JPH07115216A - Solar cell manufacturing method - Google Patents
Solar cell manufacturing methodInfo
- Publication number
- JPH07115216A JPH07115216A JP5260129A JP26012993A JPH07115216A JP H07115216 A JPH07115216 A JP H07115216A JP 5260129 A JP5260129 A JP 5260129A JP 26012993 A JP26012993 A JP 26012993A JP H07115216 A JPH07115216 A JP H07115216A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- semiconductor thin
- solar cell
- containing cadmium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】
【目的】 窓層となるカドミウムを含む半導体薄膜上に
堆積する光吸収層となるカルコパイライト構造半導体薄
膜の結晶性を向上させ、高いエネルギー変換効率が得ら
れる太陽電池を提供する。
【構成】 透光性基板上に形成したカドミウムを含む半
導体薄膜を塩化カドミウムを含む雰囲気中で熱処理した
後、前記半導体膜上にカルコパイライト構造半導体薄膜
を堆積し、さらに電極膜を形成する。カドミウムを含む
半導体薄膜の結晶粒径の増大により光吸収層の結晶性が
向上する。
(57) [Summary] [Objective] To provide a solar cell in which crystallinity of a chalcopyrite structure semiconductor thin film which becomes a light absorption layer deposited on a semiconductor thin film containing cadmium which becomes a window layer is improved and high energy conversion efficiency is obtained. To do. A semiconductor thin film containing cadmium formed on a translucent substrate is heat-treated in an atmosphere containing cadmium chloride, a chalcopyrite structure semiconductor thin film is deposited on the semiconductor film, and an electrode film is further formed. The crystallinity of the light absorption layer is improved by increasing the crystal grain size of the semiconductor thin film containing cadmium.
Description
【0001】[0001]
【産業上の利用分野】本発明は、エネルギー変換効率の
高い太陽電池の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solar cell having high energy conversion efficiency.
【0002】[0002]
【従来の技術】透光性基板上に透明導電膜、窓層、光吸
収層および電極膜を順次形成してなる構成の太陽電池が
種々報告されている。なかでも、光吸収層としてアモル
ファスSiやCdTeを用いた太陽電池は商品化されて
いる。この構成の太陽電池は、光が透光性基板面から入
射するため、太陽電池としてパッケージする時に、光が
直接に透明導電膜や窓層あるいは光吸収層に入射する構
成で必要となる保護層を簡略できる。従って、太陽電池
を製造する上で有利である。このような透光性基板面か
ら光が入射する構成の太陽電池の光吸収層としてI族、
III族およびVI族元素からなるカルコパイライト構
造半導体薄膜であるCuInSe2を用いた薄膜太陽電
池がいくつか報告されている。この構成においては、窓
層として、CuInSe2と格子定数が近いCdS膜を
用いている。この場合、下地となるCdS膜の配向性あ
るいは結晶性を利用してCuInSe2膜を成長させて
いるため、CdS膜の膜質の良否が太陽電池の性能に大
きな影響を与えている。2. Description of the Related Art Various solar cells having a structure in which a transparent conductive film, a window layer, a light absorbing layer and an electrode film are sequentially formed on a transparent substrate have been reported. Above all, solar cells using amorphous Si or CdTe as the light absorption layer have been commercialized. In the solar cell with this configuration, light is incident from the surface of the transparent substrate, and therefore, when packaged as a solar cell, the protective layer necessary for the configuration in which light is directly incident on the transparent conductive film, the window layer or the light absorption layer. Can be simplified. Therefore, it is advantageous in manufacturing a solar cell. As a light absorption layer of a solar cell having a structure in which light is incident from such a transparent substrate surface, a group I,
Several thin film solar cells using CuInSe 2 which is a chalcopyrite structure semiconductor thin film composed of Group III and Group VI elements have been reported. In this structure, a CdS film having a lattice constant close to that of CuInSe 2 is used as the window layer. In this case, since the CuInSe2 film is grown by utilizing the orientation or crystallinity of the underlying CdS film, the quality of the CdS film has a great influence on the performance of the solar cell.
【0003】[0003]
【発明が解決しようとする課題】高い変換効率を有する
太陽電池を得るには、欠陥の少ない良好な結晶性を有す
るCuInSe2膜を作製することが必要となる。一般
に、良好な結晶性を有する大粒径のCuInSe2膜を
作製するには、500℃以上の高い成膜温度を必要とす
る。しかし、CdS膜上にCuInSe2膜を高温で堆
積すると、両膜間の元素の過剰な相互拡散が生じ、その
結果としてCdSとCuInSe2で構成されるダイオ
ードの漏れ電流が増大し、変換効率が低下する。従っ
て、低温成膜で結晶性に優れたCuInSe2膜を形成
することが重要となる。そこで、下地となるCdS膜の
結晶性を利用してCuInSe2膜を成長させる方法が
有効となる。特に、結晶性の良好な粒径の大きいCuI
nSe2膜を得るには、CdS膜の粒径も大きくする必
要があると考えられる。In order to obtain a solar cell having high conversion efficiency, it is necessary to prepare a CuInSe 2 film having few defects and good crystallinity. In general, a high film formation temperature of 500 ° C. or higher is required to form a CuInSe 2 film having a large grain size and good crystallinity. However, when the CuInSe 2 film is deposited on the CdS film at a high temperature, excessive interdiffusion of elements between the two films occurs, and as a result, the leakage current of the diode composed of CdS and CuInSe 2 increases and the conversion efficiency increases. descend. Therefore, it is important to form a CuInSe 2 film having excellent crystallinity at low temperature. Therefore, a method of growing a CuInSe 2 film by utilizing the crystallinity of the underlying CdS film is effective. In particular, CuI with good crystallinity and large grain size
It is considered necessary to increase the grain size of the CdS film in order to obtain the nSe 2 film.
【0004】従来、窓層CdS膜としては主に蒸着膜が
用いられてきた。蒸着膜の場合、結晶粒の粒径は小さ
く、その大きさは膜厚に比例する。例えば、約1.0μ
mの膜厚の場合、粒径は数10nm程度、10μmの膜
厚では、約1μmである。従って、粒径が大きい、つま
りCdS膜の結晶性が良好な膜を得るためには膜厚を厚
くする必要がある。しかし、膜厚が厚くなるとCdS膜
における抵抗成分が大きくなり、電流損を生じる。ま
た、Cdを多量に使うことは、太陽電池の焼失時や廃棄
時に公害性が問題となる。従って、薄膜で結晶粒の大き
なCdS膜を用いて太陽電池を作製することが重要とな
る。Conventionally, a vapor deposition film has been mainly used as the window layer CdS film. In the case of a vapor-deposited film, the grain size of the crystal grain is small, and its size is proportional to the film thickness. For example, about 1.0μ
When the film thickness is m, the particle diameter is about several tens nm, and when the film thickness is 10 μm, it is about 1 μm. Therefore, in order to obtain a film having a large grain size, that is, a CdS film having good crystallinity, it is necessary to increase the film thickness. However, as the film thickness increases, the resistance component in the CdS film increases and current loss occurs. Also, the use of a large amount of Cd poses a problem of pollution when the solar cell is burnt out or discarded. Therefore, it is important to manufacture a solar cell using a thin CdS film having large crystal grains.
【0005】[0005]
【課題を解決するための手段】前記課題を解決するた
め、本発明の太陽電池の製造方法は、窓層となるカドミ
ウムを含む半導体薄膜を大粒径化し結晶性を向上させる
ために、塩化カドミウムを用いた熱処理の工程と前記工
程により得られた大粒径の窓層半導体膜上にI族、II
I族およびVI族元素からなるカルコパイライト構造半
導体薄膜を堆積する工程を含むことを特徴としている。
すなわち、本発明の第1の太陽電池の製造方法は、透光
性基板上にカドミウムを含む半導体薄膜を堆積した後に
塩化カドミウムを含む雰囲気中で熱処理する工程と、前
記工程において熱処理したカドミウムを含む半導体薄膜
上にI族、III族およびVI族元素からなるカルコパ
イライト構造半導体薄膜を堆積する工程を含むことを特
徴とする。本発明の第2の太陽電池の製造方法は、透光
性基板上にカドミウムと塩化カドミウムを含む半導体薄
膜を形成した後に熱処理する工程と、前記工程において
熱処理した半導体薄膜上にI族、III族およびVI族
元素からなるカルコパイライト構造半導体薄膜を堆積す
る工程を含むことを特徴とする。In order to solve the above-mentioned problems, a method of manufacturing a solar cell according to the present invention uses a cadmium chloride in order to increase the grain size of a semiconductor thin film containing cadmium to be a window layer and improve its crystallinity. On the window layer semiconductor film having a large grain size obtained by the heat treatment step using
The method is characterized by including a step of depositing a chalcopyrite structure semiconductor thin film made of a group I element and a group VI element.
That is, the first method for manufacturing a solar cell according to the present invention includes a step of depositing a semiconductor thin film containing cadmium on a light-transmitting substrate and then heat-treating it in an atmosphere containing cadmium chloride, and cadmium heat-treated in the step. The method is characterized by including a step of depositing a chalcopyrite structure semiconductor thin film made of a group I element, a group III element and a group VI element on the semiconductor thin film. A second method for manufacturing a solar cell according to the present invention comprises a step of forming a semiconductor thin film containing cadmium and cadmium chloride on a transparent substrate, followed by heat treatment, and a group I or III group on the semiconductor thin film heat-treated in the step. And a step of depositing a chalcopyrite structure semiconductor thin film made of a group VI element.
【0006】前記の製造方法において、I族、III族
およびVI族元素からなるカルコパイライト構造半導体
薄膜上に金属膜、炭素膜、透明導電膜のうちの少なくと
も一つの薄膜を堆積する工程を含むことが望ましい。ま
た、前記製造方法において、透光性基板として透明絶縁
体、透明導電体薄膜で被覆された透明絶縁体、透明絶縁
体薄膜が堆積された透明導電体薄膜で被覆された透明絶
縁体のいずれかを用いることが好ましい。さらに、前記
製造方法において、熱処理したカドミウムを含む半導体
薄膜を純水中で超音波洗浄する工程、あるいは湯洗する
工程と、熱処理したカドミウムを含む半導体薄膜を真空
中あるいはガス雰囲気中で熱処理する工程の少なくとも
一つを備えることが好ましい。The above-mentioned manufacturing method includes a step of depositing at least one thin film of a metal film, a carbon film and a transparent conductive film on a chalcopyrite structure semiconductor thin film made of a group I, group III and group VI element. Is desirable. Further, in the manufacturing method, any one of a transparent insulator as a transparent substrate, a transparent insulator covered with a transparent conductor thin film, and a transparent insulator covered with a transparent conductor thin film on which the transparent insulator thin film is deposited. Is preferably used. Further, in the above manufacturing method, a step of ultrasonically cleaning the heat-treated semiconductor thin film containing cadmium in pure water, or a step of washing with hot water, and a step of heat-treating the heat-treated semiconductor thin film containing cadmium in a vacuum or a gas atmosphere It is preferable to provide at least one of the above.
【0007】[0007]
【作用】前記した本発明の構成によれば、カドミウムを
含む半導体薄膜を塩化カドミウムを含む雰囲気中で熱処
理するか、あるいはカドミウムと塩化カドミウムを含む
半導体薄膜を熱処理することにより、前記カドミウムを
含む半導体薄膜の結晶粒が増大し、大粒径で結晶性に優
れた窓層となる半導体薄膜が得られる。前記工程で得ら
れた粒径の大きな窓層半導体薄膜上に、I族、III族
およびVI族元素からなるカルコパイライト構造半導体
を堆積することにより、低温成膜で結晶性に優れた膜が
得られる。従って、欠陥等が減少することから、太陽光
照射時の開放端電圧や短絡光電流が増加し、太陽電池の
変換効率が向上する。また、カルコパイライト薄膜上に
形成する電極として、カルコパイライト薄膜とのオーミ
ック性接触に優れ、かつ薄膜形成が容易であるAu、P
tあるいはNi等の金属膜、炭素膜およびSnO2等の
透明導電膜のうち少なくとも一つの薄膜を用いることが
有利である。さらに、光が入射する透光性基板として
は、前記窓層半導体薄膜が低抵抗であり、電極として用
いることが可能である場合は、ガラス等の透明絶縁体基
板のみを用いるのが有利である。前記窓層半導体薄膜が
高抵抗である場合は、透光性の電極を必要とするため、
ITO(酸化錫インジウム)あるいはSnO2等の透明
導電体膜を被覆した透明絶縁体基板を用いることが必要
となる。さらに、熱処理による前記透明導電体膜と窓層
半導体薄膜の元素の相互拡散を低減するために、緩衝層
として前記透明導電体膜上にZnO等の透明絶縁体膜を
堆積した基板を用いると、太陽電池の特性の一つである
曲線因子が向上する。According to the above-described structure of the present invention, the semiconductor thin film containing cadmium is heat-treated in the atmosphere containing cadmium chloride, or the semiconductor thin film containing cadmium and cadmium chloride is heat-treated. The crystal grains of the thin film increase, and a semiconductor thin film having a large grain size and forming a window layer excellent in crystallinity can be obtained. By depositing a chalcopyrite structure semiconductor composed of group I, group III and group VI elements on the window layer semiconductor thin film having a large grain size obtained in the above step, a film excellent in crystallinity can be obtained at low temperature film formation. To be Therefore, since defects and the like are reduced, the open-circuit voltage and the short-circuit photocurrent at the time of sunlight irradiation are increased, and the conversion efficiency of the solar cell is improved. Further, as an electrode formed on the chalcopyrite thin film, Au, P, which is excellent in ohmic contact with the chalcopyrite thin film and is easy to form a thin film,
It is advantageous to use at least one thin film of a metal film such as t or Ni, a carbon film, and a transparent conductive film such as SnO 2 . Further, when the window layer semiconductor thin film has low resistance and can be used as an electrode, it is advantageous to use only a transparent insulating substrate such as glass as a light-transmissive substrate on which light is incident. . If the window layer semiconductor thin film has a high resistance, a transparent electrode is required,
It is necessary to use a transparent insulator substrate coated with a transparent conductor film such as ITO (indium tin oxide) or SnO 2 . Further, in order to reduce mutual diffusion of elements of the transparent conductor film and the window layer semiconductor thin film by heat treatment, when a substrate having a transparent insulator film such as ZnO deposited on the transparent conductor film is used as a buffer layer, The fill factor, which is one of the characteristics of solar cells, is improved.
【0008】また、塩化カドミウムを含む雰囲気中ある
いは塩化カドミウムを含む半導体膜を熱処理した後に
は、膜表面に塩化カドミウムが付着あるいは蓄積される
ことがある。塩化カドミウムが付着した膜上にカルコパ
イライト構造半導体薄膜を堆積すると、カドミウムと塩
素が膜中に拡散し、結晶性を低下させる。さらに、カル
コパイライト膜全体がn形半導体となり、窓層半導体が
n形の場合、pn接合が形成されないことになる。窓層
となる半導体薄膜表面に付着あるいは蓄積した塩化カド
ミウムは、純水中での超音波洗浄あるいは湯洗または真
空中かガス雰囲気中で熱処理する工程を経ることにより
除去される。以上により、結晶性に優れ結晶粒の大きな
窓層半導体薄膜が得られ、前記半導体薄膜上にカルコパ
イライト構造半導体薄膜を堆積することにより、結晶性
に優れ欠陥の少ない光吸収層が形成できることから、高
いエネルギー変換効率が得られる太陽電池が作製でき
る。Further, after the heat treatment of the atmosphere containing cadmium chloride or after the heat treatment of the semiconductor film containing cadmium chloride, cadmium chloride may adhere or accumulate on the film surface. When a chalcopyrite structure semiconductor thin film is deposited on a film to which cadmium chloride has adhered, cadmium and chlorine diffuse into the film, which lowers the crystallinity. Further, when the entire chalcopyrite film is an n-type semiconductor and the window layer semiconductor is an n-type semiconductor, the pn junction is not formed. The cadmium chloride that has adhered to or accumulated on the surface of the semiconductor thin film to be the window layer is removed by ultrasonic cleaning in pure water, washing with hot water, or heat treatment in a vacuum or gas atmosphere. From the above, a large window layer semiconductor thin film having excellent crystallinity is obtained, and by depositing a chalcopyrite structure semiconductor thin film on the semiconductor thin film, it is possible to form a light absorption layer with excellent crystallinity and less defects, A solar cell with high energy conversion efficiency can be manufactured.
【0009】[0009]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。 [実施例1]図1は本発明の一実施例における太陽電池
の製造工程の一部である熱処理工程を示している。1
は、透光性基板で、ガラス板上に透明導電体膜ITOを
被覆し、さらに透明絶縁体膜ZnOを堆積したものであ
る。この基板1の上にカドミウムを含む半導体薄膜2と
してCdS膜を1.0μm蒸着している。このCdS膜
の粒径は約20nmである。この積層膜を内部が2重構
造となっているアルミナボート5の上部に置き、下部に
塩化カドミウム(CdCl2)6を配する。7はボート
5の蓋である。この半密閉型アルミナボートを電気炉8
内に入れ、ヒータ9に通電して加熱し、窒素気流中45
0℃〜650℃の温度で熱処理する。最適な熱処理温度
は、CdS膜の厚さおよび面積によって異なる。本実施
例では570℃で熱処理する。熱処理後、膜表面を光学
顕微鏡で観察したところ、結晶粒の平均粒径は約3μm
となっており、熱処理前に比べ約100倍に増大してい
た。このCdS膜を純水で5分間超音波洗浄し、さらに
15分間湯洗(約80℃)を行う。膜を乾燥させた後、
真空容器中に入れ、10-7Torrの真空中において4
50℃で5分間熱処理する。その後、Cu、In、Se
を独立に同時に蒸発させてカルコパイライト構造半導体
であるCuInSe2膜3を基板温度300℃で約2.0
μm蒸着する。この膜を空気中において300℃で1時
間熱処理し、CuInSe2膜上に裏面電極4としてA
uを蒸着する。Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIG. 1 shows a heat treatment process which is a part of a manufacturing process of a solar cell in one embodiment of the present invention. 1
Is a translucent substrate in which a transparent conductor film ITO is coated on a glass plate and a transparent insulator film ZnO is further deposited thereon. A CdS film as a semiconductor thin film 2 containing cadmium is vapor-deposited on the substrate 1 in an amount of 1.0 μm. The grain size of this CdS film is about 20 nm. This laminated film is placed on the upper part of an alumina boat 5 having a double structure inside, and cadmium chloride (CdCl 2 ) 6 is arranged on the lower part. Reference numeral 7 is a lid of the boat 5. This semi-enclosed alumina boat is used as an electric furnace 8
It is put in the inside and heated by energizing the heater 9 in a nitrogen stream 45
Heat treatment is performed at a temperature of 0 ° C to 650 ° C. The optimum heat treatment temperature depends on the thickness and area of the CdS film. In this embodiment, heat treatment is performed at 570 ° C. After heat treatment, the film surface was observed with an optical microscope to find that the average grain size of the crystal grains was about 3 μm.
Which is about 100 times larger than that before the heat treatment. This CdS film is ultrasonically cleaned with pure water for 5 minutes, and then rinsed with hot water (about 80 ° C.) for 15 minutes. After drying the membrane,
Place in a vacuum container and in a vacuum of 10 -7 Torr, 4
Heat treatment at 50 ° C. for 5 minutes. After that, Cu, In, Se
Are independently evaporated at the same time to form a CuInSe 2 film 3, which is a chalcopyrite structure semiconductor, at a substrate temperature of 300 ° C. for about 2.0.
μm vapor deposition. This film was heat-treated in air at 300 ° C. for 1 hour to form a back electrode 4 on the CuInSe 2 film.
evaporate u.
【0010】図2に作製した素子の縦断面略図を示す。
比較のために、蒸着したCdS膜に塩化カドミウム雰囲
気中の熱処理を行わずに同様にカルコパイライト構造半
導体薄膜を堆積し、従来の構成の素子も作製した。これ
ら本実施例および比較例1の太陽電池素子にAM1.
5、光強度100mW/cm2の光を照射して得られた
太陽電池特性を比較した結果を表1に示す。FIG. 2 is a schematic vertical sectional view of the device manufactured.
For comparison, a chalcopyrite structure semiconductor thin film was similarly deposited on the vapor-deposited CdS film without heat treatment in a cadmium chloride atmosphere, and a device having a conventional structure was also manufactured. AM1 is added to the solar cell elements of this example and comparative example 1.
Table 5 shows the results of comparing the characteristics of the solar cells obtained by irradiating light with a light intensity of 100 mW / cm 2 .
【0011】[0011]
【表1】 [Table 1]
【0012】表1からわかるように、本発明の太陽電池
は従来のものに比べ全ての特性が向上している。特に、
短絡光電流は飛躍的に向上している。これを詳しく調べ
るために、各波長における量子効率を測定した結果を図
3に示す。比較例1として示した従来の太陽電池は、長
波長領域において量子効率が低下しているのに対し、本
発明の太陽電池は長波長領域の光で生成されたキャリア
も充分取り出せていることがわかる。これは、本発明の
太陽電池においては、粒径の大きなCdS膜上にCuI
nSe2膜を堆積したため、CuInSe2膜の結晶粒も
大きくなりかつ結晶性が向上したために、光吸収層のキ
ャリア寿命および拡散長が伸びているためと考えられ
る。従って、長波長領域の光が浸透するCuInSe2
膜の深部のAu電極付近で生成されたキャリアの再結合
確率が減少し、有効に光電流として取り出される。As can be seen from Table 1, all characteristics of the solar cell of the present invention are improved as compared with the conventional one. In particular,
Short-circuit photocurrent has improved dramatically. In order to investigate this in detail, the result of measuring the quantum efficiency at each wavelength is shown in FIG. The conventional solar cell shown as Comparative Example 1 has a reduced quantum efficiency in the long wavelength region, whereas the solar cell of the present invention can sufficiently extract carriers generated by light in the long wavelength region. Recognize. In the solar cell of the present invention, this is due to CuI on the CdS film having a large grain size.
It is considered that since the nSe 2 film was deposited, the crystal grains of the CuInSe 2 film were increased and the crystallinity was improved, and the carrier life and diffusion length of the light absorption layer were extended. Therefore, CuInSe 2 which light in the long wavelength region penetrates
The recombination probability of the carriers generated near the Au electrode in the deep portion of the film is reduced, and it is effectively extracted as a photocurrent.
【0013】[実施例2]図4に本実施例の太陽電池の
製造工程の一部を示す。11はガラスからなる透光性基
板で、その上に0.1atom%のInと2wt%のC
dCl2を含有したCdS:In:CdCl2膜12を1
0μmの厚さに蒸着している。この膜をアルミナボート
15上に置き、電気炉8内でヒータ9により加熱し、窒
素雰囲気中において600℃で熱処理する。その後、実
施例1と同様に純水で超音波洗浄と湯洗を行った後、窒
素雰囲気中において450℃で15分間熱処理する。こ
の膜上に、スパッタ法により基板温度350℃でCuG
aSe2膜を約2.5μm堆積する。その後、空気中にお
いて250℃で1時間熱処理した後に、裏面電極として
SnO2をスパッタ法により堆積する。同様に塩化カド
ミウムを含まないCdS:In膜上にCuGaSe2膜
を堆積した比較例の素子も作製する。これら本実施例お
よび比較例2の太陽電池素子にAM1.5、光強度10
0mW/cm2の光を照射して得られた太陽電池特性を
表2に示す。実施例1と同様に、塩化カドミウムを含む
CdS:In膜を熱処理した素子の方が変換効率が高
く、特に、短絡光電流が大きい。この理由としては、前
記したように光吸収層となるCuGaSe2膜の結晶性
が良好なことと、この構成では光入射側の電極としてC
dS:In膜を用いているため、塩化カドミウムの熱処
理により粒径が増大したCdS:In膜の方がより低抵
抗となり、電流損が小さいためである。[Embodiment 2] FIG. 4 shows a part of the manufacturing process of the solar cell of this embodiment. Reference numeral 11 is a transparent substrate made of glass, on which 0.1 atom% of In and 2 wt% of C are formed.
1 of CdS: In: CdCl 2 film 12 containing dCl 2
It is vapor-deposited to a thickness of 0 μm. This film is placed on an alumina boat 15, heated by a heater 9 in an electric furnace 8 and heat-treated at 600 ° C. in a nitrogen atmosphere. Thereafter, as in Example 1, ultrasonic cleaning and hot water cleaning are performed with pure water, and then heat treatment is performed at 450 ° C. for 15 minutes in a nitrogen atmosphere. CuG is deposited on this film at a substrate temperature of 350 ° C. by a sputtering method.
An aSe 2 film is deposited to a thickness of about 2.5 μm. After that, after heat treatment in air at 250 ° C. for 1 hour, SnO 2 is deposited as a back electrode by a sputtering method. Similarly, a device of a comparative example in which a CuGaSe 2 film is deposited on a CdS: In film containing no cadmium chloride is also manufactured. The solar cell elements of this example and comparative example 2 had an AM of 1.5 and a light intensity of 10
Table 2 shows the solar cell characteristics obtained by irradiating light of 0 mW / cm 2 . Similar to Example 1, the device obtained by heat-treating the CdS: In film containing cadmium chloride has higher conversion efficiency, and in particular, the short-circuit photocurrent is larger. The reason for this is that the CuGaSe 2 film serving as the light absorption layer has good crystallinity as described above, and in this structure, C is used as the electrode on the light incident side.
Because the dS: In film is used, the CdS: In film whose grain size is increased by the heat treatment of cadmium chloride has a lower resistance and a smaller current loss.
【0014】[0014]
【表2】 [Table 2]
【0015】[実施例3]実施例1と同様の方法で窓層
Cd0.98Zn0.02S薄膜(膜厚1.0μm)を塩化カド
ミウム雰囲気中で熱処理する。ここでは、透光性基板と
してITOを被覆したガラスを用いる。実施例1と同様
に純水による超音波洗浄と湯洗を行った後、真空中にお
いて450℃で5分間熱処理する。その後、同一真空内
でCu、In、Se、Sを独立に同時に蒸発させ、基板
温度380℃でCuInSe0.55S0.45膜を作製する。
空気中において300℃で1時間熱処理した後、CuI
nSe0.55S0.45膜上に炭素ペーストを塗布した後乾燥
させ、炭素膜を形成する。このようにして作製した本実
施例、および塩化カドミウム雰囲気中における熱処理工
程を含まない比較例の太陽電池素子について、実施例1
と同様な条件の光照射下で太陽電池特性を測定した結果
を表3に示す。表3より塩化カドミウムによる熱処理を
行った素子の方が曲線因子が増大していることがわか
る。これは、従来の構造のように窓層が蒸着膜の場合
は、380℃という堆積温度においては、多密度で存在
する粒界を通して窓層と吸収層で多量の元素の相互拡散
が生じるためである。この相互拡散によりダイオードの
漏れ電流が増大し、曲線因子を低下させていると考えら
れる。これに対し、塩化カドミウム雰囲気中で熱処理し
たCd0.98Zn0.02S薄膜は、粒径が大きいことから、
粒界密度が少なく相互拡散が抑制されていると考えられ
る。Example 3 In the same manner as in Example 1, the window layer Cd 0.98 Zn 0.02 S thin film (film thickness 1.0 μm) is heat-treated in a cadmium chloride atmosphere. Here, glass coated with ITO is used as the translucent substrate. After performing ultrasonic cleaning with pure water and hot water washing in the same manner as in Example 1, heat treatment is performed in vacuum at 450 ° C. for 5 minutes. Then, Cu, In, Se, and S are independently and simultaneously evaporated in the same vacuum to form a CuInSe 0.55 S 0.45 film at a substrate temperature of 380 ° C.
After heat treatment at 300 ° C for 1 hour in air, CuI
the nSe 0. 5 5 S 0.45 film dried after coating the carbon paste, to form a carbon film. The solar cell element of the present example manufactured in this way and the comparative example not including the heat treatment step in the cadmium chloride atmosphere
Table 3 shows the results of measuring the solar cell characteristics under the light irradiation under the same conditions as described above. From Table 3, it can be seen that the fill factor is increased in the element that has been heat-treated with cadmium chloride. This is because when the window layer is an evaporated film as in the conventional structure, a large amount of mutual diffusion of elements occurs at the deposition temperature of 380 ° C. in the window layer and the absorption layer through the grain boundaries that exist at high density. is there. It is considered that this mutual diffusion increases the leakage current of the diode and reduces the fill factor. On the other hand, since the Cd 0.98 Zn 0.02 S thin film heat-treated in a cadmium chloride atmosphere has a large grain size,
It is considered that the grain boundary density is low and mutual diffusion is suppressed.
【0016】[0016]
【表3】 [Table 3]
【0017】[0017]
【発明の効果】本発明によって、太陽電池の窓層となる
半導体薄膜の大粒径化と結晶性の向上が図られることか
ら、その上に堆積する光吸収層となるカルコパイライト
構造半導体薄膜の結晶性の向上および欠陥の減少が実現
できる。従って、キャリア寿命や拡散長が伸びることに
より、カルコパイライト構造半導体薄膜を用いた太陽電
池の高効率化が図れる。According to the present invention, since the grain size and the crystallinity of the semiconductor thin film which becomes the window layer of the solar cell can be increased, the chalcopyrite structure semiconductor thin film which becomes the light absorption layer deposited thereon can be formed. Improvement of crystallinity and reduction of defects can be realized. Therefore, by increasing the carrier life and the diffusion length, it is possible to improve the efficiency of the solar cell using the chalcopyrite structure semiconductor thin film.
【図1】本発明の一実施例における熱処理工程を示す縦
断面略図である。FIG. 1 is a schematic vertical sectional view showing a heat treatment process in one embodiment of the present invention.
【図2】本発明の一実施例により得た太陽電池の構成を
示す縦断面略図である。FIG. 2 is a schematic vertical sectional view showing a structure of a solar cell obtained according to an embodiment of the present invention.
【図3】実施例および比較例の太陽電池の光波長に対す
る量子効率の変化を示す図である。FIG. 3 is a diagram showing changes in quantum efficiency with respect to light wavelengths of solar cells of Examples and Comparative Examples.
【図4】本発明の太陽電池の製造工程の一部を示す図で
ある。FIG. 4 is a diagram showing a part of a manufacturing process of the solar cell of the present invention.
1 透光性基板 2 カドミウムを含む半導体薄膜 3 カルコパイライト構造半導体薄膜 4 電極膜 5 アルミナボート 6 塩化カドミウム 7 ボートの蓋 8 電気炉 9 ヒータ 1 Translucent Substrate 2 Semiconductor Thin Film Containing Cadmium 3 Chalcopyrite Structure Semiconductor Thin Film 4 Electrode Film 5 Alumina Boat 6 Cadmium Chloride 7 Boat Lid 8 Electric Furnace 9 Heater
───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 隆博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takahiro Wada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (2)
薄膜を堆積する工程、前記半導体薄膜を塩化カドミウム
を含む雰囲気中で熱処理する工程、および前記熱処理し
たカドミウムを含む半導体薄膜上にI族、III族およ
びVI族元素からなるカルコパイライト構造半導体薄膜
を堆積する工程を含む太陽電池の製造方法。1. A step of depositing a semiconductor thin film containing cadmium on a transparent substrate, a step of heat-treating the semiconductor thin film in an atmosphere containing cadmium chloride, and a group I on the heat-treated semiconductor thin film containing cadmium, A method for manufacturing a solar cell, comprising a step of depositing a chalcopyrite structure semiconductor thin film made of a group III element and a group VI element.
ウムを含む半導体薄膜を形成する工程、前記半導体薄膜
を熱処理する工程、および前記熱処理した半導体薄膜上
にI族、III族およびVI族元素からなるカルコパイ
ライト構造半導体薄膜を堆積する工程を含む太陽電池の
製造方法。2. A step of forming a semiconductor thin film containing cadmium and cadmium chloride on a transparent substrate, a step of heat-treating the semiconductor thin film, and a group I, III or VI element on the heat-treated semiconductor thin film. A method for manufacturing a solar cell, comprising the step of depositing a chalcopyrite structure semiconductor thin film.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5260129A JPH07115216A (en) | 1993-10-18 | 1993-10-18 | Solar cell manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5260129A JPH07115216A (en) | 1993-10-18 | 1993-10-18 | Solar cell manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07115216A true JPH07115216A (en) | 1995-05-02 |
Family
ID=17343706
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5260129A Pending JPH07115216A (en) | 1993-10-18 | 1993-10-18 | Solar cell manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07115216A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002064215A (en) * | 2000-05-30 | 2002-02-28 | Kurt L Barth | Mass production apparatus and method for photovoltaic module |
| JP2009513018A (en) * | 2005-10-20 | 2009-03-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nanocrystal solar cells prepared from solution |
-
1993
- 1993-10-18 JP JP5260129A patent/JPH07115216A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002064215A (en) * | 2000-05-30 | 2002-02-28 | Kurt L Barth | Mass production apparatus and method for photovoltaic module |
| JP2009513018A (en) * | 2005-10-20 | 2009-03-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nanocrystal solar cells prepared from solution |
| US8440906B2 (en) | 2005-10-20 | 2013-05-14 | The Regents Of The University Of California | Nanocrystal solar cells processed from solution |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Jang et al. | Monolithic tandem solar cells comprising electrodeposited CuInSe 2 and perovskite solar cells with a nanoparticulate ZnO buffer layer | |
| US8829342B2 (en) | Back contact buffer layer for thin-film solar cells | |
| US20050056312A1 (en) | Bifacial structure for tandem solar cells | |
| JPH0563953B2 (en) | ||
| JPH04334069A (en) | Solar cell substrates and solar cells | |
| Takamoto et al. | Improved junction formation procedure for low temperature deposited CdSCdTe solar cells | |
| JP4394366B2 (en) | Double-sided solar cell | |
| CN110061085A (en) | A kind of solar battery and preparation method thereof | |
| JPH09172193A (en) | Thin film solar cell | |
| WO2004084282A1 (en) | Bifacial structure for tandem solar cell formed with amorphous semiconductor materials | |
| JP2024028171A (en) | solar cells | |
| JPH07115216A (en) | Solar cell manufacturing method | |
| JP2000077692A (en) | Photovoltaic device and method for manufacturing the same | |
| JP3444700B2 (en) | Solar cell | |
| JPH07283430A (en) | Solar cell manufacturing method | |
| JP3130993B2 (en) | Solar cell | |
| JP3414814B2 (en) | Solar cell and manufacturing method thereof | |
| KR101620432B1 (en) | Solar cell module and manufacturing method thereof | |
| JP2004327849A (en) | Solar cell and method of manufacturing the same | |
| JP3069158B2 (en) | Solar cell and method of manufacturing the same | |
| Gordillo et al. | Influence of the optical window on the performance of TCO/CdS/CdTe solar cells | |
| JP3397213B2 (en) | Solar cell | |
| JP2003298091A (en) | Solar cell and method of manufacturing the same | |
| JP3473255B2 (en) | Manufacturing method of thin film solar cell | |
| JP3049889B2 (en) | Solar cell and manufacturing method thereof |