54がで
き、引き続き水槽32で冷却される。そして外周面56を2
個の引取ベルト36aの間に掴んで引張る引取機36で引取
るので、丈夫な内周層48と外周層54の作用で、引取り時
に被覆層12が外周面10aから剥がれることはなくなる。
ミータリング機構24を予熱機構26の前に配置したので、
予熱による直線度の向上と相俟って、被覆層12の厚さの
均一化が図れる。又第1段スクリュー28aに続き第2段
スクリュー28bを配置したので、樹脂を一定の安定した
状態で被覆することができる。銅管10を50℃より低い温
度で予熱すると、内周層48の円滑な形成が困難になり、
60℃より高い温度まで予熱すると、内周層48内へ気泡52
の侵入が増し、内周層48の強度が低下する。発泡ポリエ
チレン樹脂44の発泡度を50%より下げると、所期の断熱
性が得られない。85%を越えると充分な強度を確保する
ことが困難になる。
Foamed polyethylene resin extruded on the outer peripheral surface 10a at about 140 ° C
The outer peripheral surface 10a is in contact with the outer peripheral surface 10a (Fig. 4) which has been preheated to a relatively low temperature of 50 ° C to 60 ° C.
The inner peripheral surface 44 of 4 is once cooled, and the inner peripheral layer 48 is formed.
Since the inner peripheral layer 48 solidifies faster than the central bubble layer 50, the bubbles 52 are not mixed in the inner peripheral layer 48 and the bond with the outer peripheral surface 10a becomes strong. Since the coating layer 12 exiting the extruder 28 immediately passes through the sizing die 30 having a relatively low temperature, the outer peripheral surface 56 is cooled, and a durable outer peripheral layer 54 containing no bubbles 52 is formed, and subsequently cooled in the water tank 32. To be done. And the outer surface 56
Since the take-up machine 36, which holds and pulls between the take-up belts 36a, pulls the coating layer 12 from the outer peripheral surface 10a during the take-up due to the action of the durable inner peripheral layer 48 and the outer peripheral layer 54.
Since the metering mechanism 24 is arranged in front of the preheating mechanism 26,
The thickness of the coating layer 12 can be made uniform in combination with the improvement of the linearity by preheating. Since the second-stage screw 28b is arranged after the first-stage screw 28a, the resin can be coated in a constant and stable state. When the copper tube 10 is preheated at a temperature lower than 50 ° C., it becomes difficult to smoothly form the inner peripheral layer 48,
When preheated to a temperature higher than 60 ° C, bubbles 52 will be generated in the inner layer 48.
And the strength of the inner peripheral layer 48 decreases. If the degree of foaming of the foamed polyethylene resin 44 is lower than 50%, the desired heat insulation cannot be obtained. If it exceeds 85%, it becomes difficult to secure sufficient strength.

(別の実施例) (1)本発明は以上の実施例に限定されず、次の各項目
の範囲に適用できる。
(Other Examples) (1) The present invention is not limited to the above examples, but can be applied to the ranges of the following items.

発泡ポリエチレンの材質:低密度ポリエチレン、 高密度ポリエチレン、ブレンドタイプ 発泡剤(フレオン):有、無 成核剤:0.5〜10.0% 金属管の材質:銅、アルミ 金属管の外径:7.0〜55mm 金属管の肉厚T1:0.5〜3.0mm 被覆層12の発泡度:50〜85% 被覆層12の実効透電率:1.195〜1.65 被覆層12の外径:12〜80mmPolyethylene foam material: Low-density polyethylene, high-density polyethylene, blend type Foaming agent (Freon): Yes, Nucleating agent: 0.5-10.0% Metal tube material: Copper, aluminum Metal tube outer diameter: 7.0-55mm Metal Tube wall thickness T1: 0.5 to 3.0 mm Foaming degree of coating layer 12: 50 to 85% Effective electric conductivity of coating layer 12: 1.195 to 1.65 Outer diameter of coating layer 12: 12 to 80 mm

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を採用した断熱パイプの横断面図、第2
図は断熱パイプの製造設備を示す構造略図、第3図は発
泡ポリエチレン樹脂の被覆工程を示す縦断面図、第4図
は第3図のIV部拡大図、第5図は従来の断熱パイプを示
す横断面図である。 10……銅管、12……被覆層、26……予熱機構、28……押
出機、36……引取機、44……発泡ポリエチレン樹脂、48
……内周層、54……外周層
FIG. 1 is a cross-sectional view of a heat insulating pipe adopting the present invention, and FIG.
Fig. 3 is a structural schematic diagram showing the heat insulation pipe manufacturing equipment, Fig. 3 is a vertical cross-sectional view showing the process of coating the foamed polyethylene resin, Fig. 4 is an enlarged view of IV part of Fig. 3, and Fig. 5 is a conventional heat insulation pipe. FIG. 10 …… Copper tube, 12 …… Coating layer, 26 …… Preheating mechanism, 28 …… Extruder, 36 …… Drawer, 44 …… Polyethylene foam resin, 48
…… Inner layer, 54 …… Outer layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】銅又はアルミからなる金属管の周囲に発泡
ポリエチレン製の被覆層(12)を設けた断熱パイプの製
造方法であって、送出しリール(20)から送出された金
属管をミータリング機構(24)で真直ぐに引伸し、予熱
機構(26)で金属管を50℃〜60℃まで予熱した後に、第
1段スクリュー(28a)に続き第2段スクリュー(28b)
を有する押出機(28)で発泡度50%〜85%の高発泡度の
発泡ポリエチレンを金属管の外周面(10a)に直接被覆
し、直ちにサイジングダイ(30)と水槽(32)をこの順
序で通し、外周面(56)を2個の引取ベルト(36a)の
間に掴んで引張る引取機(36)で引取ることを特徴とす
る断熱パイプの製造方法。
1. A method of manufacturing a heat insulating pipe in which a covering layer (12) made of foamed polyethylene is provided around a metal tube made of copper or aluminum, and the metal tube sent from a sending reel (20) is metered. The mechanism (24) stretches straightly, and the preheating mechanism (26) preheats the metal tube to 50 ° C to 60 ° C, then the 1st stage screw (28a) followed by the 2nd stage screw (28b).
The outer peripheral surface (10a) of the metal tube is directly coated with high-expansion polyethylene having a foaming degree of 50% to 85% by an extruder (28) having a sizing die (30) and a water tank (32) in this order. A method for producing a heat-insulated pipe, characterized in that the outer peripheral surface (56) is passed between two take-up belts (36a) and pulled by a take-up machine (36).
JP61008740A 1986-01-17 1986-01-17 Insulation pipe manufacturing method Expired - Lifetime JPH0698664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008740A JPH0698664B2 (en) 1986-01-17 1986-01-17 Insulation pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008740A JPH0698664B2 (en) 1986-01-17 1986-01-17 Insulation pipe manufacturing method

Publications (2)

Publication Number Publication Date
JPS62167023A JPS62167023A (en) 1987-07-23
JPH0698664B2 true JPH0698664B2 (en) 1994-12-07

Family

ID=11701341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008740A Expired - Lifetime JPH0698664B2 (en) 1986-01-17 1986-01-17 Insulation pipe manufacturing method

Country Status (1)

Country Link
JP (1) JPH0698664B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368000B1 (en) * 2000-05-23 2002-04-09 Berol Corporation Writing instrument and method of making same
JP4346579B2 (en) * 2005-05-12 2009-10-21 古河電気工業株式会社 Manufacturing method of composite pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216235B2 (en) * 1972-01-31 1977-05-07
JPS51128367A (en) * 1975-04-30 1976-11-09 Kubota Ltd Method of coating foaming resin
JPS55100144A (en) * 1979-01-24 1980-07-30 Nippon Steel Corp Manufacture of plastic cladding steel pipe
JPS6072219U (en) * 1983-10-25 1985-05-21 積水化学工業株式会社 Equipment for covering core material with thermoplastic resin foam
JPS60112418A (en) * 1983-11-24 1985-06-18 Mitsubishi Petrochem Co Ltd Manufacturing method of insulation coated pipe

Also Published As

Publication number Publication date
JPS62167023A (en) 1987-07-23

Similar Documents

Publication Publication Date Title
CA2053779C (en) Process for production of polypropylene sheets or films
JPH0698664B2 (en) Insulation pipe manufacturing method
JPS58185234A (en) Manufacture of heat-insulating conduit
JPS6218340B2 (en)
JP2801199B2 (en) Continuous extruder for composite filaments
CN113421714A (en) Production process of coaxial cable foaming core wire with excellent echo performance
WO2006121130A1 (en) Composite pipe
JP3605136B2 (en) High foam polyethylene coaxial cable manufacturing method
JPS6050130B2 (en) Manufacturing method of laminated sheet
JPS635849Y2 (en)
JPS6144065B2 (en)
GB2167000A (en) Extrusion method and apparatus for the production of a wire encased in foamed plastics
JP2002156074A (en) Coated pipe and manufacturing method thereof
JPS623923A (en) Manufacture of heat insulating pipe
JPH10296827A (en) Polymer coated metal tube and its coating forming method
JPS623922A (en) Manufacture of heat insulating pipe
JPH11348145A (en) Production of synthetic resin pipe
JPS601450Y2 (en) High foam insulated wire manufacturing equipment
JP2022152748A (en) Manufacturing method for coated pipe
JP2003071915A (en) Method for molding heat insulating cover, and mold
JPS6231450B2 (en)
JP2618472B2 (en) Aluminum coated wire manufacturing equipment
JPS61110525A (en) Manufacture of long sized heat insulation pipe
JPH0618091B2 (en) Method for manufacturing foam insulated wire
JP2555179B2 (en) Method for manufacturing foamed fluororesin insulated wire