JPH0699178A - Electrolytical treating method for waste chemical plating liquid - Google Patents
Electrolytical treating method for waste chemical plating liquidInfo
- Publication number
- JPH0699178A JPH0699178A JP27795792A JP27795792A JPH0699178A JP H0699178 A JPH0699178 A JP H0699178A JP 27795792 A JP27795792 A JP 27795792A JP 27795792 A JP27795792 A JP 27795792A JP H0699178 A JPH0699178 A JP H0699178A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- acid
- chemical plating
- plating liquid
- lead dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 33
- 239000000126 substance Substances 0.000 title claims abstract description 32
- 238000007747 plating Methods 0.000 title claims abstract description 31
- 239000002699 waste material Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 29
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 claims abstract description 44
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 38
- 235000011007 phosphoric acid Nutrition 0.000 claims abstract description 19
- -1 hypophosphorous acid ion Chemical class 0.000 claims abstract description 15
- 230000001590 oxidative effect Effects 0.000 claims abstract description 8
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 24
- 230000003647 oxidation Effects 0.000 abstract description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052697 platinum Inorganic materials 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 abstract description 5
- 159000000007 calcium salts Chemical class 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 4
- 239000000155 melt Substances 0.000 abstract 1
- 238000004062 sedimentation Methods 0.000 abstract 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 22
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical compound [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000004 White lead Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- IIRVGTWONXBBAW-UHFFFAOYSA-M disodium;dioxido(oxo)phosphanium Chemical compound [Na+].[Na+].[O-][P+]([O-])=O IIRVGTWONXBBAW-UHFFFAOYSA-M 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- RYZCLUQMCYZBJQ-UHFFFAOYSA-H lead(2+);dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Pb+2].[Pb+2].[Pb+2].[O-]C([O-])=O.[O-]C([O-])=O RYZCLUQMCYZBJQ-UHFFFAOYSA-H 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Chemically Coating (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、化学メッキ廃液中に含
有される次亜リン酸及び亜リン酸イオンを経済的かつ効
率的にオルトリン酸に電解的に酸化するための方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for economically and efficiently electrolytically oxidizing hypophosphorous acid and phosphite ions contained in a chemical plating waste liquid to orthophosphoric acid.
【0002】[0002]
【従来技術とその問題点】次亜リン酸を還元剤として添
加した化学メッキ液中では、金属イオンの還元析出過程
で前記次亜リン酸の酸化により亜リン酸が生成する。こ
のメッキ液中の亜リン酸濃度はメッキ操作の継続により
徐々に増加し、一定濃度以上に達すると自己分解が起
き、メッキ液として使用できなくなるため、該メッキ液
は自己分解を起こす前にメッキ廃液として廃棄される。
このメッキ廃液中には、次亜リン酸、亜リン酸、有機酸
及び重金属イオンが多く含まれ、各化合物は別個の方法
で処理されるが、その処理工程は煩雑である。例えば亜
リン酸の処理方法として過酸化水素や次亜塩素酸ナトリ
ウム等の酸化剤を加えて亜リン酸をオルトリン酸に酸化
し、これにカルシウム塩を添加して酸化により生成した
オルトリン酸をリン酸カルシウムとして沈澱除去する方
法がある。しかしこの方法では前記過酸化水素等の酸化
剤の酸化率が低く過剰量の酸化剤を加えたり、酸化率の
高い領域にpHを調整したり、あるいはタングステン酸
等の触媒を添加するなどして酸化率の向上が図られてい
る。2. Description of the Related Art In a chemical plating solution in which hypophosphorous acid is added as a reducing agent, phosphorous acid is produced by the oxidation of hypophosphorous acid in the process of reducing and depositing metal ions. The concentration of phosphorous acid in this plating solution gradually increases as the plating operation continues, and when it reaches a certain level or more, it self-decomposes and cannot be used as a plating solution. Discarded as waste liquid.
This plating waste liquid contains a large amount of hypophosphorous acid, phosphorous acid, organic acid and heavy metal ions, and each compound is treated by a separate method, but the treatment process is complicated. For example, as a method for treating phosphorous acid, an oxidizing agent such as hydrogen peroxide or sodium hypochlorite is added to oxidize phosphorous acid to orthophosphoric acid, and a calcium salt is added to this to convert orthophosphoric acid generated by oxidation to calcium phosphate. There is a method of removing the precipitate. However, in this method, the oxidizing rate of the oxidizing agent such as hydrogen peroxide is low and an excessive amount of oxidizing agent is added, the pH is adjusted to a region where the oxidizing rate is high, or a catalyst such as tungstic acid is added. The oxidation rate is being improved.
【0003】しかしこの方法では、添加する薬剤の使用
量が多くなって経済的でなくなるだけでなく、残留する
多量の薬剤の処理、該薬剤との反応により生ずる反応生
成物の二次処理が必要となり、更に廃液量が増加する等
の問題点があり、しかも亜リン酸を全てオルトリン酸に
酸化することは通常困難であり、前記方法は効率上及び
経済上有効な方法とは言いがたい。このような薬剤添加
による方法の限界に鑑み、電解的な方法により次亜リン
酸及び亜リン酸を次亜リン酸に変換する方法が提案され
ている。例えばこの電解酸化に鉛又は鉛合金から成る電
極を使用すると、鉛は安価であるが廃液の電解処理中に
鉛イオンの溶出が著しく、リン酸鉛を含む鉛化合物が蓄
積してしまう。一方白金電極や白金メッキチタン電極を
用いてパルス電解法により亜リン酸イオンを含む化学メ
ッキ廃液の電解酸化を行う場合は(特公昭63-80897
号)、白金が高価であるだけでなく、前記廃液中にはリ
ンゴ酸やクエン酸等の有機酸が多く含まれているため、
耐食性及び耐久性が不十分であるだけでなく、定電流法
により電解酸化処理する場合には亜リン酸の酸化効率が
極めて低いという問題点がある。However, in this method, not only is the amount of chemicals added to be uneconomical because it becomes large, but it is necessary to treat a large amount of residual chemicals and to carry out a secondary treatment of the reaction product generated by the reaction with the chemicals. However, it is difficult to oxidize all phosphorous acid to orthophosphoric acid, and it cannot be said that the above method is effective and economically effective. In view of such a limitation of the method of adding a chemical, a method of converting hypophosphorous acid and hypophosphorous acid into hypophosphorous acid by an electrolytic method has been proposed. For example, when an electrode made of lead or a lead alloy is used for this electrolytic oxidation, lead is inexpensive but lead ions are significantly eluted during electrolytic treatment of the waste liquid, and lead compounds containing lead phosphate accumulate. On the other hand, when performing electrolytic oxidation of a chemical plating waste liquid containing phosphite ions by a pulse electrolysis method using a platinum electrode or a platinum-plated titanium electrode (Japanese Patent Publication No. Sho 63-80897).
No.), platinum is not only expensive, but since the waste liquid contains a large amount of organic acids such as malic acid and citric acid,
In addition to insufficient corrosion resistance and durability, there is a problem that the efficiency of phosphorous acid oxidation is extremely low when electrolytic oxidation treatment is performed by the constant current method.
【0004】[0004]
【発明の目的】本発明は、次亜リン酸及び亜リン酸を含
む化学メッキ廃液を電解酸化して前記亜リン酸をオルト
リン酸に変換して沈澱除去する際の前記電解酸化に使用
する電極を適宜選択することにより前記酸化をほぼ定量
的にかつ安価に行うことのできる化学メッキ廃液の電解
処理方法を提供することを目的とする。It is an object of the present invention to provide an electrode used for the electrolytic oxidation when electrolytically oxidizing a chemical plating waste liquid containing hypophosphorous acid and phosphorous acid to convert the phosphorous acid into orthophosphoric acid for precipitation removal. It is an object of the present invention to provide an electrolytic treatment method for a chemical plating waste liquid, which can perform the oxidation almost quantitatively and inexpensively by appropriately selecting
【問題点を解決するための手段】本発明は、次亜リン酸
及び亜リン酸イオンを含む化学メッキ廃液中の次亜リン
酸及び亜リン酸イオンを不溶性電極を使用して電解的に
酸化してオルトリン酸に変換する化学メッキ廃液の電解
処理方法において、前記不溶性電極として二酸化鉛電極
を使用することを特長とする化学メッキ廃液の電解処理
方法である。SUMMARY OF THE INVENTION The present invention is an electrolytic oxidation of hypophosphite and phosphite ions in a chemical plating waste liquid containing hypophosphite and phosphite ions using an insoluble electrode. In the method for electrolytically treating a chemical plating waste liquid which is then converted into orthophosphoric acid, a lead dioxide electrode is used as the insoluble electrode.
【0005】以下本発明を詳細に説明する。前述の通り
次亜リン酸及び亜リン酸を含む化学メッキ廃液を電解処
理する場合には、電極特に陽極の選択が重要であり、本
発明では二酸化鉛電極を使用する。本発明方法に使用す
る二酸化鉛電極の電極基体は導電性及び耐食性を有する
ものであれば特に限定されず種々の物質が用いられる
が、チタン、タンタル、ニオブ、ジルコニウム、鉄、又
はこれらの合金等が好ましく使用される。通常前記チタ
ン、タンタル及びニオブ等の弁金属やこれらを主とする
合金を使用し、これらの中で特に望ましいのは取扱いの
容易性、耐食性等の点からチタンやこれらの合金であ
り、用途に応じてニオブ、タンタル等の他の弁金属やそ
の合金を使用する。これらの電極基体には十分な前処理
を施すことが望ましく、該前処理としてはブラスト処理
による表面積増大、酸洗による表面活性化、及び硫酸水
溶液等の電解液中で陰分極を行い基体表面から水素ガス
を発生させて表面洗浄を行いかつ該水素ガスにより一部
生成する水素化物による活性化を行う方法等がある。The present invention will be described in detail below. As described above, when electrolytically treating a chemical plating waste liquid containing hypophosphorous acid and phosphorous acid, selection of an electrode, particularly an anode, is important, and a lead dioxide electrode is used in the present invention. The electrode substrate of the lead dioxide electrode used in the method of the present invention is not particularly limited as long as it has conductivity and corrosion resistance, and various substances may be used, such as titanium, tantalum, niobium, zirconium, iron, or alloys thereof. Is preferably used. Usually, titanium, tantalum, and valve metals such as niobium and alloys mainly composed of these are used, and among these, titanium and alloys thereof are particularly desirable from the viewpoints of easy handling, corrosion resistance, etc. Other valve metals such as niobium and tantalum and their alloys are used accordingly. It is desirable to perform sufficient pretreatment on these electrode substrates. As the pretreatment, the surface area is increased by blasting, surface activation is performed by pickling, and negative polarization is performed in an electrolytic solution such as a sulfuric acid aqueous solution to perform substrate pretreatment. There is a method in which hydrogen gas is generated to clean the surface and activated by a hydride partially generated by the hydrogen gas.
【0006】この電極基体上に直接二酸化鉛層を形成し
ても良いが、チタン、タンタル、ニオブ、ジルコニウ
ム、スズ、アンチモン等の酸化物や、白金、パラジウム
等の貴金属を含む中間層を形成した後、前記二酸化鉛層
を形成することが望ましい。この中間層は発生する酸素
ガス等の浸透を防止して前記電極基体を保護するととも
に該電極基体と二酸化鉛層との親和力を高める機能を有
する。この中間層上に二酸化鉛層を形成して本発明方法
における陽極とする。二酸化鉛層の原料としては硝酸鉛
や塩基性炭酸鉛、酸化鉛を好ましく使用することができ
る。二酸化鉛層の形成方法は特に限定されないが、通常
は前記原料の水溶液中に前記中間層を形成した電極基体
を浸漬して陽極として電気メッキ法で二酸化鉛層を形成
する。この二酸化鉛陽極の対極である陰極の材料は特に
限定されず、対象とする化学メッキ廃液に対し化学的及
び電気化学的に安定な材料であれば任意に使用すること
ができ、例えばチタン、ジルコニウム、ニオブ、タンタ
ル、タングステン、銅、ニッケル、鉄などを使用するこ
とができる。又チタン、鉄、ニオブ、タンタル、タング
ステン等の基体に電気メッキ法や化学メッキ法あるいは
蒸着法等の公知の方法で前記材料を被覆した電極を使用
することもできる。A lead dioxide layer may be formed directly on this electrode substrate, but an intermediate layer containing an oxide of titanium, tantalum, niobium, zirconium, tin, antimony or the like and a noble metal such as platinum or palladium is formed. After that, it is desirable to form the lead dioxide layer. This intermediate layer has a function of preventing permeation of generated oxygen gas and the like to protect the electrode substrate and enhance the affinity between the electrode substrate and the lead dioxide layer. A lead dioxide layer is formed on this intermediate layer to serve as an anode in the method of the present invention. As a raw material for the lead dioxide layer, lead nitrate, basic lead carbonate, or lead oxide can be preferably used. The method for forming the lead dioxide layer is not particularly limited, but normally, the electrode substrate having the intermediate layer formed thereon is dipped in an aqueous solution of the raw material to form the lead dioxide layer as an anode by electroplating. The material of the cathode, which is the counter electrode of the lead dioxide anode, is not particularly limited, and any material that is chemically and electrochemically stable with respect to the target chemical plating waste liquid can be arbitrarily used, such as titanium and zirconium. , Niobium, tantalum, tungsten, copper, nickel, iron, etc. can be used. It is also possible to use an electrode in which a substrate of titanium, iron, niobium, tantalum, tungsten or the like is coated with the above material by a known method such as electroplating, chemical plating or vapor deposition.
【0007】これらの電極を使用して化学メッキ廃液中
の次亜リン酸及び亜リン酸をオルトリン酸へ電解酸化す
る際には、例えば次のような条件下で行うことができ
る。陽極の電流密度:1〜20A/dm2 好ましくは5〜10
A/dm2 、液温:常温〜80℃好ましくは40〜60℃、p
H:3〜10好ましくは7〜9である。前記廃液中に含ま
れる次亜リン酸及び亜リン酸イオン濃度は一定ではな
く、通常は0.5 モル/リットル程度であり、その場合に
は電流密度は5〜10A/dm2 でよいが、次亜リン酸及び
亜リン酸イオン濃度が高い場合例えば1モル/リットル
以上の場合には電流密度を10〜20A/dm2 程度まで高く
して処理することにより効率的な酸化処理を行うことが
できる。又逆に次亜リン酸及び亜リン酸イオン濃度が低
く0.5 モル/リットル以下の場合には電流密度を5A/
dm2 以下として副反応である酸素発生を抑制して更に効
率的な酸化処理を行うことが可能になる。このように化
学メッキ廃液中の成分濃度等に応じて前記範囲内で処理
条件を適宜設定することが望ましい。When these electrodes are used to electrolytically oxidize hypophosphorous acid and phosphorous acid in a chemical plating waste liquid to orthophosphoric acid, they can be carried out, for example, under the following conditions. Current density of anode: 1 to 20 A / dm 2, preferably 5 to 10
A / dm 2 , liquid temperature: normal temperature to 80 ° C, preferably 40 to 60 ° C, p
H: 3-10, preferably 7-9. The concentration of hypophosphite and phosphite ions contained in the waste liquid is not constant and is usually about 0.5 mol / liter. In that case, the current density may be 5 to 10 A / dm 2 , but When the concentration of phosphoric acid and phosphite ions is high, for example, 1 mol / liter or more, an efficient oxidation treatment can be performed by increasing the current density to about 10 to 20 A / dm 2 . Conversely, if the hypophosphorous acid and phosphite ion concentration is low and 0.5 mol / liter or less, the current density is 5 A /
By setting it as dm 2 or less, it becomes possible to suppress oxygen generation which is a side reaction and perform more efficient oxidation treatment. As described above, it is desirable to appropriately set the processing conditions within the above range according to the component concentration in the chemical plating waste liquid.
【0008】本発明方法に従って二酸化鉛電極を使用し
て次亜リン酸や亜リン酸イオンを含む化学メッキ廃液の
電解酸化処理を行うと、100 %又はそれに近い収率で次
亜リン酸、亜リン酸をオルトリン酸に変換することがで
き、リン酸カルシウム等として回収除去し廃液中からリ
ン酸類を除去することができる。このように本発明方法
では陽極を二酸化鉛電極とすることにより次亜リン酸や
亜リン酸のオルトリン酸への電解酸化を効率的に行うこ
とができるが、それに同時に化学メッキ廃液中に含有さ
れる重金属イオンを陰極上に析出させて回収除去するこ
ともできる。According to the method of the present invention, electrolytic oxidation treatment of a chemical plating waste solution containing hypophosphorous acid and phosphite ions is carried out using a lead dioxide electrode, and the hypophosphorous acid and the hypophosphorous acid are obtained at a yield of 100% or close to 100%. Phosphoric acid can be converted to orthophosphoric acid, which can be recovered and removed as calcium phosphate or the like to remove phosphoric acid from the waste liquid. As described above, in the method of the present invention, electrolytic oxidation of hypophosphorous acid or phosphorous acid to orthophosphoric acid can be efficiently performed by using the lead dioxide electrode as the anode, but at the same time, it is contained in the chemical plating waste liquid. It is also possible to deposit and remove heavy metal ions on the cathode.
【0009】[0009]
【実施例及び比較例】次に本発明による化学メッキ廃液
中に含まれる次亜リン酸、亜リン酸の電解酸化処理の実
施例を記載するが、該実施例は本発明を限定するもので
はない。まず次のようにして本実施例の電極を作製し
た。チタン板(50×50mm)をシュウ酸で洗浄した後、
30重量%の硝酸鉛水溶液中に浸漬して陰極であるチタン
板と対向させ液温50℃、電流密度2A/dm2 、pH0〜
2の条件で二酸化鉛の厚みが0.2 mmになるまで二酸化
鉛を前記チタン板に電着して本実施例の電極とした。一
方白金被覆厚が約3μmの市販の白金メッキチタン電極
を本実施例電極と同じ寸法に切出し、これを比較例の電
極とした。Examples and Comparative Examples Next, examples of electrolytic oxidation treatment of hypophosphorous acid and phosphorous acid contained in the chemical plating waste liquid according to the present invention will be described. However, the examples do not limit the present invention. Absent. First, the electrode of this example was manufactured as follows. After washing the titanium plate (50 x 50 mm) with oxalic acid,
Dip in a 30 wt% lead nitrate aqueous solution to face the titanium plate that is the cathode, liquid temperature 50 ° C., current density 2 A / dm 2 , pH 0-
Under the conditions of No. 2, lead dioxide was electrodeposited on the titanium plate until the thickness of lead dioxide became 0.2 mm to obtain the electrode of this example. On the other hand, a commercially available platinum-plated titanium electrode having a platinum coating thickness of about 3 μm was cut into the same size as the electrode of this example, and this was used as an electrode of a comparative example.
【0010】次に本実施例の電極を陽極とし、対極にチ
タン板を対向させ、試験液として、亜リン酸水素二ナト
リウム1モル/リットルと次亜リン酸0.4 モル/リット
ル及びリンゴ酸0.2 モル/リットルの混合溶液を用い、
表1中に示すpH、温度、電流密度、通電量の6種類の
条件で定電流電解を行い、次亜リン酸及び亜リン酸が検
出されなくなるまですなわちオルトリン酸が100 %の収
率になるまで電解酸化処理を行った。次いで電解前後の
試験液をイオンクロマト法(カラム:東ソー株式会社製
IC−アニオン−SW、溶離液:5ミリモルのクエン酸
溶液、電気伝導度検出器:東ソー株式会社製IC−801
0)により分析し、酸化効率と収率を算出した。その結
果を表1に示した。又電極を比較例の電極としたこと以
外は前記条件と同一条件で試験液の電解酸化処理を行
い、そのときの酸化効率と収率を算出し、その結果を表
1に示した。Next, the electrode of this embodiment was used as an anode, and a titanium plate was opposed to the counter electrode. As test liquids, 1 mol / l of disodium hydrogen phosphite, 0.4 mol / l of hypophosphorous acid and 0.2 mol of malic acid were used. / Liter mixed solution,
Constant-current electrolysis is carried out under the six conditions of pH, temperature, current density, and energization amount shown in Table 1, until hypophosphorous acid and phosphorous acid are no longer detected, that is, the yield of orthophosphoric acid is 100%. Was subjected to electrolytic oxidation treatment. Then, the test solution before and after electrolysis was subjected to ion chromatography (column: Tosoh Corporation IC-anion-SW, eluent: 5 mmol citric acid solution, electric conductivity detector: Tosoh Corporation IC-801).
0) to analyze the oxidation efficiency and yield. The results are shown in Table 1. Further, electrolytic oxidation treatment of the test solution was performed under the same conditions as above except that the electrode was the electrode of the comparative example, and the oxidation efficiency and yield at that time were calculated. The results are shown in Table 1.
【0011】[0011]
【表1】 [Table 1]
【0012】表1から、二酸化鉛電極を使用した本実施
例では、理論電気量(96.5A・Hr/リットル)の約1.
5 〜2.0 倍の電気量(50〜67%の効率)で次亜リン酸及
び亜リン酸を100 %の収率でオルトリン酸に酸化するこ
とができたことが判る。そして白金メッキチタン電極を
使用した比較例では、効率及び収率とも極めて低く、約
3%以下であった。From Table 1, in the present embodiment using the lead dioxide electrode, the theoretical amount of electricity (96.5 A · Hr / liter) is about 1.
It can be seen that hypophosphorous acid and phosphorous acid could be oxidized to orthophosphoric acid at a yield of 100% with 5- to 2.0 times as much electricity (efficiency of 50 to 67%). Then, in the comparative example using the platinum-plated titanium electrode, the efficiency and the yield were extremely low, being about 3% or less.
【0013】[0013]
【発明の効果】本発明は、次亜リン酸及び亜リン酸イオ
ンを含む化学メッキ廃液中の前記次亜リン酸及び亜リン
酸イオンを不溶性電極を使用して電解的に酸化してオル
トリン酸に変換する化学メッキ廃液の電解処理方法にお
いて、前記不溶性電極として二酸化鉛電極を使用するこ
とを特徴とする化学メッキ廃液の電解処理方法である。
本発明方法に二酸化鉛電極を使用すると、従来鉛電極の
ように電極物質が溶出したり、あるいは白金電極のよう
に酸化効率が低くなったりすることがなく、十分な耐久
性及び十分な酸化効率で化学メッキ廃液中の次亜リン酸
及び亜リン酸をオルトリン酸に電解酸化的に変換するこ
とができる。このようにした生成したオルトリン酸はカ
ルシウム塩等として沈澱除去から容易に系外に取り出す
ことができる。INDUSTRIAL APPLICABILITY The present invention provides an orthophosphoric acid by electrolytically oxidizing the hypophosphorous acid and the phosphite ion in the chemical plating waste liquid containing the hypophosphorous acid and the phosphite ion by using an insoluble electrode. In the electrolytic treatment method of the chemical plating waste liquid, the lead dioxide electrode is used as the insoluble electrode, in the electrolytic treatment method of the chemical plating waste liquid.
When the lead dioxide electrode is used in the method of the present invention, the electrode material does not elute as in the conventional lead electrode, or the oxidation efficiency does not decrease as in the platinum electrode, and sufficient durability and sufficient oxidation efficiency are obtained. Thus, hypophosphorous acid and phosphorous acid in the chemical plating waste liquid can be electrolytically converted to orthophosphoric acid. The thus-produced orthophosphoric acid can be easily taken out of the system as a calcium salt or the like by removing the precipitate.
Claims (1)
学メッキ廃液中の前記次亜リン酸及び亜リン酸イオンを
不溶性電極を使用して電解的に酸化してオルトリン酸に
変換する化学メッキ廃液の電解処理方法において、前記
不溶性電極として二酸化鉛電極を使用することを特徴と
する化学メッキ廃液の電解処理方法。1. A chemistry for electrolytically oxidizing the hypophosphite and phosphite ions in a chemical plating waste liquid containing hypophosphite and phosphite ions into an orthophosphoric acid by using an insoluble electrode. In the electrolytic treatment method for a plating waste liquid, a lead dioxide electrode is used as the insoluble electrode, and the electrolytic treatment method for a chemical plating waste liquid is characterized.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27795792A JP2640933B2 (en) | 1992-09-22 | 1992-09-22 | Electrolytic treatment method for chemical plating waste liquid |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27795792A JP2640933B2 (en) | 1992-09-22 | 1992-09-22 | Electrolytic treatment method for chemical plating waste liquid |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0699178A true JPH0699178A (en) | 1994-04-12 |
| JP2640933B2 JP2640933B2 (en) | 1997-08-13 |
Family
ID=17590634
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27795792A Expired - Lifetime JP2640933B2 (en) | 1992-09-22 | 1992-09-22 | Electrolytic treatment method for chemical plating waste liquid |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2640933B2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007521402A (en) * | 2003-12-31 | 2007-08-02 | ザ・ビーオーシー・グループ・インコーポレーテッド | Method for treating metal-containing solution |
| JP2010179214A (en) * | 2009-02-04 | 2010-08-19 | Eco Earth Engineering Kk | Waste liquid treatment method |
| CN102502924A (en) * | 2011-10-27 | 2012-06-20 | 浙江理工大学 | Method for deeply treating alpha-naphthylamine wastewater |
| CN105565442A (en) * | 2014-10-09 | 2016-05-11 | 南京理工大学 | Titanium-based lead dioxide porous tubular membrane electrode and its preparation method and use |
| CN105776443A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | Preparation method of cerium dioxide and graphite codoped plastic sheet lead dioxide electrode |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108060451B (en) * | 2017-12-20 | 2019-12-31 | 陕西科技大学 | A kind of preparation method of hydrophobic natural fiber composite lead dioxide anode |
-
1992
- 1992-09-22 JP JP27795792A patent/JP2640933B2/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007521402A (en) * | 2003-12-31 | 2007-08-02 | ザ・ビーオーシー・グループ・インコーポレーテッド | Method for treating metal-containing solution |
| JP2010179214A (en) * | 2009-02-04 | 2010-08-19 | Eco Earth Engineering Kk | Waste liquid treatment method |
| CN102502924A (en) * | 2011-10-27 | 2012-06-20 | 浙江理工大学 | Method for deeply treating alpha-naphthylamine wastewater |
| CN105565442A (en) * | 2014-10-09 | 2016-05-11 | 南京理工大学 | Titanium-based lead dioxide porous tubular membrane electrode and its preparation method and use |
| CN105776443A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | Preparation method of cerium dioxide and graphite codoped plastic sheet lead dioxide electrode |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2640933B2 (en) | 1997-08-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4944851A (en) | Electrolytic method for regenerating tin or tin-lead alloy stripping compositions | |
| CA1079681A (en) | Electrolytically oxidizing organic materials and trivalent chromium in chromic acid solution | |
| US5028304A (en) | Method of electrochemical machining of articles made of conducting materials | |
| US5478448A (en) | Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid | |
| JPH09503956A (en) | Conversion of metal cation complexes and salts by electrodialysis. | |
| US5419821A (en) | Process and equipment for reforming and maintaining electroless metal baths | |
| CA1256819A (en) | Process for reconditioning a used ammoniacal copper etching solution containing copper solute | |
| RU2181150C2 (en) | Method of pickling steel | |
| JP4019723B2 (en) | Electrolytic phosphate chemical treatment method | |
| US7520973B2 (en) | Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method | |
| US4406752A (en) | Electrowinning of noble metals | |
| KR100741198B1 (en) | Electroplating bath | |
| JP2640933B2 (en) | Electrolytic treatment method for chemical plating waste liquid | |
| JP2005076103A (en) | Method of treating plating waste liquid | |
| US4012298A (en) | Process for the electrolytic recovery of gallium and/or alkali metals | |
| US3412000A (en) | Cathodic protection of titanium surfaces | |
| JPH1018073A (en) | Electrolysis with addition of ultrasonic vibration | |
| KR20220134575A (en) | Method for recovering metallic zinc from solid metallurgical waste | |
| JPH0419310B2 (en) | ||
| JP7428574B2 (en) | How to recover gold from ion exchange resin | |
| US3766030A (en) | Method of electropolishing | |
| RU2709305C1 (en) | Regeneration of hydrochloric copper-chloride solution of copper etching by membrane electrolytic cells | |
| JP3242289B2 (en) | Method for treating iron chloride solution containing copper and nickel | |
| WO2025192305A1 (en) | Method for separating metal from metal-containing material, method for producing metal reducing agent, and metal recovery system | |
| JP2005344208A (en) | Treatment method for electroless nickel plating solution |