JPH07107882B2 - permanent magnet - Google Patents
permanent magnetInfo
- Publication number
- JPH07107882B2 JPH07107882B2 JP60202324A JP20232485A JPH07107882B2 JP H07107882 B2 JPH07107882 B2 JP H07107882B2 JP 60202324 A JP60202324 A JP 60202324A JP 20232485 A JP20232485 A JP 20232485A JP H07107882 B2 JPH07107882 B2 JP H07107882B2
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- oxygen
- nitrogen
- permanent magnet
- weight ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類磁石材料、特に希土類元素(以下Rと略
す)、鉄及びホウ素を主成分とする永久磁石合金の磁気
特性改善に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to improvement of magnetic properties of rare earth magnet materials, particularly permanent magnet alloys containing rare earth elements (hereinafter abbreviated as R), iron and boron as main components. .
R−Fe−B系永久磁石材料はR−Co系永久磁石材料より
も高い磁気特性が得られる新しい組成系として開発が進
んでいる(特開昭59−46008号,59−64733号及び59−894
0号,M.Sggawa et al,J.Appl.Phys・55(6)2083(198
4)“New Moterial for Permanent Magnets on a Base
of Nd and Fe")。これによれば、例えばNd15fe75B
10〔Nd(Fe0.88B0.12)5.7〕なる合金で(BH)max〜35
MGOe,IHC〜10KOeの磁気特性が得られる。The R-Fe-B system permanent magnet material is under development as a new composition system that can obtain higher magnetic properties than the R-Co system permanent magnet material (Japanese Patent Laid-Open Nos. 59-46008, 59-64733 and 59-). 894
No. 0, M. Sggawa et al, J. Appl. Phys. 55 (6) 2083 (198)
4) “New Moterial for Permanent Magnets on a Base
of Nd and Fe "). According to this, for example Nd 15 fe 75 B
10 [Nd (Fe 0.88 B 0.12 ) 5.7 ] alloy (BH) max ~ 35
MGOe, the magnetic properties of the I H C ~10KOe is obtained.
また、Ndの1部をDyで置換した合金Nd0.85Dy0.15(Fe
0.88B0.12)5.7において、(BH)max〜30MGOe,IHO〜20
KOeの磁気特性が得られている。(M.Sagawa et al,IEEE
MAG−20,1584(1984)“Permanent Magnet Materials
Based on the Rare Earth−Iron−Boron Tetragonal Co
mpounds) これらの永久磁石材料は粉末冶金法によって作製され
る。すなわち、真空溶解によるインゴットの作製,粉
砕,磁界中成形及び焼結,熱処理の工程を用いる。Also, an alloy Nd 0.85 Dy 0.15 (Fe
0.88 B 0.12 ) 5.7 , (BH) max ~ 30MGOe, I H O ~ 20
The magnetic characteristics of KOe are obtained. (M. Sagawa et al, IEEE
MAG-20,1584 (1984) “Permanent Magnet Materials
Based on the Rare Earth−Iron−Boron Tetragonal Co
mpounds) These permanent magnet materials are made by powder metallurgy. That is, the steps of manufacturing an ingot by vacuum melting, crushing, forming in a magnetic field and sintering, and heat treatment are used.
しかしながら、従来技術で得られるR−Fe−B系磁石の
磁気特性、特にIHCは、同一組成および同一製造工程を
用いる場合においても、各ロット間により大きく変動
し、極めて安定性の悪いものであった。上述した如く、
R−Fe−B系磁石のIHCは用いる希土類元素や組成によ
って異なるが、20KOeにも達する値が得られており、本
系磁石の持つIHCのポテンシャルは十分に高いことが明
らかである。However, the magnetic properties of R-Fe-B magnet obtained in the prior art, in particular I H C, in case of using the same composition and the same manufacturing process, greatly vary with between each lot, poor extremely stable Met. As mentioned above
The I H C of the R-Fe-B magnet varies depending on the rare earth element and composition used, but a value as high as 20 KOe is obtained, and it is clear that the I H C potential of this magnet is sufficiently high. is there.
すなわち、従来技術の製法においては、本材質のもつIH
Cのポテンシャルを充分に、かつ安定に引き出せない欠
点があった。That is, in the conventional manufacturing method, I H
There was a drawback that the potential of C could not be extracted sufficiently and stably.
本発明は、かかる従来技術の問題点を解決し、再現性高
く、安定した磁気特性を有する、永久磁石を提供するも
のである。The present invention solves the problems of the prior art and provides a permanent magnet having high reproducibility and stable magnetic characteristics.
本発明の永久磁石は、一般式:R1−αR′α(Fe
1-XBX)Z(ただし、RはNd,La,CeおよびPrの1種また
は2種以上の組み合わせ、R′はTb,Ho,Dyの1種または
2種以上の組み合わせ、0<α≦0.4、0.06≦X≦0.1
4、4.0≦z≦5.0)により表される組成を有する合金に
おいて、酸素を重量比で3000〜12000PPM、窒素を重量比
で50〜300PPM含有することを特徴とする。The permanent magnet of the present invention has the general formula: R 1-α R'α (Fe
1-X B X ) Z (where R is a combination of one or more of Nd, La, Ce and Pr, R'is a combination of one or more of Tb, Ho, Dy, 0 <α ≦ 0.4, 0.06 ≦ X ≦ 0.1
4, 4.0 ≦ z ≦ 5.0), wherein the alloy contains oxygen in a weight ratio of 3000 to 12000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
また、本発明の永久磁石は、一般式:R1−αR′α(Fe
1-XBX)Z(ただし、RはNd,La,CeおよびPrの1種また
は2種以上の組み合わせ、R′はTb,Ho,Dyの1種または
2種以上の組み合わせ、0<α≦0.4、0.06≦X≦0.1
4、5.0<z≦5.8)により表される組成を有する合金に
おいて、酸素を重量比で3000〜10000PPM、窒素を重量比
で50〜300PPM含有することを特徴とする。The permanent magnet of the present invention has the general formula: R 1-α R'α (Fe
1-X B X ) Z (where R is a combination of one or more of Nd, La, Ce and Pr, R'is a combination of one or more of Tb, Ho, Dy, 0 <α ≦ 0.4, 0.06 ≦ X ≦ 0.1
4. An alloy having a composition represented by 5.0 <z ≦ 5.8) is characterized by containing oxygen in a weight ratio of 3000 to 10000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
さらに、本発明の永久磁石は、一般式:R1−αR′
α(Fe1-XBX)Z(ただし、RはNd,La,CeおよびPrの1
種または2種以上の組み合わせ、R′はTb,Ho,Dyの1種
または2種以上の組み合わせ、0<α≦0.4、0.06≦X
≦0.14、5.8<z≦6.5)により表される組成を有する合
金において、酸素を重量比で3000〜8000PPM、窒素を重
量比で50〜300PPM含有することを特徴とする。Further, the permanent magnet of the present invention has the general formula: R 1-α R '
α (Fe 1-X B X ) Z (where R is 1 of Nd, La, Ce and Pr)
Or a combination of two or more kinds, R'is one kind or a combination of two or more kinds of Tb, Ho and Dy, 0 <α ≦ 0.4, 0.06 ≦ X
An alloy having a composition represented by ≦ 0.14, 5.8 <z ≦ 6.5) is characterized by containing oxygen in a weight ratio of 3000 to 8000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
またさらに、本発明の永久磁石は、一般式:R(Fe
1-XBX)Z(ただし、RはNd,La,CeおよびPrの1種また
は2種以上の組み合わせ、0.06≦X≦0.14、4.0≦z≦
5.0)により表される組成を有する合金において、酸素
を重量比で3000〜12000PPM、窒素を重量比で50〜300PPM
含有することを特徴とする。Furthermore, the permanent magnet of the present invention has the general formula: R (Fe
1-X B X ) Z (wherein R is one or a combination of two or more of Nd, La, Ce and Pr, 0.06 ≦ X ≦ 0.14, 4.0 ≦ z ≦
5.0) in an alloy having a composition represented by 5.0) oxygen in a weight ratio of 3000 to 12000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
It is characterized by containing.
さらにまた、本発明の永久磁石は、一般式:R(Fe
1-XBX)Z(ただし、RはNd,La,CeおよびPrの1種また
は2種以上の組み合わせ、0.06≦X≦0.14、5.0<z≦
5.8)により表される組成を有する合金において、酸素
を重量比で3000〜10000PPM、窒素を重量比で50〜300PPM
含有することを特徴とする。Furthermore, the permanent magnet of the present invention has the general formula: R (Fe
1-X B X ) Z (where R is one or a combination of two or more of Nd, La, Ce and Pr, 0.06 ≦ X ≦ 0.14, 5.0 <z ≦
5.8) in an alloy having a composition represented by oxygen in a weight ratio of 3000 to 10,000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
It is characterized by containing.
さらに、本発明の永久磁石は、一般式:R(Fe1-XBX)Z
(ただし、RはNd,La,CeおよびPrの1種または2種以上
の組み合わせ、0.06≦X≦0.14、5.8<z≦6.5)により
表される組成を有する合金において、酸素を重量比で30
00〜8000PPM、窒素を重量比で50〜300PPM含有すること
を特徴とする。Further, the permanent magnet of the present invention has the general formula: R (Fe 1-X B X ) Z
(However, R is one kind or a combination of two or more kinds of Nd, La, Ce and Pr, 0.06 ≤ X ≤ 0.14, 5.8 <z ≤ 6.5), and oxygen is contained in a weight ratio of 30
It is characterized by containing 00 to 8000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
本発明者は、種々、研究,試験の結果、従来、製造過程
で、空気中の酸素および窒素が、原料配合→溶解→粗粉
砕→微粉砕→磁場中成形→焼結等の各工程で少しずつ含
有されて来る所となり、永久磁石合金中に蓄積され、こ
の含有量の差異が、IHCの変動要因となり得ることを発
見した。As a result of various researches and tests, the present inventor has found that in the conventional manufacturing process, oxygen and nitrogen in the air are slightly mixed in each step of raw material blending → melting → coarse crushing → fine crushing → magnetic field molding → sintering. each will place come contained, stored in the permanent magnet alloy, the difference in the content is found that can be a variable factor of I H C.
含有する最適な酸素および窒素の重量比は、上記一般式
のz値によって異なる。4.0≦z≦5.0で酸素:3000〜120
00PPM、窒素50〜300PPM、5.0<z≦5.8で酸素:3000〜10
000PPM、窒素50〜300PPM、5.8<z≦6.5で酸素:3000〜8
000PPM、窒素50〜300PPMであり、本条件を満足しない場
合、良好な磁気特性は達成できない。The optimum weight ratio of oxygen and nitrogen contained depends on the z value of the above general formula. Oxygen at 4.0 ≦ z ≦ 5.0: 3000 to 120
00PPM, nitrogen 50-300PPM, oxygen at 5.0 <z ≤ 5.8: 3000-10
000PPM, nitrogen 50-300PPM, oxygen at 5.8 <z ≤ 6.5: 3000-8
It is 000PPM and nitrogen is 50 ~ 300PPM, and if this condition is not satisfied, good magnetic properties cannot be achieved.
次に合金限定理由を述べる。Next, the reasons for alloy limitation will be described.
B置換量xが0.06未満の場合は、キューリー点が上昇せ
ず、高いIHCも得られない。一方B置換量が0.14を越え
るとBrが低下し磁気特性に対し好ましくない。zが4未
満の場合はBrが低下し、6.5を越えるとFeに富んだ相が
現われIHCが低下し、いずれも良好な磁気特性が得られ
ない。また重希土類の置換量αが増加するに従ってIHC
は増大傾向を示すが、逆にBrは単調な減少を示す。その
ため、αが0.4を越えると良好な磁気特性が得られな
い。酸素量は、各々のz値領域において、上限値を越え
た場合、焼結性は悪化し、著しいIHCの悪化が生じる。
また、酸素量が、下限値未満となった場合においてもIH
Cは低下する。窒素量も同様の傾向を示し、50PPM未満お
よび300PPMを越える含有量ではいずれもIHCは低下す
る。If B substitution amount x is less than 0.06, the Curie point is not increased, it can not be obtained a high I H C. On the other hand, if the amount of substitution of B exceeds 0.14, Br is lowered, which is not preferable for magnetic properties. z is lowered Br If there is less than 4, it reduces the phase appears I H C rich Fe exceeds 6.5, neither obtain good magnetic properties. Also, as the substitution amount α of heavy rare earth increases, I H C
Shows an increasing tendency, while Br shows a monotonous decrease. Therefore, if α exceeds 0.4, good magnetic characteristics cannot be obtained. The amount of oxygen, in each z value region, when it exceeds the upper limit, the sintering property is deteriorated, deterioration in significant I H C occurs.
In addition, even if the oxygen amount becomes less than the lower limit value, I H
C decreases. The amount of nitrogen also shows the same tendency, and I H C decreases for both contents less than 50 PPM and more than 300 PPM.
すなわち、このことは、本系合金においては、最低限の
酸素および窒素は必須の元素であることを意味する。な
お、z値により最適酸素量が異なるが、これは酸化後に
残存する実効的なR量が異なることに起因する。That is, this means that the minimum oxygen and nitrogen are essential elements in the present alloy. The optimum oxygen amount differs depending on the z value, but this is because the effective R amount remaining after oxidation differs.
さらに、より好ましい酸素および窒素含有量は以下の如
くである。Further, more preferable oxygen and nitrogen contents are as follows.
4.0≦z≦5.0で酸素:3000〜7000PPM、窒素50〜100PPM、
5.0<z≦5.8で酸素:3000〜7000PPM、窒素50〜100PPM、
5.8<z≦6.5で酸素:3000〜7000PPM、窒素50〜100PPMで
ある。Oxygen at 4.0 ≦ z ≦ 5.0: 3000 to 7000 PPM, nitrogen 50 to 100 PPM,
When 5.0 <z ≤ 5.8, oxygen: 3000-7000PPM, nitrogen 50-100PPM,
When 5.8 <z ≦ 6.5, oxygen is 3000 to 7000 PPM and nitrogen is 50 to 100 PPM.
以上の研究,検討により本発明は完成するに至ったもの
である。The present invention has been completed through the above research and examination.
以下、実施例により本発明を説明する。Hereinafter, the present invention will be described with reference to examples.
〔実施例1〕 Nd(Fe0.9B0.1)5.5なる組成の合金を高周波溶解にて
作製した。得られたインゴットをスタンプミルおよびデ
ィスクミルで粗粉砕し、32メッシュ以下に調整後、振動
ミルで微粉砕した。粉砕媒体はアセトンを用い、粉砕粒
度3.5μm(FSSS)の微粉砕を得た。微粉砕粉は、未乾
燥状態で、15KOeの磁界中で横磁場湿式成形を行なっ
た。本成形体は、真空焼結炉の冷却室にて常温24時間の
脱気後、焼結ゾーンに移動し、1100℃の温度で2時間焼
結した。含有酸素量および窒素量の変化は、脱気後焼結
ゾーンに移動する前に、空気またはN2ガスを導入し、そ
の時間を変化させることによって行なった。窒化処理の
場合は、必要に応じて加熱した。得られた焼結体を800
℃の温度で1時間保持した後、1.5℃/分の冷却速度で3
00℃まで冷却した。冷却後、600℃×1時間の時効を行
ない、約300℃/分の急冷速度で冷却した。得られた磁
石の磁気特性および酸素,窒素量を測定した所、第1表
に示す結果を得た。Example 1 An alloy having a composition of Nd (Fe 0.9 B 0.1 ) 5.5 was prepared by high frequency melting. The obtained ingot was roughly pulverized with a stamp mill and a disc mill, adjusted to 32 mesh or less, and then finely pulverized with a vibration mill. Acetone was used as the grinding medium, and finely ground with a particle size of 3.5 μm (FSSS). The finely pulverized powder was subjected to transverse magnetic field wet molding in a magnetic field of 15 KOe in an undried state. The compact was degassed at room temperature for 24 hours in a cooling chamber of a vacuum sintering furnace, moved to a sintering zone, and sintered at a temperature of 1100 ° C. for 2 hours. The oxygen content and the nitrogen content were changed by introducing air or N 2 gas and changing the time before moving to the sintering zone after degassing. In the case of nitriding treatment, heating was performed if necessary. The obtained sintered body is 800
Hold for 1 hour at a temperature of ℃, then cool at 3 ℃ at a cooling rate of 1.5 ℃ / min.
It was cooled to 00 ° C. After cooling, it was aged at 600 ° C for 1 hour and cooled at a quenching rate of about 300 ° C / min. When the magnetic properties and oxygen and nitrogen contents of the obtained magnet were measured, the results shown in Table 1 were obtained.
第1表より明らかな如く、高いIHCを示すサンプルNo.4
〜7は、いずれも、酸素、窒素とも最適含有量の範囲に
ある。しかし、最適含有量の範囲外にある、その他の条
件では、いずれもIHCは低い値を示すことがわかる。第
1表に示した、最適含有量の範囲外の条件は、サンプル
No.1〜3およびNo.8.9は、窒素量は適当量であるが酸素
量が不適当な量、逆にNo.10.11.16.17は、酸素量は適当
量であるが、窒素量は不適当であり、No.12〜15およびN
o.18〜21は酸素および窒素量ともに、最適範囲を外れた
ものである。As is clear from Table 1, sample No. 4 showing high I H C
All of Nos. 7 to 7 are in the range of optimum contents of oxygen and nitrogen. However, outside the range of the optimal level, in other conditions, both I H C is seen to exhibit a low value. Conditions outside the optimum content range shown in Table 1 are
No. 1 to 3 and No. 8.9 have a proper amount of nitrogen but an inappropriate amount of oxygen, while No. 10.11.16.17 has a proper amount of oxygen but an inappropriate amount of nitrogen. , No.12 ~ 15 and N
O.18 to 21 are out of the optimum range for both oxygen and nitrogen contents.
〔実施例2〕 Nd0.85Dy0.15(Fe0.82B0.08)5.5なる合金を高周波溶
解により作製した。得られたインゴットは、実施例1と
同様の手法で、各種酸素含有量の磁石を得た。この場
合、窒素量は50〜300PPMの最適含有量とした。第1図に
得られたIHCと含有酸素量の関係を示した。 Example 2 An alloy of Nd 0.85 Dy 0.15 (Fe 0.82 B 0.08 ) 5.5 was prepared by high frequency melting. The obtained ingots were obtained in the same manner as in Example 1 to obtain magnets having various oxygen contents. In this case, the nitrogen content was the optimum content of 50 to 300 PPM. Shows the relationship between oxygen content and I H C obtained in Figure 1.
第1図に示す如く、IHCは酸素含有量が3000PPM未満およ
び10000PPMを超える量ではいずれも低下することがわか
る。As shown in FIG. 1, it can be seen that I H C decreases both when the oxygen content is less than 3000 PPM and when it exceeds 10000 PPM.
〔実施例3〕 Nd0.9Tb0.1(Fe0.9B0.1)z(z=4.4,5.2,6.2)なる
合金をアーク溶解にて作製した。得られたインゴットは
実施例1と同一の手法で各種酸素含有量の磁石を得た。
この場合の窒素量は50〜300PPMの最適含有量とした。第
2図に得られたIHCおよびBrと含有酸素量の関係を示し
た。Example 3 An alloy of Nd 0.9 Tb 0.1 (Fe 0.9 B 0.1 ) z (z = 4.4,5.2,6.2) was produced by arc melting. The obtained ingot was obtained by the same method as in Example 1 to obtain magnets having various oxygen contents.
In this case, the amount of nitrogen was set to the optimum content of 50 to 300 PPM. Shows the relationship between oxygen content and I H C and Br obtained in Figure 2.
第2図より明らかな如く、含有酸素量に対するIHCの変
化形態はz値によって大きく異なることがわかる。すな
わち、各zにおける最適酸素含有量は各々、z=4.4の
場合、3000〜12000PPM、z=5.2の場合、3000〜10000PP
M、z=6.2の場合、3000〜8000PPMである。いずれも、
下限値未満および上限値を越える場合、IHCは低下し、
その低下量は、上限値を越える場合がより大きい、ま
た、第2図においては、得られるIHCおよびBrの絶対値
の相違が明白であるが、これは本系磁石の一般的な傾向
である。すなわち、z値が高くなるに従ってBrは増加す
るが、逆にIHCは低下する傾向を示すことである。この
ため、本系磁石の組成の選定にあたっては、必要なBrお
よびIHCを考慮して決定する。As is clear from FIG. 2, it can be seen that the change form of I H C with respect to the oxygen content greatly differs depending on the z value. That is, the optimum oxygen content in each z is 3000 to 12000PPM when z = 4.4, and 3000 to 10000PP when z = 5.2.
When M and z = 6.2, it is 3000 to 8000 PPM. Both
Below the lower limit and above the upper limit, I H C decreases,
The decrease amount is greater than may exceed the upper limit, and in the second view, but the difference in the absolute value of the resulting I H C and Br is evident, this is a general trend of the magnet Is. That is, Br increases as z value increases, is to show a tendency to the I H C decreases conversely. Therefore, when the selection of the composition of the present magnet is determined in consideration of the necessary Br and I H C.
以上説明した通り、本発明により安定して高性能永久磁
石を焼結後永久磁石合金に含まれる、酸素および窒素の
含有量を規制することにより得ることが出来るものであ
り、工業的に極めて大きな価値をもつものである。As described above, the present invention can be obtained by controlling the contents of oxygen and nitrogen contained in the permanent magnet alloy stably after sintering the high-performance permanent magnet according to the present invention, and is industrially extremely large. It has value.
第1図はIHCと酸素含有量の関係を示すグラフである。
第2図は、酸素含有量に対する、IHCおよびBrの変化を
示した図である。FIG. 1 is a graph showing the relationship between I H C and oxygen content.
FIG. 2, for oxygen content, which is a view showing a change in I H C and Br.
Claims (6)
の組み合わせ、R′はTb,Ho,Dyの1種または2種以上の
組み合わせ、0<α≦0.4、0.06≦X≦0.14、4.0≦z≦
5.0)により表される組成を有する合金において、酸素
を重量比で3000〜12000PPM、窒素を重量比で50〜300PPM
含有することを特徴とする永久磁石。1. A general formula: R 1-α R'α (Fe 1-X B X ) Z (wherein R is one or a combination of Nd, La, Ce and Pr, and R'is Tb. , Ho, Dy, one or a combination of two or more, 0 <α ≦ 0.4, 0.06 ≦ X ≦ 0.14, 4.0 ≦ z ≦
5.0) in an alloy having a composition represented by 5.0) oxygen in a weight ratio of 3000 to 12000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
A permanent magnet characterized by containing.
の組み合わせ、R′はTb,Ho,Dyの1種または2種以上の
組み合わせ、0<α≦0.4、0.06≦X≦0.14、5.0<z≦
5.8)により表される組成を有する合金において、酸素
を重量比で3000〜10000PPM、窒素を重量比で50〜300PPM
含有することを特徴とする永久磁石。2. A general formula: R 1-α R'α (Fe 1-X B X ) Z (where R is one or a combination of Nd, La, Ce and Pr, and R'is Tb. , Ho, Dy, or a combination of two or more, 0 <α ≦ 0.4, 0.06 ≦ X ≦ 0.14, 5.0 <z ≦
5.8) in an alloy having a composition represented by oxygen in a weight ratio of 3000 to 10,000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
A permanent magnet characterized by containing.
の組み合わせ、R′はTb,Ho,Dyの1種または2種以上の
組み合わせ、0<α≦0.4、0.06≦X≦0.14、5.8<z≦
6.5)により表される組成を有する合金において、酸素
を重量比で3000〜8000PPM、窒素を重量比で50〜300PPM
含有することを特徴とする永久磁石。3. A general formula: R 1-α R'α (Fe 1-X B X ) Z (where R is one or a combination of Nd, La, Ce and Pr, and R'is Tb. , Ho, Dy, or a combination of two or more thereof, 0 <α ≦ 0.4, 0.06 ≦ X ≦ 0.14, 5.8 <z ≦
In the alloy having the composition represented by 6.5), oxygen is 3000-8000 PPM by weight and nitrogen is 50-300 PPM by weight.
A permanent magnet characterized by containing.
の組み合わせ、0.06≦X≦0.14、4.0≦z≦5.0)により
表される組成を有する合金において、酸素を重量比で30
00〜12000PPM、窒素を重量比で50〜300PPM含有すること
を特徴とする永久磁石。4. A general formula: R (Fe 1-X B X ) Z (where R is one or a combination of Nd, La, Ce and Pr, 0.06 ≦ X ≦ 0.14, 4.0 ≦ z ≦ 5.0) in an alloy having a composition represented by
A permanent magnet containing 00 to 12000 PPM and nitrogen in a weight ratio of 50 to 300 PPM.
の組み合わせ、0.06≦X≦0.14、5.0<z≦5.8)により
表される組成を有する合金において、酸素を重量比で30
00〜10000PPM、窒素を重量比で50〜300PPM含有すること
を特徴とする永久磁石。5. A general formula: R (Fe 1-X B X ) Z (where R is one or a combination of Nd, La, Ce and Pr, 0.06 ≦ X ≦ 0.14, 5.0 <z ≦ 5.8) in an alloy having a composition represented by
A permanent magnet characterized by containing 0 to 10000 PPM and 50 to 300 PPM of nitrogen in a weight ratio.
の組み合わせ、0.06≦X≦0.14、5.8<z≦6.5)により
表される組成を有する合金において、酸素を重量比で30
00〜8000PPM、窒素を重量比で50〜300PPM含有すること
を特徴とする永久磁石。6. A general formula: R (Fe 1-X B X ) Z (where R is one or a combination of two or more of Nd, La, Ce and Pr, 0.06 ≦ X ≦ 0.14, 5.8 <z ≦ In an alloy having the composition represented by 6.5), oxygen is added in a weight ratio of 30.
A permanent magnet characterized by containing 00-8000PPM and nitrogen in a weight ratio of 50-300PPM.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60202324A JPH07107882B2 (en) | 1985-09-12 | 1985-09-12 | permanent magnet |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60202324A JPH07107882B2 (en) | 1985-09-12 | 1985-09-12 | permanent magnet |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6262503A JPS6262503A (en) | 1987-03-19 |
| JPH07107882B2 true JPH07107882B2 (en) | 1995-11-15 |
Family
ID=16455662
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60202324A Expired - Lifetime JPH07107882B2 (en) | 1985-09-12 | 1985-09-12 | permanent magnet |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07107882B2 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2791470B2 (en) * | 1987-06-01 | 1998-08-27 | 日立金属 株式会社 | RB-Fe sintered magnet |
| US5162064A (en) * | 1990-04-10 | 1992-11-10 | Crucible Materials Corporation | Permanent magnet having improved corrosion resistance and method for producing the same |
| WO2001091139A1 (en) | 2000-05-24 | 2001-11-29 | Sumitomo Special Metals Co., Ltd. | Permanent magnet including multiple ferromagnetic phases and method for producing the magnet |
| US7217328B2 (en) | 2000-11-13 | 2007-05-15 | Neomax Co., Ltd. | Compound for rare-earth bonded magnet and bonded magnet using the compound |
| RU2250524C2 (en) | 2001-05-15 | 2005-04-20 | Неомакс Ко., Лтд. | Nanocomposite magnets of iron base alloy incorporating rare-earth element |
| ATE343842T1 (en) | 2001-07-31 | 2006-11-15 | Neomax Co Ltd | METHOD FOR PRODUCING A NANOCOMPOSITION MAGNET USING ATOMIZATION METHOD |
| CN1228791C (en) | 2001-11-22 | 2005-11-23 | 株式会社新王磁材 | Nanocomposite magnet |
| JP2015135935A (en) * | 2013-03-28 | 2015-07-27 | Tdk株式会社 | Rare earth based magnet |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0778269B2 (en) * | 1983-05-31 | 1995-08-23 | 住友特殊金属株式会社 | Rare earth / iron / boron tetragonal compound for permanent magnet |
-
1985
- 1985-09-12 JP JP60202324A patent/JPH07107882B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6262503A (en) | 1987-03-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0175214B1 (en) | Permanent magnetic alloy and method of manufacturing the same | |
| US5034146A (en) | Rare earth-based permanent magnet | |
| EP0258609A2 (en) | Permanent magnet with good thermal stability | |
| JPH0216368B2 (en) | ||
| US5230751A (en) | Permanent magnet with good thermal stability | |
| JPS6110209A (en) | permanent magnet | |
| JPH07107882B2 (en) | permanent magnet | |
| JPS6181606A (en) | Preparation of rare earth magnet | |
| JPS6181603A (en) | Preparation of rare earth magnet | |
| JPH01175705A (en) | Manufacture of rare earth magnet | |
| JPH0685369B2 (en) | Permanent magnet manufacturing method | |
| JPS6181607A (en) | Preparation of rare earth magnet | |
| JP3151265B2 (en) | Manufacturing method of rare earth permanent magnet | |
| JPS6181604A (en) | Preparation of rare earth magnet | |
| JP2642619B2 (en) | Manufacturing method of permanent magnet | |
| JPH0568841B2 (en) | ||
| JPS61143553A (en) | Production of material for permanent magnet | |
| JPH0119461B2 (en) | ||
| JPH0796694B2 (en) | Method of manufacturing permanent magnet material | |
| JPH06275415A (en) | Nd-fe-b based permanent magnet | |
| JPH0897022A (en) | Manufacture of rare-earth magnet | |
| JPS60165702A (en) | Manufacture of permanent magnet | |
| JP3138927B2 (en) | Rare earth magnet manufacturing method | |
| JPH06299303A (en) | Alloy for rare earth metal magnet | |
| JPH05182814A (en) | Rare earth permanent magnet manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |