JPH07100671A - Processing method of silica glass body - Google Patents
Processing method of silica glass bodyInfo
- Publication number
- JPH07100671A JPH07100671A JP27611693A JP27611693A JPH07100671A JP H07100671 A JPH07100671 A JP H07100671A JP 27611693 A JP27611693 A JP 27611693A JP 27611693 A JP27611693 A JP 27611693A JP H07100671 A JPH07100671 A JP H07100671A
- Authority
- JP
- Japan
- Prior art keywords
- silica glass
- temperature
- glass body
- processing
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/08—Severing cooled glass by fusing, i.e. by melting through the glass
- C03B33/082—Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B21/00—Severing glass sheets, tubes or rods while still plastic
- C03B21/06—Severing glass sheets, tubes or rods while still plastic by flashing-off, burning-off or fusing
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/0025—Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Laser Beam Processing (AREA)
- Glass Melting And Manufacturing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
(57)【要約】 (修正有)
【目的】 クラックが発生する事なく精度良く加工が可
能なシリカガラス体の加工方法、特にレーザ加工方法を
提供する。
【構成】 レーザ加工時における加工部位の仮想温度を
A℃とした場合、前記レーザ加工の前工程として被加工
体としてのシリカガラス体の仮想温度を(A−500
℃)以内に抑える熱処理工程が存在すること又はレーザ
加工の前工程として、切断方向の肉厚を20mm未満に
形成したシリカガラス体を用いて該シリカガラス体の仮
想温度を1300℃〜1700℃に設定する熱処理工程
が存在することを特徴とする赤外線レーザでシリカガラ
ス体を加工する方法。(57) [Summary] (Corrected) [Purpose] To provide a method for processing a silica glass body, particularly a laser processing method, which can be processed with high accuracy without cracks. When the virtual temperature of a processed portion during laser processing is A ° C., the virtual temperature of a silica glass body as a workpiece is (A-500) as a pre-process of the laser processing.
The heat treatment step of suppressing the temperature to be less than or equal to 1300 ° C.) is performed, or as a pre-step of laser processing, the fictive temperature of the silica glass body is set to 1300 ° C. to 1700 ° C. by using the silica glass body formed to have a wall thickness in the cutting direction of less than 20 mm A method for processing a silica glass body with an infrared laser, characterized in that there is a heat treatment step for setting.
Description
【0001】[0001]
【産業上の利用分野】本発明はシリカガラス体を精度よ
く加工する方法に係り、特にCO2 レーザその他の赤外
線レーザを用いてシリカガラス体を精度よく加工する方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately processing a silica glass body, and more particularly to a method for accurately processing a silica glass body using a CO 2 laser or other infrared laser.
【0002】[0002]
【従来の技術】近年シリカガラスは半導体製造用の治工
具のみならず、各種光学系等その利用分野は急激に拡大
している。これにともないシリカガラスの加工方法も多
岐に亙り、従来の熱加工から種々の切削加工が必要にな
ってきている。特に半導体熱処理治具としてのウエーハ
ボードの溝切り加工においては、精度良い加工が必要で
あり、この種の加工や他の細かい加工、更には複雑な加
工にCO2 ガスレーザを使用することが多くなってき
た。2. Description of the Related Art In recent years, silica glass has not only been used as a jig and tool for manufacturing semiconductors, but also has been rapidly expanding in various fields such as optical systems. Along with this, there are various methods for processing silica glass, and various cutting processes are required in addition to conventional thermal processing. Particularly, in the grooving process of a wafer board as a semiconductor heat treatment jig, it is necessary to perform an accurate process, and a CO 2 gas laser is often used for this type of process, other fine processes, and complicated processes. Came.
【0003】CO2 レーザはミラーにより自動で動かす
ことができるために、短時間で安全且つ精度良く加工が
出来るという利点があるが、一方レーザ切断機の場合、
スポットビーム状のレーザがシリカガラスに入射され、
レーザのエネルギーが吸収され発熱してシリカガラスを
溶融していくがこの際前記ビームはガラス内で拡散され
ないビームスポットであり、特にCO2 レーザはその波
長が赤外域である為に、全てのエネルギが吸収されるた
めに、局部的に歪が発生し、前記溶融面でクラックが発
生する問題がある。Since the CO 2 laser can be automatically moved by a mirror, it has an advantage that it can be processed safely and accurately in a short time. On the other hand, in the case of a laser cutting machine,
A spot beam laser is incident on the silica glass,
The energy of the laser is absorbed and heat is generated to melt the silica glass, but at this time, the beam is a beam spot which is not diffused in the glass, and in particular, the wavelength of the CO 2 laser is in the infrared region, so all the energy is absorbed. Is absorbed, so that there is a problem that a strain is locally generated and a crack is generated on the melting surface.
【0004】[0004]
【発明が解決しようとする課題】従ってCO2 ガスレー
ザは非常に効率的な加工方法でありながら前記した通り
クラックが発生してしまう問題があり、特に加工中にク
ラックが発生してしまうとクラック補修のために時間が
かかってしまい効率が悪くなってしまう。本発明はかか
る従来技術の欠点に鑑み、クラックが発生する事なく精
度良く加工が可能なシリカガラス体の加工方法、特にレ
ーザ加工方法を提供することを目的とする。Therefore, although the CO 2 gas laser is a very efficient processing method, it has a problem that cracks are generated as described above. Especially, when cracks are generated during processing, crack repair is performed. Because of this, it takes time and efficiency becomes poor. In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide a method for processing a silica glass body, particularly a laser processing method, which can be processed with high accuracy without cracks.
【0005】[0005]
【課題を解決するための手段】本発明者は前記シリカガ
ラス体のレーザ加工面について鋭意調査し、クラックの
発生の原因について研究を行なった。確かにCO2 ガス
レーザによりシリカガラス体にクラックが発生するの
は、レーザ加工時に発生する応力(歪)であり、特にシ
リカガラスは圧縮応力には強く、引張り応力にはもろい
性質がある為に前記応力歪が引張り応力となった場合に
クラックが発生してしまう。この問題を解決する為には
シリカガラスに引張応力ができるだけ発生しないように
することにある。そして引張り応力の原因が熱膨張率に
あると思慮したが、シリカガラスの熱膨張率は5×10
-7mm/℃と極めて小さく而も熱加工面の隣接する部位
で膨張率差が大きくなることは考えにくい。Means for Solving the Problems The present inventor diligently investigated the laser-processed surface of the silica glass body and studied the cause of the occurrence of cracks. It is true that the cracks generated in the silica glass body by the CO 2 gas laser are the stresses (strains) generated during the laser processing. Particularly, silica glass has a strong property against compressive stress and a fragile property against tensile stress. Cracks occur when the stress strain becomes tensile stress. In order to solve this problem, it is necessary to prevent tensile stress from occurring in the silica glass. I thought that the cause of the tensile stress was the coefficient of thermal expansion, but the coefficient of thermal expansion of silica glass was 5 × 10 5.
It is as small as -7 mm / ° C, and it is unlikely that the difference in expansion coefficient will be large in the adjacent parts of the heat-processed surface.
【0006】次に前記クラックの発生した部分の仮想温
度をレーザラマン分光光度計によって調べたところ、異
常に高いことが解った。そこで本発明者は、クラックの
発生は素材の仮想温度とレーザ加工部の仮想温度との差
が大きい程クラックが発生しやすい事と知見し、該知見
に基づいて発明に至ったのである。ここで仮想温度と
は、例えばガラスを転移温度領域若しくはそれ以上の温
度領域から激しく急冷すると、例えば温度T1に対応す
る原子配列や密度が凍結されたまま常温まで冷却され、
この温度T1を仮想温度という。そして仮想温度の違い
は原子配列及び密度の違いとして表われ、そして仮想温
度が変化することでシリカガラス材自体が伸び縮みす
る。Next, when the virtual temperature of the cracked portion was examined by a laser Raman spectrophotometer, it was found to be abnormally high. Therefore, the present inventor has found that the greater the difference between the fictive temperature of the material and the fictive temperature of the laser processed portion, the more likely the crack is to occur, and the present invention has been completed based on this finding. Here, the fictive temperature is, for example, when glass is rapidly cooled from a transition temperature range or a temperature range higher than that, for example, it is cooled to room temperature while the atomic arrangement and the density corresponding to the temperature T 1 are frozen.
This temperature T 1 is called an imaginary temperature. Then, the difference in fictive temperature appears as a difference in atomic arrangement and density, and as the fictive temperature changes, the silica glass material itself expands and contracts.
【0007】そしてこの仮想温度に起因する伸縮は前記
熱膨張率と異なり、不可逆性であるために、前記仮想温
度に起因する伸縮状態は降温してもそのまま残存してし
まう。レーザ加工部の仮想温度が高く、素材の仮想温度
が低い場合、その乖離率が大きいほどクラックが発生し
やすい事を知見した。即ち、発明者らはCO2 ガスレー
ザにより加工したシリカガラス体のクラック発生部の仮
想温度を測定したところ1800℃〜1900℃と非常
に高いことが解った。Since the expansion and contraction caused by the virtual temperature is irreversible unlike the thermal expansion coefficient, the expansion and contraction state caused by the virtual temperature remains as it is even when the temperature is lowered. It has been found that when the virtual temperature of the laser processing part is high and the virtual temperature of the material is low, the crack is more likely to occur as the deviation rate increases. That is, the inventors of the present invention measured the fictive temperature of the cracked portion of the silica glass body processed by the CO 2 gas laser and found that it was 1800 ° C. to 1900 ° C., which was extremely high.
【0008】一方シリカガラス製熱処理治具は、一般に
シリカガラスをバーナーの火炎で軟化点以上の高温で加
熱して所定形状に製作した後、歪除去の為に1000〜
1200℃の温度で十分アニールして製造するものであ
るために、その仮想温度は1200℃前後になることが
確認されている。このため、レーザ加工面の仮想温度は
1800℃〜1900℃で、一方該加工面に隣接する前
記治具素材の仮想温度は1200℃とその乖離率が60
0〜700℃前後と極めて大きくなる。On the other hand, a heat treatment jig made of silica glass is generally manufactured by heating a silica glass with a flame of a burner at a temperature higher than its softening point to produce a predetermined shape, and then removing the strain from 1000 to 1000 in order to remove strain.
It is confirmed that the fictive temperature is around 1200 ° C. because it is manufactured by sufficiently annealing at a temperature of 1200 ° C. Therefore, the virtual temperature of the laser processed surface is 1800 ° C to 1900 ° C, while the virtual temperature of the jig material adjacent to the processed surface is 1200 ° C and the deviation rate thereof is 60.
It becomes extremely large at around 0 to 700 ° C.
【0009】そこでクラックの発生を抑えるために前記
治具素材の仮想温度をいろいろ変えて実験を行なったと
ころ、該治具素材の仮想温度を1300℃〜1700
℃、更に好ましくは1400℃〜1600℃に設定した
場合の場合、クラックの発生が少ないことが把握でき
た。Therefore, in order to suppress the occurrence of cracks, experiments were conducted by changing the fictive temperature of the jig material, and the fictive temperature of the jig material was 1300 ° C. to 1700.
It was found that the occurrence of cracks was small when the temperature was set to 0 ° C, more preferably 1400 ° C to 1600 ° C.
【0010】シリカガラスの仮想温度を1300℃〜1
700℃にするとクラックが発生しにくくなる原因につ
いて検討してみるに、前記したように仮想温度差が小さ
くなることにより応力の発生が小さくなり、特に引張り
応力の発生の度合いが小さくなるためにクラックが発生
しないことが考えられる。又仮想温度を1800℃に設
定するには、基本的に1800℃以上に加熱した後、急
冷させる必要が有り、内部歪等の発生の原因となり、こ
の内部歪に起因してクラックの発生の原因につながると
推定される。The fictive temperature of silica glass is 1300 ° C. to 1
Examining the cause that cracks are less likely to occur at 700 ° C. As described above, the occurrence of stress is reduced due to the decrease in the virtual temperature difference, and in particular, the degree of occurrence of tensile stress is decreased. May not occur. Also, in order to set the fictive temperature to 1800 ° C., it is basically necessary to heat it to 1800 ° C. or higher and then rapidly cool it, which causes the occurrence of internal strain, etc. Estimated to lead to.
【0011】しかしながら仮想温度1400℃〜160
0℃で最もクラックの発生率を低減できることから単に
仮想温度差による効果だけではなく、他の要因、特にガ
ラス組織密度の安定性等の要因も含まれると思慮する。
そして仮想温度を1300℃〜1700℃に設定するた
めにはシリカガラス体を各温度で構造がなじむまで加熱
した後、急冷すればよい訳であるが、実際には1700
℃〜1800℃に加熱された電気炉から連続的にシリカ
ガラス体を引出してくれば仮想温度は1400℃〜16
00℃に設定できる。However, a fictive temperature of 1400 ° C. to 160 ° C.
Since the crack generation rate can be most reduced at 0 ° C., it is considered that not only the effect due to the fictive temperature difference but also other factors, especially the stability of the glass structure density are included.
Then, in order to set the fictive temperature to 1300 ° C. to 1700 ° C., it is sufficient to heat the silica glass body at each temperature until the structure fits and then rapidly cool it.
If the silica glass body is continuously drawn out from the electric furnace heated to 1800 to 1800 ° C, the fictive temperature is 1400 to 16 ° C.
Can be set to 00 ° C.
【0012】この時問題なのはシリカガラス体の肉厚を
20mm以下好ましくは10mm程度にすることが必要
である。肉厚が厚くなるとシリカガラス体の熱容量が大
きくなり、シリカガラス体の温度低下がゆっくりとなっ
てしまい仮想温度が低下してしまうし、また肉厚方向に
仮想温度の分布が発生して、部材自体に歪みが発生して
しまう。またCO2 ガスレーザでの加工も好都合なこと
に肉厚の厚い部材では難しいために、切断方向の肉厚が
20mm以下、好ましくは10mm以下の肉厚が好まし
い。A problem at this time is that the thickness of the silica glass body should be 20 mm or less, preferably about 10 mm. As the wall thickness increases, the heat capacity of the silica glass body increases, the temperature drop of the silica glass body slows down, and the fictive temperature decreases, and the fictive temperature distribution occurs in the wall thickness direction. Distortion occurs in itself. Further, since processing with a CO 2 gas laser is conveniently difficult for a member having a large wall thickness, the wall thickness in the cutting direction is preferably 20 mm or less, more preferably 10 mm or less.
【0013】[0013]
【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。ただしこの実施例に記載さ
れている構成部品の寸法、材質、形状、その相対配置な
どは特に特定的な記載がない限りは、この発明の範囲を
それのみに限定する趣旨ではなく、単なる説明例に過ぎ
ない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention only thereto, but merely illustrative examples. Nothing more than.
【0014】先ず半導体熱処理用シリカガラス治具を構
成するシリカガラス材は一般に酸水素炎や電気溶融によ
り、原料の水晶粉を1900〜2100℃の温度で溶融
してシリカガラスインゴットを製造し、これを1900
〜2100℃の温度で溶融しながら引出してシリカガラ
ス管やシリカガラス棒を製造する方法と、原料の水晶粉
を一定量づつ供給しながら1900〜2100℃の温度
で順次溶融してシリカガラス管やシリカガラス棒を引出
す方法とが存在する。又シリカガラス板は、前記ガラス
管を1600から1700前後の温度で加熱軟化させな
がら開いて板状に形成される。そして前記のようにして
製造されたシリカガラス1600から1700前後の温
度で加熱軟化させながら所定形状に成形を行なった後、
1000〜1200℃前後の温度でアニールされるもの
であり、その仮想温度は一般に1200℃である。First, the silica glass material constituting the silica glass jig for semiconductor heat treatment is generally produced by oxyhydrogen flame or electric melting to melt the raw material crystal powder at a temperature of 1900 to 2100 ° C. to produce a silica glass ingot. 1900
A method of producing a silica glass tube or a silica glass rod by melting while drawing at a temperature of ~ 2100 ° C, and a method of producing a silica glass tube or a silica glass rod by sequentially melting at a temperature of 1900-2100 ° C while supplying a certain amount of raw material crystal powder. There is a method of pulling out a silica glass rod. The silica glass plate is formed in a plate shape by opening the glass tube while heating and softening the glass tube at a temperature of about 1600 to 1700. After the silica glass manufactured as described above is molded into a predetermined shape while being softened by heating at a temperature of around 1700,
It is annealed at a temperature of around 1000 to 1200 ° C., and its fictive temperature is generally 1200 ° C.
【0015】そこで本実施例は前記アニール処理後のシ
リカガラス材を10cm角で肉厚3mmに切断したシリ
カガラス板を6枚用意した。1枚は1600℃で1分加
熱後、電気炉から取り出し、自然冷却した(実施例
1)。次に違う板を1400℃で1時間加熱して、電気
炉から取り出し自然冷却した(実施例2)。他の1枚を
1100℃で24時間加熱して、電気炉から取り出し自
然冷却した(比較例1)。最後の1枚は1800℃で1
分加熱後、電気炉から取り出し、急冷した(比較例
2)。また10cm角で肉厚20mmのシリカガラス板
を2枚用意した。1枚は1600℃で1分加熱後、電気
炉から取り出し自然冷却した(実施例3)。他の1枚を
1400℃で1時間加熱して、電気炉から取り出し自然
冷却した(比較例3)。Therefore, in this example, six silica glass plates were prepared by cutting the annealed silica glass material into squares of 10 cm and a thickness of 3 mm. One sheet was heated at 1600 ° C. for 1 minute, then taken out from the electric furnace and naturally cooled (Example 1). Next, another plate was heated at 1400 ° C. for 1 hour, taken out from the electric furnace, and naturally cooled (Example 2). Another sheet was heated at 1100 ° C. for 24 hours, taken out from the electric furnace, and naturally cooled (Comparative Example 1). The last one is 1 at 1800 ℃
After heating for minutes, it was taken out of the electric furnace and rapidly cooled (Comparative Example 2). Further, two silica glass plates having a 10 cm square and a wall thickness of 20 mm were prepared. One sheet was heated at 1600 ° C. for 1 minute, then taken out of the electric furnace and naturally cooled (Example 3). Another sheet was heated at 1400 ° C. for 1 hour, taken out from the electric furnace, and naturally cooled (Comparative Example 3).
【0016】次に前記実施例及び比較例のシリカガラス
板の仮想温度をレーザラマン分光光度計により測定す
る。即ちその測定方法を説明するに、前記シリカガラス
板を所定形状の小片に切断した比較サンプルを用い、該
サンプルを例えば1200℃で2時間加熱した後水中急
冷したサンプル1(この場合仮想温度1200℃)、1
000℃で20時間加熱した後水中急冷したサンプル2
(仮想温度1000℃)、900℃で120時間加熱し
た後水中急冷したサンプル(仮想温度900℃)、80
0℃で1200時間加熱した後水中急冷したサンプル
(仮想温度800℃)を生成しこれらのサンプルを夫々
ラマン分光光度計で150〜650cmー1の範囲を測定
し、下記の3つのピークを測定する。 150〜650cmー1(W1、ピーク面積AW1)、 470〜520cmー1(D1、ピーク面積AD1) 580〜640cmー1(D2、ピーク面積AD2) 次にこれらの3つのピーク面積からD2のピーク面積の
比(I)を求める。 I={AD2/(AW1ーAD1ーAD2)} この(I)と仮想温度との関係をグラフに示し、標準線
(検量線)として仮想温度が分らないサンプルのIから
仮想温度を推測するものである。Next, the virtual temperatures of the silica glass plates of the above-mentioned examples and comparative examples are measured by a laser Raman spectrophotometer. That is, to explain the measuring method, a comparative sample obtained by cutting the silica glass plate into small pieces of a predetermined shape was used, and the sample was heated at 1200 ° C. for 2 hours and then rapidly cooled in water (in this case, a fictive temperature of 1200 ° C.). ) 1
Sample 2 heated at 000 ° C for 20 hours and then rapidly cooled in water
(Fictive temperature 1000 ° C.), sample heated at 900 ° C. for 120 hours and then rapidly cooled in water (virtual temperature 900 ° C.), 80
After heating at 0 ° C for 1200 hours and then rapidly cooling in water (virtual temperature 800 ° C), each sample is measured with a Raman spectrophotometer in the range of 150 to 650 cm -1 , and the following three peaks are measured. . 150-650 cm -1 (W1, peak area AW1), 470-520 cm -1 (D1, peak area AD1) 580-640 cm -1 (D2, peak area AD2) Next, from these three peak areas, the peak area of D2 The ratio (I) of is calculated. I = {AD2 / (AW1-AD1-AD2)} The relationship between this (I) and the fictive temperature is shown in a graph, and the fictive temperature is estimated from the I of the sample whose fictive temperature is unknown as a standard line (calibration curve). Is.
【0017】そして前記各シリカガラス板の仮想温度
は、実施例1では1500℃、実施例2では1350
℃、実施例3では1400℃、比較例1では1100
℃、比較例2では1750℃、比較例3では1250℃
であった。The fictive temperature of each of the silica glass plates is 1500 ° C. in Example 1 and 1350 in Example 2.
C., 1400 ° C. in Example 3 and 1100 in Comparative Example 1.
C., 1750 ° C. in Comparative Example 2, 1250 ° C. in Comparative Example 3
Met.
【0018】このシリカガラス板を市販の炭酸ガスレー
ザ切断機を用いて2センチ幅で帯状に切断した後、その
加工面のクラック状況を把握した所、実施例1ではクラ
ックの発生が見られず、実施例2ではクラックが1ヵ
所、比較例1ではクラックが5ヵ所、実施例3ではレー
ザでの切断で時間がかかってしまった。またクラックに
ついては3ヵ所と少なかったが、クラックによって欠け
た容積は大きかった。比較例2では、急冷した為にシリ
カガラス中に歪が残留し、レーザ加工時にガラスが粉々
に割れてしまった。比較例3はレーザでの切断で時間が
かかってしまった。またクラックについては10ヵ所と
非常に多く、クラックによって欠けた容積は非常に大き
かった。次に前記加工部位の仮想温度を測定したとこ
ろ、1800から1900℃であった。After the silica glass plate was cut into strips with a width of 2 cm by using a commercially available carbon dioxide laser cutting machine, the cracks on the machined surface were grasped. In Example 1, no crack was found. In Example 2, one crack was formed, in Comparative Example 1, five cracks were formed, and in Example 3, cutting with a laser took time. Although there were few cracks at three places, the volume lacked by the cracks was large. In Comparative Example 2, strain was left in the silica glass due to rapid cooling, and the glass was shattered during laser processing. In Comparative Example 3, cutting with a laser took time. The number of cracks was as large as 10 and the volume lacked by the cracks was very large. Next, the fictive temperature of the processed portion was measured and found to be 1800 to 1900 ° C.
【0019】[0019]
【発明の効果】従ってかかる発明によれば、前記したよ
うにシリカガラスの利用分野が急激に拡大しており、又
レーザ加工機自体も急速に進歩している現在、クラック
の発生を抑制しながらレーザ加工が可能になることは、
今後一層複雑な加工が必要とされるシリカガラス加工業
界にとって非常に有意義な技術であり、これにより切削
加工後のクラックの補修が不要になり生産性が大幅に向
上する。等の種々の著効を有す。According to the present invention, therefore, the field of application of silica glass is rapidly expanding as described above, and the laser processing machine itself is rapidly advancing at the present time, while suppressing the occurrence of cracks. Laser processing is possible
This is a very meaningful technology for the silica glass processing industry, which will require more complicated processing in the future, and this will not require repair of cracks after cutting and will greatly improve productivity. It has various remarkable effects.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 実 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Minoru Saito 88 Kawakubo, Kanaya, Tamura-cho, Koriyama City, Fukushima Prefecture Shin-Etsu Quartz Co., Ltd.
Claims (2)
る方法において、レーザ加工時における加工部位の仮想
温度をA℃とした場合、前記レーザ加工の前工程として
被加工体としてのシリカガラス体の仮想温度を(A−5
00℃)以内に抑える熱処理工程が存在することを特徴
とするシリカガラス体の加工方法1. In a method of processing a silica glass body with an infrared laser, when a virtual temperature of a processed portion during laser processing is A ° C., a virtual of a silica glass body as a workpiece is pre-processed as the laser processing. Change the temperature to (A-5
A method of processing a silica glass body, characterized in that there is a heat treatment step of suppressing the temperature to within 100 ° C.
る方法において、前記レーザ加工の前工程として、切断
方向の肉厚を20mm未満に形成したシリカガラス体を
用いて該シリカガラス体の仮想温度を1300℃〜17
00℃に設定する熱処理工程が存在することを特徴とす
るシリカガラス体の加工方法2. A method of processing a silica glass body with an infrared laser, wherein as a pre-step of the laser processing, a silica glass body formed to have a wall thickness in a cutting direction of less than 20 mm is used, and a virtual temperature of the silica glass body is adjusted. 1300 ° C ~ 17
A method for processing a silica glass body, characterized in that there is a heat treatment step of setting the temperature to 00 ° C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27611693A JP2826050B2 (en) | 1993-10-07 | 1993-10-07 | Processing method of silica glass body |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27611693A JP2826050B2 (en) | 1993-10-07 | 1993-10-07 | Processing method of silica glass body |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07100671A true JPH07100671A (en) | 1995-04-18 |
| JP2826050B2 JP2826050B2 (en) | 1998-11-18 |
Family
ID=17565022
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27611693A Expired - Fee Related JP2826050B2 (en) | 1993-10-07 | 1993-10-07 | Processing method of silica glass body |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2826050B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0985643A3 (en) * | 1998-09-10 | 2000-10-25 | Heraeus Quarzglas GmbH & Co. KG | Method for producing synthetic quartz glass for the use in ArF excimer laser lithography |
| WO2001098015A3 (en) * | 2000-06-21 | 2002-04-18 | Schott Glas | Method for the production of glass substrates for electronic storage media |
-
1993
- 1993-10-07 JP JP27611693A patent/JP2826050B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0985643A3 (en) * | 1998-09-10 | 2000-10-25 | Heraeus Quarzglas GmbH & Co. KG | Method for producing synthetic quartz glass for the use in ArF excimer laser lithography |
| US6266978B1 (en) * | 1998-09-10 | 2001-07-31 | Heraeus Quarzglas Gmbh | Method for producing synthetic quartz glass for use in ArF excimer laser lithography |
| WO2001098015A3 (en) * | 2000-06-21 | 2002-04-18 | Schott Glas | Method for the production of glass substrates for electronic storage media |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2826050B2 (en) | 1998-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7139886B2 (en) | Method for manufacturing glass substrate having holes, and glass laminate for annealing | |
| TWI490176B (en) | Process and apparatus for splitting glass sheet | |
| KR101485193B1 (en) | Laser separation of glass sheets | |
| CN105436712B (en) | The fragility splinter method and system of a kind of brittle semiconductor materials | |
| CN111558785B (en) | Method for processing three-dimensional contour of transparent material | |
| CN207521870U (en) | Laser output system based on homogenizer | |
| JP2010519164A (en) | Thermal edge finish | |
| JP6452699B2 (en) | How to blunt the sharp edges of glassware | |
| JP2010264471A (en) | Thermal stress cracking for brittle material by wide region non-uniform temperature distribution | |
| KR102428854B1 (en) | Grain oriented electrical steel sheet and method for refining magnetic domains therein | |
| JP2826050B2 (en) | Processing method of silica glass body | |
| Kim et al. | Machining characteristics of micro lens mold in laser-assisted micro-turning | |
| JP2884553B2 (en) | Method of manufacturing quartz glass product for semiconductor heat treatment | |
| JPS58201326A (en) | Heating method by laser and heating apparatus therefor | |
| Smith et al. | Fracture characteristics of an aluminum oxide ceramic during continuous wave carbon dioxide laser cutting | |
| US20200411380A1 (en) | Semiconductor substrate production systems and related methods | |
| JP2007112637A (en) | Diamond processing method | |
| JP6927062B2 (en) | Synthetic quartz glass substrate and its manufacturing method | |
| JPH01167247A (en) | Method for cutting glass article | |
| CN101700957B (en) | Method for removing microcrack at glass edge and improving glass strength | |
| RU2829300C1 (en) | Method for laser cutting of ingots of non-metallic materials into plates | |
| US3150950A (en) | Working glass | |
| JP2007508157A (en) | Method for separating flat ceramic workpieces by calculated radiation spot length | |
| RU2839321C1 (en) | Method for laser cutting of ingots of non-metallic materials into plates | |
| JP2837336B2 (en) | Method of manufacturing quartz glass product for semiconductor heat treatment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080911 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080911 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090911 Year of fee payment: 11 |
|
| LAPS | Cancellation because of no payment of annual fees |