JPH07128337A - Measuring method for (1-3)-beta-d-glucan - Google Patents
Measuring method for (1-3)-beta-d-glucanInfo
- Publication number
- JPH07128337A JPH07128337A JP21629594A JP21629594A JPH07128337A JP H07128337 A JPH07128337 A JP H07128337A JP 21629594 A JP21629594 A JP 21629594A JP 21629594 A JP21629594 A JP 21629594A JP H07128337 A JPH07128337 A JP H07128337A
- Authority
- JP
- Japan
- Prior art keywords
- glucan
- sample
- factor
- reaction
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 108010001062 polysaccharide-K Proteins 0.000 title abstract 4
- 241000239218 Limulus Species 0.000 claims abstract description 67
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 54
- 238000006243 chemical reaction Methods 0.000 claims abstract description 49
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 35
- 239000002158 endotoxin Substances 0.000 claims abstract description 19
- 229920002498 Beta-glucan Polymers 0.000 claims description 121
- 239000002738 chelating agent Substances 0.000 claims description 24
- 229920001503 Glucan Polymers 0.000 claims description 15
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 9
- 241001529572 Chaceon affinis Species 0.000 claims description 6
- 230000002779 inactivation Effects 0.000 claims description 5
- 230000017559 hemolymph coagulation Effects 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 abstract description 17
- 238000001514 detection method Methods 0.000 abstract description 7
- 230000002452 interceptive effect Effects 0.000 abstract description 7
- 239000013522 chelant Substances 0.000 abstract description 4
- 230000000415 inactivating effect Effects 0.000 abstract description 3
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 91
- 239000000523 sample Substances 0.000 description 73
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 60
- 239000000243 solution Substances 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000012153 distilled water Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 21
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 238000002347 injection Methods 0.000 description 16
- 239000006166 lysate Substances 0.000 description 16
- 238000012937 correction Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 206010017533 Fungal infection Diseases 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 239000012085 test solution Substances 0.000 description 12
- 238000002835 absorbance Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 11
- 208000031888 Mycoses Diseases 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 230000003213 activating effect Effects 0.000 description 8
- 239000003513 alkali Substances 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 230000009257 reactivity Effects 0.000 description 7
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 6
- 238000010523 cascade reaction Methods 0.000 description 6
- 108010055222 clotting enzyme Proteins 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000012266 salt solution Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 229920002305 Schizophyllan Polymers 0.000 description 5
- 239000012472 biological sample Substances 0.000 description 5
- -1 etc. Substances 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 210000004623 platelet-rich plasma Anatomy 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- 108700023418 Amidases Proteins 0.000 description 3
- 229920001491 Lentinan Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 102000005922 amidase Human genes 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229940115286 lentinan Drugs 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- DELJNDWGTWHHFA-UHFFFAOYSA-N 1-azaniumylpropyl(hydroxy)phosphinate Chemical compound CCC(N)P(O)(O)=O DELJNDWGTWHHFA-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 description 2
- GEHMBYLTCISYNY-UHFFFAOYSA-N Ammonium sulfamate Chemical compound [NH4+].NS([O-])(=O)=O GEHMBYLTCISYNY-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 108090000726 Limulus clotting factor C Proteins 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000006149 azo coupling reaction Methods 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000385 dialysis solution Substances 0.000 description 2
- 238000011051 endospecy test Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000024386 fungal infectious disease Diseases 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- FCKYPQBAHLOOJQ-NXEZZACHSA-N 2-[[(1r,2r)-2-[bis(carboxymethyl)amino]cyclohexyl]-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)[C@@H]1CCCC[C@H]1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-NXEZZACHSA-N 0.000 description 1
- WYMDDFRYORANCC-UHFFFAOYSA-N 2-[[3-[bis(carboxymethyl)amino]-2-hydroxypropyl]-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)CN(CC(O)=O)CC(O)=O WYMDDFRYORANCC-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- QNGVNLMMEQUVQK-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine Chemical compound CCN(CC)C1=CC=C(N)C=C1 QNGVNLMMEQUVQK-UHFFFAOYSA-N 0.000 description 1
- 102000004411 Antithrombin III Human genes 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 101710181853 C-factor Proteins 0.000 description 1
- 241000239219 Carcinoscorpius rotundicauda Species 0.000 description 1
- 108010065152 Coagulase Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 238000001162 G-test Methods 0.000 description 1
- 239000006173 Good's buffer Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- BABSVXFGKFLIGW-UWVGGRQHSA-N Leu-Gly-Arg Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCNC(N)=N BABSVXFGKFLIGW-UWVGGRQHSA-N 0.000 description 1
- 241000239220 Limulus polyphemus Species 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 229940122791 Plasmin inhibitor Drugs 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000239222 Tachypleus Species 0.000 description 1
- 241000239221 Tachypleus gigas Species 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- MKBUQYWFFBCMFG-UHFFFAOYSA-N acetic acid propane-1,1-diamine Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CCC(N)N MKBUQYWFFBCMFG-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 108010071063 butyloxycarbonyl-leucyl-glycyl-arginine-4-nitroanilide Proteins 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- LOHQECMUTAPWAC-UHFFFAOYSA-N coagulin Natural products C1C(C)=C(CO)C(=O)OC1C1(C)C(C2(C)CCC3C4(C(=O)CC=CC4=CCC43)C)(O)CCC24O1 LOHQECMUTAPWAC-UHFFFAOYSA-N 0.000 description 1
- 108010045487 coagulogen Proteins 0.000 description 1
- GLNDAGDHSLMOKX-UHFFFAOYSA-N coumarin 120 Chemical compound C1=C(N)C=CC2=C1OC(=O)C=C2C GLNDAGDHSLMOKX-UHFFFAOYSA-N 0.000 description 1
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 210000000087 hemolymph Anatomy 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000002806 plasmin inhibitor Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、(1→3)−β−D−
グルカン(以下「β−グルカン」ともいう)の測定方法
に関する。特に、反応妨害因子として試料中に含まれる
可能性のある、リムルスC因子系反応に関与するエンド
トキシン(以下「Et」とも記す)またはEtおよびリ
ムルスG因子とβ−グルカンとの特異的反応を妨害する
反応妨害因子(以下「G因子系反応妨害因子」ともい
う)とを含む可能性のある試料中あるいはリンゲル液、
透析液等の金属イオンを含み得る試料中のβ−グルカン
をリムルス試薬を用いて高い精度で測定できる方法に関
するものである。BACKGROUND OF THE INVENTION The present invention relates to (1 → 3) -β-D-
The present invention relates to a method for measuring glucan (hereinafter, also referred to as "β-glucan"). In particular, it interferes with the endotoxin (hereinafter also referred to as “Et”) or Et and Limulus factor G and β-glucan involved in the Limulus factor C system reaction, which may be contained in the sample as a reaction-interfering factor. In a sample or Ringer's solution that may contain a reaction interfering factor (hereinafter also referred to as “factor G reaction interfering factor”)
The present invention relates to a method capable of measuring β-glucan in a sample such as a dialysate that may contain metal ions with high accuracy using a Limulus reagent.
【0002】[0002]
【従来の技術】リムルス試薬に含まれるカブトガニ・ア
メボサイト・ライセート(以下単に「ライセート」とも
いう)には、Etと反応して活性化されるカスケードタ
イプの凝固系(C因子系)とβ−グルカンと反応して活
性化されるカスケードタイプの凝固系(G因子系)とが
共存しており(図1)、ライセートはβ−グルカンだけ
でなく、Etとも反応する。前者の系のみを利用してEt
を特異的に測定する方法、後者の系のみを利用してβ−
グルカンを特異的に測定する方法がそれぞれ知られてい
る(Obayashi T. et al., Clin. Chim. Acta, 149,
55−65(1985))。2. Description of the Related Art Horseshoe crab amebosite lysate (hereinafter also simply referred to as "lysate") contained in Limulus reagent includes a cascade type coagulation system (factor C system) and β-glucan that are activated in response to Et. A coagulation type coagulation system (factor G system) that is activated by reacting with is coexistent (FIG. 1), and the lysate reacts not only with β-glucan but also with Et. Et using only the former system
A method of specifically measuring β-using only the latter system
Methods for specifically measuring glucan are known (Obayashi T. et al., Clin. Chim. Acta, 149,
55-65 (1985)).
【0003】また、真菌感染症の患者は血液中のβ−グ
ルカンが増加し、血液中のβ−グルカンを測定すること
によって真菌感染症を診断できることも知られている。
このようなG因子系を利用するβ−グルカン測定法は、
検出感度が非常に高いため生体試料中の微量検出に適し
ており、特に深在性真菌感染症の診断への有効性が検討
確認され、臨床検査に使用され始めている。It is also known that patients with fungal infections have increased β-glucan in blood, and fungal infections can be diagnosed by measuring β-glucan in blood.
The β-glucan assay method using such a G factor system is
Since the detection sensitivity is very high, it is suitable for detection of a trace amount in a biological sample. Especially, its effectiveness in diagnosing deep-seated fungal infections has been examined and confirmed, and it has begun to be used for clinical tests.
【0004】β−グルカンのG因子に対する反応は、分
子量のみならず、その高次構造が関与し、三重らせん構
造をとるものはG因子を活性化せず、一重らせん構造を
とるときG因子を活性化することが知られている(Sait
o H. et al., Carbohydr. Res., 217, 181-190(1991);
Tanaka S. et al., Carbohydr. Res., 218, 167-174(19
91);Aketagawa J. et al., J.Biochem.,113,683-686(19
93))。一方、β−グルカンは、天然には、その最も安定
な形である三重らせん構造で存在していることが多く、
かつEtと共存している場合が多い。The reaction of β-glucan with G factor involves not only the molecular weight but also the higher-order structure thereof. Those having a triple helix structure do not activate G factor, and when it takes a single helix structure, G factor is It is known to activate (Sait
o H. et al., Carbohydr. Res., 217, 181-190 (1991);
Tanaka S. et al., Carbohydr. Res., 218, 167-174 (19
91); Aketagawa J. et al., J. Biochem., 113,683-686 (19
93)). On the other hand, β-glucan often exists in the most stable form of triple helix structure in nature,
And often coexists with Et.
【0005】そのため、ライセート全体を原料にしてい
る通常のリムルス試薬(非特異的リムルス試薬)では、
G因子系とC因子系が存在しているため、β−グルカン
だけでなくEtとも反応してしまい、β−グルカンの測
定はできなかった。これを解決するために、従来は、ラ
イセートからG因子系成分を分画、再構成すること(例
えば、Obayashi T. et al., 前出)、またはC因子を特
異的に阻害または吸着、除去すること(例えば、WO9
1/19981、WO92/16651)により、C因
子系成分を実質的に含まないか、あるいはC因子系反応
が阻害されて、エンドトキシンと反応しないβ−グルカ
ン特異的リムルス試薬として試料中のβ−グルカンを測
定していた。Therefore, in a usual Limulus reagent (non-specific Limulus reagent) using the whole lysate as a raw material,
Due to the existence of the factor G system and the factor C system, not only β-glucan but also Et reacted, and β-glucan could not be measured. In order to solve this problem, conventionally, the G factor component was fractionated and reconstituted from the lysate (eg, Obayashi T. et al., Supra), or the C factor was specifically inhibited, adsorbed, or removed. What to do (for example, WO9
1/19981 and WO92 / 16651), β-glucan in a sample as a β-glucan-specific Limulus reagent that does not substantially contain a factor C component or inhibits a factor C reaction and does not react with endotoxin. Was being measured.
【0006】また、上記のようなG因子系の分画・再構
成、C因子系の吸着除去または特異的阻害等の手段によ
らず、試料に前処理を施すことによってEtを不活性化
した後、ライセートを作用させ、β−グルカンを測定す
る方法が提案されている(特開平2−141666号公
報)。この方法は、被検試料液を加熱処理するものであ
るが、現実には100℃、2時間の処理が必要であり、
かつ、この処理では三重らせん構造のβ−グルカンは、
一重らせん構造にほとんど変換せず、従ってβ−グルカ
ンの全量を測定できない。In addition, Et is inactivated by pretreatment of the sample regardless of the means such as fractionation / reconstitution of factor G system, adsorption removal of factor C system or specific inhibition as described above. After that, a method for measuring β-glucan by allowing lysate to act has been proposed (Japanese Patent Laid-Open No. 2-141666). This method heats the sample liquid to be tested, but in reality, treatment at 100 ° C. for 2 hours is required.
Moreover, in this treatment, the β-glucan having a triple helix structure is
It converts little to the single helix structure and therefore cannot measure the total amount of β-glucan.
【0007】ところで、生体試料、特に血液中のβ−グ
ルカンをライセートのG因子系によるカスケード反応を
利用して測定する場合には、該反応がライセート中のセ
リンプロテアーゼの反応を利用するため、血液中に含ま
れる種々のG因子系反応妨害因子(例えば、トロンビン
やXa因子はライセート中の凝固酵素と類似の作用を示
すため、偽陽性因子となり、α2 −プラスミンインヒビ
ター、α1 −アンチトリプシンおよびアンチトロンビン
III はG因子系反応を強力に阻害し、偽陰性因子とな
る)を失活あるいは除去するための前処理が必要であ
る。By the way, when β-glucan in a biological sample, particularly blood, is measured by utilizing the cascade reaction of the lysate factor G system, the reaction utilizes the reaction of serine protease in the lysate. Various factor G-type reaction-interfering factors contained therein (for example, thrombin and factor Xa have similar effects to coagulase in lysate, and thus become false positive factors, α 2 -plasmin inhibitor, α 1 -antitrypsin and Antithrombin
III strongly inhibits the factor G system reaction and becomes a false negative factor) and requires pretreatment to inactivate or remove it.
【0008】この目的のために従来は、血液試料から多
血小板血漿(PRP)を調製し、これに過塩素酸を加え
て37℃で加温処理した後に、変性析出物を遠心分離し
て除去し、その上澄液を採取し、アルカリで中和して被
検液とする方法が採用されていた(Obayashi T. et a
l., J. Lab. Clin. Med. 104, 321-3301(1984)) が、変
性析出物の分離操作が煩雑で全操作工程も多く、操作中
に反応系に影響を与える物質による汚染の危険性がある
などの問題があった。For this purpose, in the past, platelet-rich plasma (PRP) was prepared from a blood sample, perchloric acid was added thereto, and the mixture was heated at 37 ° C. and then the denatured precipitate was removed by centrifugation. Then, the supernatant was collected and neutralized with alkali to obtain a test solution (Obayashi T. et a
L., J. Lab. Clin. Med. 104, 321-3301 (1984)), but the separation operation of modified precipitates is complicated and many operation steps are required. There was a problem such as danger.
【0009】そこで、本発明者は、先に遠心分離操作が
不要でかつ迅速な前処理方法として、アルカリ金属水酸
化物で処理する方法等(特願平5−100426号明細
書)を提案した。しかし、先の出願ではリムルス反応妨
害因子の除去が主眼であり、Etとβ−グルカンをそれ
ぞれ特異的に測定する場合には、各物質に対して特異的
な特別なライセート試薬を用いる必要があった。すなわ
ち、該方法の長所を維持しながら、Etの不活化とG因
子系反応妨害因子の不活化とを同時に満足する条件は見
出すことができず、EtおよびG因子系反応妨害因子存
在下で非特異的リムルス試薬を用いてβ−グルカンを測
定することは困難であった。また、そのような試料条件
で、かつβ−グルカンが三重らせん構造をとっている
と、非特異的リムルス試薬を使用した場合、これを十分
に再現性よく測定することは更に困難であった。一方、
リンゲル液、リン酸緩衝生理食塩水、細胞培養用培地お
よび血液透析における透析液などの金属イオンを含み得
る試料中のβ−グルカンをリムルス試薬を用いて測定す
る場合、これらの試料中のβ−グルカンが三重らせん構
造であると、この構造が安定化され、G因子系反応が十
分に進行しないため、β−グルカンの全量を正確に測定
できいないという問題があった。Therefore, the present inventor previously proposed a method of treating with an alkali metal hydroxide and the like (Japanese Patent Application No. 5-100426) as a rapid pretreatment method which does not require a centrifugation operation. . However, in the previous application, removal of the Limulus reaction-interfering factor is the main focus, and in the case of measuring Et and β-glucan specifically, it is necessary to use a special lysate reagent specific to each substance. It was That is, it is not possible to find a condition that satisfies the inactivation of Et and the inactivation of the factor G system reaction-interfering factor at the same time while maintaining the advantages of the method. It was difficult to measure β-glucan using a specific Limulus reagent. In addition, if the β-glucan had a triple helix structure under such sample conditions, it was even more difficult to measure it sufficiently reproducibly when a non-specific Limulus reagent was used. on the other hand,
When β-glucan in a sample that may contain metal ions such as Ringer's solution, phosphate buffered saline, cell culture medium and dialysate in hemodialysis is measured using a Limulus reagent, β-glucan in these samples is measured. Has a triple-helical structure, the structure is stabilized and the factor G system reaction does not proceed sufficiently, so that there is a problem that the total amount of β-glucan cannot be accurately measured.
【0010】[0010]
【発明が解決しようとする課題】本発明は、上記の従来
の問題点を解決しようとするもので、試料中にエンドト
キシンおよび/またはG因子系反応妨害因子を含み、か
つ試料中のβ−グルカンが三重らせん構造をとる場合に
おいてもリムルス試薬として非特異的リムルス試薬を用
いることができる前処理法を提供すると共にβ−グルカ
ンを極めて高い検出率で迅速に効率よく測定できる方法
を提供する。さらに、本発明は、試料中に金属イオンを
含み、かつ試料中にβ−グルカンが三重らせん構造をと
る場合においても、β−グルカンの三重らせん構造がG
因子活性化能を有する構造に変換されて、β−グルカン
を極めて高い検出率で迅速に効率よく測定できる方法を
提供する。DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned conventional problems, in which a sample contains endotoxin and / or a factor G type reaction-interfering factor, and β-glucan in the sample is contained. The present invention provides a pretreatment method capable of using a non-specific Limulus reagent as a Limulus reagent even when it has a triple helix structure, and a method capable of rapidly and efficiently measuring β-glucan at an extremely high detection rate. Furthermore, according to the present invention, even when the sample contains a metal ion and β-glucan has a triple helix structure in the sample, the triple helix structure of β-glucan is G
Provided is a method capable of rapidly and efficiently measuring β-glucan with an extremely high detection rate by being converted into a structure having factor activation ability.
【0011】[0011]
【課題を解決するための手段】本発明は、 三重らせ
ん構造を主体とする(1→3)−β−D−グルカンを含
み得る試料を、強アルカリ性条件下で前処理し、反応妨
害因子として試料中に含まれる可能性のある、エンドト
キシン単独またはエンドトキシンとG因子系反応妨害因
子とを破壊もしくは不活性化した後、リムルス試薬によ
るリムルス反応に付すことを特徴とする(1→3)−β
−D−グルカンの測定方法、 リムルス試薬が非特異
的リムルス試薬であることを特徴とする前記記載の
(1→3)−β−D−グルカンの測定方法、 アルカ
リ金属水酸化物を試料中に存在させて強アルカリ性条件
下とする前記または記載の(1→3)−β−D−グ
ルカンの測定方法、 試料中のアルカリ金属水酸化物
濃度を0.03〜2.0モル/Lの条件下で前処理する
ことを特徴とする前記に記載の測定方法、および前
処理を0〜135℃の条件下で行う前記〜のいずれ
か1項に記載の測定方法、 試料が金属イオンを含み
得るものであり、試料を、キレート剤の存在下において
前処理する前記記載の(1→3)−β−D−グルカン
の測定方法、 三重らせん構造を主体とする(1→
3)−β−D−グルカンと金属イオンとを含み得る試料
を、キレート剤の存在下において強アルカリ性条件下で
前処理した後、リムルス試薬によるリムルス反応に付す
ことを特徴とする(1→3)−β−D−グルカンの測定
方法、 前記前処理を、試料にキレート剤を添加後、
強アルカリ条件下で行うか、または試料にキレート剤を
添加する際に強アルカリ条件下とする前記記載の(1
→3)−β−D−グルカンの測定方法、 リムルス試
薬が、カブトガニ血リンパ凝固系のC因子系成分を実質
的に含まないか、あるいはC因子系反応が阻害され、エ
ンドトキシンと反応せず、(1→3)−β−D−グルカ
ンに特異的なものである、前記記載の(1→3)−β
−D−グルカンの測定方法である。According to the present invention, a sample containing (1 → 3) -β-D-glucan having a triple helix structure as a main component is pretreated under strongly alkaline conditions and used as a reaction interfering factor. The method is characterized by destroying or inactivating endotoxin alone or endotoxin and a factor G system reaction-interfering factor that may be contained in a sample, and then subjecting to a Limulus reaction by a Limulus reagent (1 → 3) -β
-D-glucan measuring method, the Limulus reagent is a non-specific Limulus reagent, the above-mentioned (1 → 3) -β-D-glucan measuring method, alkali metal hydroxide in a sample The method for measuring (1 → 3) -β-D-glucan described above or under the condition of being strongly alkaline under the condition that the alkali metal hydroxide concentration in the sample is 0.03 to 2.0 mol / L. Pretreatment is performed under the following, the measurement method described above, and the measurement method according to any one of the above, wherein the pretreatment is performed under a condition of 0 to 135 ° C., and the sample may contain a metal ion. The method for measuring (1 → 3) -β-D-glucan described above, in which a sample is pretreated in the presence of a chelating agent, mainly having a triple helix structure (1 →
3) A sample that may contain -β-D-glucan and a metal ion is pretreated in the presence of a chelating agent under strongly alkaline conditions and then subjected to a Limulus reaction with a Limulus reagent (1 → 3) ) Method for measuring -β-D-glucan, the pretreatment, after adding a chelating agent to the sample,
It is carried out under strong alkaline conditions or when the chelating agent is added to the sample under strong alkaline conditions (1.
→ 3) -β-D-glucan measurement method, Limulus reagent does not substantially contain factor C component of horseshoe crab hemolymph coagulation system, or factor C reaction is inhibited and does not react with endotoxin, (1 → 3) -β described above, which is specific to (1 → 3) -β-D-glucan.
-A method for measuring D-glucan.
【0012】以下本発明を具体的に説明する。第一の本
発明は、試料を強アルカリ性条件下で前処理することに
よって、エンドトキシン、G因子系反応妨害因子等の、
リムルス試薬によってβ−グルカンを測定する際に反応
を妨害する反応妨害因子を破壊もしくは不活性化させ、
β−グルカンが三重らせん構造をとっている場合はこれ
を解いてG因子を活性化する構造に変換させ、次いでリ
ムルス試薬と混合して、公知の方法で合成ペプチド基質
の変化またはライセートのゲル化もしくはそれに伴う濁
度の変化等を検出することにより、β−グルカンを測定
するものである。第二の本発明は、試料をキレート剤の
存在下において強アルカリ性条件下で前処理することに
よって、リンゲル液、透析液等の金属イオンを含み得る
試料中の金属イオンの影響を排除してβ−グルカンの三
重らせん構造をG因子活性化能を有する構造に変換さ
せ、次いでリムルス試薬を用いて上記と同様にβ−グル
カンを測定するものである。The present invention will be specifically described below. The first aspect of the present invention is to treat a sample such as endotoxin, factor G system reaction-interfering factor, etc. by pretreating the sample under strongly alkaline conditions.
When measuring β-glucan by Limulus reagent, destroys or inactivates a reaction interfering factor that interferes with the reaction,
When β-glucan has a triple helix structure, it is solved to convert it into a structure that activates factor G, and then mixed with Limulus reagent to change synthetic peptide substrate or gelation of lysate by a known method. Alternatively, β-glucan is measured by detecting a change in turbidity accompanying it. The second aspect of the present invention pretreats the sample in the presence of a chelating agent under strong alkaline conditions to eliminate the influence of metal ions in the sample, which may contain metal ions such as Ringer's solution and dialysate, to remove β- The triple helix structure of glucan is converted into a structure capable of activating factor G, and then β-glucan is measured using Limulus reagent in the same manner as above.
【0013】本発明において対象とする「試料」とはβ
−グルカンを測定しようとする試料であれば、特に制限
はないが、特に反応妨害因子を含む場合で、かつβ−グ
ルカンが三重らせん構造である場合に有効である。ここ
で、「反応妨害因子」とは、C因子系反応を開始するE
tのほかに、G因子系反応妨害因子、即ち、β−グルカ
ンによって開始される図1に示したライセートのG因子
系の段階的酵素反応(カスケード反応)のいずれかの段
階においてβ−グルカンとは無関係に反応する前記偽陽
性因子又は反応を阻害する偽陰性因子である。尚、G因
子系反応妨害因子は、C因子系においても同様に機能す
るため、リムルス反応妨害因子ともいう。具体的には、
β−グルカンを含有する水溶液、医薬品、リンゲル液、
透析液、細胞培養用培地、緩衝液、生理食塩水などのほ
か、真菌由来のβ−グルカンが含まれる可能性のある真
菌感染症患者の体液(血漿、血清、全血などの血液試
料、尿、脊髄液、腹水など)が例示される。The “sample” targeted in the present invention is β
There is no particular limitation as long as it is a sample for measuring glucan, but it is particularly effective when it contains a reaction-interfering factor and when β-glucan has a triple helix structure. Here, "reaction-interfering factor" means E that initiates a C-factor reaction.
In addition to t, β-glucan is added at any stage of the stepwise enzymatic reaction (cascade reaction) of the factor G system of the lysate shown in FIG. Is a false-positive factor that reacts independently or a false-negative factor that inhibits the reaction. Since the factor G system reaction-interfering factor functions similarly in the factor C system, it is also referred to as a limulus reaction-interfering factor. In particular,
Aqueous solution containing β-glucan, drug, Ringer's solution,
In addition to dialysate, cell culture medium, buffer, physiological saline, etc., body fluids of patients with fungal infections that may contain fungal β-glucan (blood samples such as plasma, serum and whole blood, urine , Spinal fluid, ascites, etc.) are exemplified.
【0014】リムルス試薬としては、上記第一の発明に
は非特異的リムルス試薬を使用できるが、G因子系反応
に特異的な成分からなるか、あるいはC因子系反応が阻
害され、Etと反応しないβ−グルカン特異的なリムル
ス試薬を使用することもできる。後者の使用は、β−グ
ルカンの三重らせん構造の変換とG因子系反応妨害因子
の除去を主眼に前処理できるから、Etの不活性化の条
件を無視でき、前処理条件の寛容度が広がる効果があ
る。上記第二の発明においては、Etの破壊もしくは不
活性化を必須要件としておらず、三重らせん構造の変換
とG因子系反応妨害因子の除去を主眼とした前処理を行
うので、Etを含む可能性のある試料を対象とする場合
はβ−グルカン特異的なリムルス試薬を使用することが
好ましい。As the Limulus reagent, a non-specific Limulus reagent can be used in the above-mentioned first invention, but it is composed of a component specific to the factor G system reaction or the factor C system reaction is inhibited to react with Et. A β-glucan-specific Limulus reagent that does not can also be used. The use of the latter can pretreat mainly for the conversion of the triple helix structure of β-glucan and the removal of the factor G system reaction-interfering factor, so that the condition of Et inactivation can be neglected and the tolerance of the pretreatment condition is broadened. effective. In the above-mentioned second invention, since the destruction or inactivation of Et is not an essential requirement and the pretreatment is performed mainly for the conversion of the triple helix structure and the removal of the factor G system reaction-interfering factor, it is possible to include Et. It is preferable to use a β-glucan-specific Limulus reagent in the case of targeting a biological sample.
【0015】ここで、「非特異的リムルス試薬」とは、
リムルス・ポリフェムス、タキプレウス・トリデンタツ
ス、タキプレウス・ギガス、カルシノスコルピウス・ロ
ツンディカウダ等のカブトガニの血リンパ液から、公知
の方法(例えば、J. Biochem.,80,1011-1021(1976)参
照)で調製した通常のカブトガニ・アメボサイト・ライ
セートを包含する意味であり、少なくとも図1のG因子
系反応およびC因子系反応に関与する血リンパ凝固系の
G因子系成分およびC因子系成分を含むものを言う。た
だし、後述の合成ペプチド基質等を含むものでもかまわ
ない。ここで、「金属イオン」とは、β−グルカンの三
重らせん構造がG因子活性化能を有する構造に変換され
るのを阻害するか、あるいは変換されたβ−グルカンが
三重らせん構造に戻るのを促進するような金属イオンで
あり、Mg2+, Ca2+などのアルカリ土類金属のイオンやMn
2+, Fe2+, Fe3+, Al3+, Ga3+などの遷移元素のイオンで
ある。Here, the term "non-specific Limulus reagent" means
Prepared by a known method (for example, J. Biochem., 80 , 1011-1021 (1976)) from the hemolymph of Limulus polyphemus, Tachypleus tridentatatus, Tachypleus gigas, Carcinoscorpius rotundicauda, etc. It is meant to include the horseshoe crab amebosite lysate, and contains at least the G factor component and the C factor component of the hemolymph coagulation system involved in the G factor reaction and the C factor reaction of FIG. 1. However, it may contain a synthetic peptide substrate described below. Here, the term “metal ion” means that the triple helix structure of β-glucan is prevented from being converted into a structure having factor G activating ability, or the converted β-glucan returns to the triple helix structure. Is a metal ion that promotes the ionization of ions such as Mg 2+ , Ca 2+ and other alkaline earth metal ions and Mn.
Ions of transition elements such as 2+ , Fe 2+ , Fe 3+ , Al 3+ and Ga 3+ .
【0016】本発明において利用し得る非特異的リムル
ス試薬は前記のような機能を有するものであれば、製
法、組成等には限定されない。本発明に使用される前処
理方法は、試料を強アルカリ性とすることが必須条件で
あるが、更に試料中に金属イオンが含有される場合に
は、強アルカリ性条件下で前処理する際にキレート剤を
共存させる必要がある。これは強アルカリ処理によって
βーグルカンの三重らせん構造がG因子活性化能を有す
る構造に変換されるのを、ある種の金属イオン、すなわ
ちMg2+, Ca2+などのアルカリ土類金属のイオンやMn2+,
Fe2+, Fe3+, Al3+, Ga3+などの遷移元素のイオンが阻害
するのを解除するためである。試料を強アルカリ性とす
る方法に特に制限はないが、アルカリ金属の水酸化物を
用いることが好ましい。その具体例としては、水酸化カ
リウム(KOH)、水酸化ナトリウム(NaOH)等が
例示できる。The non-specific Limulus reagent that can be used in the present invention is not limited to the production method, composition, etc., as long as it has the functions as described above. In the pretreatment method used in the present invention, it is an essential condition to make the sample strongly alkaline. However, when the sample further contains metal ions, the chelate is used when pretreating under strongly alkaline conditions. It is necessary to make the agent coexist. This is because the triple helix structure of β-glucan is converted into a structure capable of activating factor G by the strong alkaline treatment, which is a kind of metal ion, that is, an ion of alkaline earth metal such as Mg 2+ , Ca 2+. Or Mn 2+ ,
This is because ionization of transition element ions such as Fe 2+ , Fe 3+ , Al 3+ , and Ga 3+ is released. The method of making the sample strongly alkaline is not particularly limited, but it is preferable to use an alkali metal hydroxide. Specific examples thereof include potassium hydroxide (KOH) and sodium hydroxide (NaOH).
【0017】アルカリ金属水酸化物を用いる場合、その
濃度としては、通常、0.03〜2.0モル/Lが例示
できる。キレート剤としては、試料中に含まれる金属イ
オンをキレート化合物に変換し、遊離の金属イオン濃度
を上記の阻害作用を表す最低濃度以下にできるものであ
り、かつリムルス反応を阻害しない限り特に制限はない
が、未知の金属イオンを含む試料を処理する場合には、
多くの金属イオンと安定で強固なキレート化合物を生成
するものが好ましい。この様なキレート剤としては、エ
チレンジアミン四酢酸(EDTA)、ニトリロ三酢酸、
トランス−1,2−ジアミノシクロヘキサン−N,N,
N’,N’−四酢酸、ジエチレントリアミン−N,N,
N’,N’’,N’’−五酢酸、ヒドロキシエチレンジ
アミン三酢酸、グリコールエーテルジアミン四酢酸、ト
リエチレンテトラミン六酢酸、ジアミノプロパノール四
酢酸、ジアミノプロパン四酢酸、エチレンジアミンテト
ラキス(メチレンホスホン酸)、クエン酸、およびそれ
らのアルカリ塩が例示できる。試料の前処理は、基本的
には、試料を強アルカリ性にすることができるもの(以
下単にアルカリともいう)および必要によりキレート剤
を試料に添加混合することにより行うことができる。ア
ルカリとキレート剤を共に添加するときの添加順序は、
アルカリ添加後にキレート剤を添加しない限りいずれで
もよいが、試料にキレート剤を添加した後、アルカリを
添加する方が低濃度のキレート剤添加で試料中のβーグ
ルカンの構造変換が容易に起こる(これは強アルカリ性
条件下では、金属イオンはキレート剤に配位するよりも
βーグルカンの分子鎖間に配位しやすく、三重らせんか
らの一重らせん構造等への変換を阻止するためと思われ
る。)。これらの前処理剤添加後、所望により、恒温槽
中もしくはオートクレーブ中で、あるいは電子レンジ等
を用いて高周波によって加温することもできる。この際
の処理温度は、通常、0〜135℃、特に30〜60℃
の範囲が好ましく、処理時間は1〜60分、特に5〜3
0分の範囲が好ましい。When an alkali metal hydroxide is used, its concentration is usually 0.03 to 2.0 mol / L. As the chelating agent, a metal ion contained in the sample can be converted into a chelate compound, and the concentration of free metal ion can be made equal to or lower than the minimum concentration showing the above-mentioned inhibitory action, and is not particularly limited as long as it does not inhibit the Limulus reaction. No, but when processing samples containing unknown metal ions,
Those that produce a stable and strong chelate compound with many metal ions are preferable. Such chelating agents include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid,
Trans-1,2-diaminocyclohexane-N, N,
N ', N'-tetraacetic acid, diethylenetriamine-N, N,
N ′, N ″, N ″ -pentaacetic acid, hydroxyethylenediaminetriacetic acid, glycol etherdiaminetetraacetic acid, triethylenetetraminehexaacetic acid, diaminopropanoltetraacetic acid, diaminopropanetetraacetic acid, ethylenediaminetetrakis (methylenephosphonic acid), citric acid Examples thereof include acids and their alkali salts. The pretreatment of the sample can be basically carried out by adding a chelating agent to the sample and mixing the sample with a substance that can make the sample strongly alkaline (hereinafter also simply referred to as alkali). The order of addition when adding both the alkali and the chelating agent is
It does not matter as long as the chelating agent is not added after the addition of the alkali, but after adding the chelating agent to the sample, the addition of the alkali easily causes the structural conversion of β-glucan in the sample by adding the chelating agent at a low concentration (this Under strong alkaline conditions, metal ions tend to coordinate between β-glucan molecular chains rather than to chelating agents, which seems to prevent the conversion of triple helices into single-helix structures.) . After the addition of these pretreatment agents, if desired, they can be heated in a thermostat or in an autoclave, or by high frequency using a microwave oven or the like. The treatment temperature at this time is usually 0 to 135 ° C., particularly 30 to 60 ° C.
Is preferable, and the treatment time is 1 to 60 minutes, especially 5 to 3
The range of 0 minutes is preferred.
【0018】本発明の方法により前処理された被検液中
では、該処理前のβ−グルカンがG因子を活性化しない
三重らせん構造であっても、その構造は迅速にG因子を
活性化する構造に変換され、また仮に該処理前のβ−グ
ルカンが三重らせん構造ではない、すでにG因子活性化
能を有する状態のものであってもその構造は保持され
る。In the test solution pretreated by the method of the present invention, even if the β-glucan before the treatment has a triple helix structure which does not activate factor G, the structure rapidly activates factor G. The structure is retained even if the β-glucan before the treatment is not in the triple helix structure and already has the factor G activating ability.
【0019】すなわち、本発明において測定されるβ−
グルカンは、特に制限されず、真菌類等に存在するもの
を含み、その分子構造、高次構造、由来等は特に制限は
ない。また、これらのβ−グルカンは、真菌感染症患者
の体液中に含まれるものを包含する。本発明においてβ
−グルカンの三重らせん構造の他構造への変換は、具体
的には13C−NMR等により確認できる。That is, β-measured in the present invention
The glucan is not particularly limited and includes those existing in fungi and the like, and the molecular structure, higher order structure, origin, etc. are not particularly limited. Further, these β-glucans include those contained in the body fluid of patients with fungal infections. In the present invention β
-Conversion of the glucan to another structure of triple helix structure can be specifically confirmed by 13 C-NMR or the like.
【0020】上記の本発明の前処理剤で試料を処理した
被検液は、次いでリムルス試薬と混合されるが、この混
合液は、G因子系反応を完遂するために至適pH付近に
調整されることが好ましく、通常pH7〜9になるよう
に従来公知の緩衝液により所望に調整される。なお、本
発明の前処理で不活性化した偽陽性因子、偽陰性因子お
よびEtは、後述の実施例等から活性が再生することは
ないことが判明している。また、逆に、該前処理剤で処
理された比較的高濃度の塩基性(アルカリ性)被検液と
該G因子系成分との混合において、該前処理剤が該G因
子系中の各成分に悪影響を与えることがないのも該緩衝
作用によるものであると考えられる。The test liquid obtained by treating the sample with the above-described pretreatment agent of the present invention is then mixed with the Limulus reagent. The mixed liquid is adjusted to an optimum pH in order to complete the factor G reaction. It is preferable that the pH is usually adjusted to 7 to 9 with a conventionally known buffer solution. The false positive factor, false negative factor, and Et inactivated by the pretreatment of the present invention have been proved to have no regenerated activity from the examples described later. On the contrary, in the mixing of the relatively high-concentration basic (alkaline) test liquid treated with the pretreatment agent with the G factor-based component, the pretreatment agent causes each component in the G factor-based component to be mixed. It is considered that the buffering effect does not adversely affect the above.
【0021】該反応混合液において、上記被検液のβ−
グルカンを測定するには、前述したように図1のライセ
ートのG因子系カスケード反応によって活性化されて生
成するクロッティングエンザイムの基質に対するアミダ
ーゼ活性またはプロテアーゼ活性を公知の方法で測定す
ればよい。ここで、基質とは、合成のものでも天然のも
のでも任意であり、クロッティングエンザイムによって
加水分解されて容易に検出可能な生成物に導かれ、反応
混合液に酵素反応に基づく変化を生じさせる基質であ
り、この変化を定性または定量的に測定できればかまわ
ない。In the reaction mixture, β-
To measure glucan, the amidase activity or protease activity of the clotting enzyme, which is generated by being activated by the factor G cascade reaction of the lysate of FIG. 1, as described above, may be measured by a known method. Here, the substrate may be either synthetic or natural, and is hydrolyzed by the clotting enzyme to be introduced into a product that can be easily detected, thereby causing a reaction mixture to undergo a change based on an enzymatic reaction. It is a substrate, and it is acceptable if this change can be measured qualitatively or quantitatively.
【0022】例えば、合成ペプチド基質を含むリムルス
試薬と前処理された被検液とを接触させて反応を行うこ
とによってアミダーゼ活性を測定することができる。こ
のような合成ペプチド基質としては、上記クロッティン
グエンザイムの基質となり得るペプチド(例えば、メト
キシカルボニル−D−ヘキサヒドロチロシル−Gly−
Arg;N末端が保護されたLeu−Gly−Arg、
Ile−Glu−Ala−Arg等の配列からなるペプ
チド)のC末端のアルギニンのカルボキシル基に発色性
残基(例えば、p−ニトロアニリン、p−(N,N−ジ
エチルアミノ)アニリン、p−(N−エチル−N−β−
ヒドロキシエチル)アニリン等)、発蛍光性残基(例え
ば、7−アミノ−4−メチルクマリン等)、発光性残基
あるいはアンモニアなどがアミド結合により置換した合
成ペプチド基質が例示される。すなわち、アミダーゼ活
性の測定はクロッティングエンザイムがこれらの合成基
質に作用して生成する反応生成物(p−ニトロアニリ
ン、アンモニア等)を測定することによって行うことが
できる。具体的には、Etの測定に採用されている方法
を例示することができ、例えば、前記カスケード反応お
よび必要に応じて生成物の他色素等への変換反応を行わ
せ、反応によって生成する色素、蛍光物質、発光物質ま
たはアンモニアをそれぞれ分光光度計(特公昭63−2
6871、特公平3−66319等)、蛍光光度計、発
光測定装置、アンモニア検出用電極(特開昭62−14
8860)等によってβ−グルカンを測定する方法が挙
げられる。For example, the amidase activity can be measured by bringing the Limulus reagent containing a synthetic peptide substrate into contact with the pretreated test solution to carry out the reaction. As such a synthetic peptide substrate, a peptide that can be a substrate for the above clotting enzyme (eg, methoxycarbonyl-D-hexahydrotyrosyl-Gly-
Arg; Leu-Gly-Arg with N-terminal protection,
Ile-Glu-Ala-Arg and other peptides) C-terminal arginine carboxyl group has a chromophoric residue (eg, p-nitroaniline, p- (N, N-diethylamino) aniline, p- (N -Ethyl-N-β-
(Hydroxyethyl) aniline, etc.), a fluorescent residue (eg, 7-amino-4-methylcoumarin, etc.), a luminescent residue, or a synthetic peptide substrate in which ammonia or the like is substituted by an amide bond. That is, the amidase activity can be measured by measuring the reaction products (p-nitroaniline, ammonia, etc.) produced by the clotting enzyme acting on these synthetic substrates. Specifically, the method adopted for the measurement of Et can be exemplified. For example, a dye produced by the above-mentioned cascade reaction and, if necessary, conversion reaction of the product to another dye , A fluorescent substance, a luminescent substance, or ammonia, respectively.
6871, Japanese Examined Patent Publication No. 3-66319, etc.), a fluorometer, a luminescence measuring device, an electrode for ammonia detection (Japanese Patent Laid-Open No. 62-14).
8860) and the like to measure β-glucan.
【0023】一方、クロッティングエンザイムのプロテ
アーゼ活性の測定には、例えばリムルス試薬に含まれる
通常の天然基質であるコアギュローゲンに、カスケード
反応で生成したクロッティングエンザイムが作用してコ
アギュリンゲルが形成する反応を、例えば適当な機器
(例えば、濁度測定装置、粘度測定装置等)で測定する
か、または肉眼で判定するEtの測定に採用されている
方法(特公平4−14310等)を利用することができ
る。On the other hand, to measure the protease activity of clotting enzyme, for example, coagulogen, which is an ordinary natural substrate contained in Limulus reagent, is acted on by clotting enzyme produced by the cascade reaction to form coagulin gel. The reaction to be performed is measured by, for example, an appropriate device (for example, a turbidity measuring device, a viscosity measuring device, etc.), or a method (e.g., Japanese Patent Publication No. 4-14310) adopted for the determination of Et judged by the naked eye is used can do.
【0024】本発明によるβ−グルカンの測定法は、真
菌感染症、特に診断が極めて困難な深在性真菌感染症の
早期診断に有用である。すなわち、患者から採取した血
液由来試料を本発明の前処理剤で処理した後、β−グル
カンを測定し、血液中のβ−グルカンが正常値を有意に
超えた時に、患者が真菌感染症に罹患していると判断す
ることができる。The method for measuring β-glucan according to the present invention is useful for early diagnosis of fungal infections, especially deep-seated fungal infections that are extremely difficult to diagnose. That is, after treating a blood-derived sample collected from a patient with the pretreatment agent of the present invention, β-glucan is measured, and when β-glucan in the blood significantly exceeds a normal value, the patient is infected with a fungal infection. It can be determined that they are affected.
【0025】本発明においては、前記前処理剤とリムル
ス試薬の各種類を適宜組み合わせることにより、所望の
測定用キットを構成することができる。該キットには、
β−グルカンの一定量を含有する標準試薬、ブランク用
蒸留水、反応試薬溶解・反応用緩衝液等を付加すること
ができる。該緩衝液としては、グッド緩衝液(例えば、
HEPES(N−2−ヒドロキシエチルピペラジン−
N′−2−エタンスルホン酸)緩衝液等)、トリス−塩
酸緩衝液等が例示できる。In the present invention, a desired measurement kit can be constructed by appropriately combining the respective types of the pretreatment agent and the Limulus reagent. The kit includes
A standard reagent containing a fixed amount of β-glucan, distilled water for blanking, a reaction reagent dissolving / reaction buffer, etc. can be added. As the buffer solution, a Good buffer solution (for example,
HEPES (N-2-hydroxyethylpiperazine-
N'-2-ethanesulfonic acid) buffer solution, etc., Tris-hydrochloric acid buffer solution, etc. can be exemplified.
【0026】[0026]
【実施例】以下に実施例を挙げ、本発明をさらに具体的
に説明するが、本発明はこれらの実施例に限定されるも
のではない。 実施例1 100%三重らせん構造からなるシゾフィラン(商品名
ソニフィラン、科研製薬(株)販売、2μg/mL水溶
液)0.1mLとEt(E.coli 0111:B4
由来、Difco社販売、80ng/mL水溶液)0.
1mLに0.2mLの各種濃度のNaOH水溶液(前処
理剤)を加え、混合後、60℃で10分間加温した。こ
れを注射用蒸留水で1000倍希釈し、ソニフィラン1
ng/mL、Et0.02ng/mL(Etが破壊され
ない場合の濃度)の溶液を調製した。これら処理液を被
検液として、ブランクには注射用蒸留水を用いて、Et
およびβ−グルカンフリーのマイクロプレート(トキシ
ペットプレート96F、生化学工業(株)販売)のウェ
ルに別々に50μLずつとった。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 0.1 mL of Schizophyllan (trade name: Sonifilan, sold by Kaken Pharmaceutical Co., Ltd., 2 μg / mL aqueous solution) consisting of 100% triple helix structure and Et (E. coli 0111: B4)
Origin, sold by Difco, 80 ng / mL aqueous solution)
0.2 mL of various concentrations of NaOH aqueous solution (pretreatment agent) was added to 1 mL, mixed, and then heated at 60 ° C. for 10 minutes. This is diluted 1000 times with distilled water for injection, and Sonifiran 1
A solution of ng / mL and Et 0.02 ng / mL (concentration when Et is not destroyed) was prepared. These treated liquids were used as test liquids, and distilled water for injection was used as a blank.
And 50 μL of each was separately taken into the wells of a β-glucan-free microplate (Toxipet plate 96F, sold by Seikagaku Corporation).
【0027】被検液に存在するβ−グルカンおよびEt
の量は、以下の方法で定量した。前記Obayash
i,T.らの方法に従って、カブトガニ・アメボサイト
・ライセートから調製したG因子系成分と発色合成基質
(Boc−Leu−Gly−Arg−pNA(p−ニト
ロアニリド))とを含むβ−グルカン特異的発色合成基
質法リムルス試薬(以下「Gテスト」という)、または
発色合成基質法非特異的リムルス試薬(トキシカラー、
生化学工業(株)販売)、またはエンドトキシン特異的
発色合成基質法リムルス試薬(エンドスペシー、生化学
工業(株)販売)を使用し、被検液50μL に0. 2
モル/L HEPES緩衝液(pH7. 6)で溶解した
Gテスト液50μL、または0.2モル/L Tris
−HCl緩衝液(pH8.0)で溶解したトキシカラー
液またはエンドスペシー液50μLを加え、37℃で3
0分間加温して反応させ、次いで0. 04%(重量/容
量)の亜硝酸ナトリウム(1モル/L 塩酸溶液)50
μL 、0. 3%(重量/容量)スルファミン酸アンモ
ニウム50μL ならびに0. 07%(重量/容量)N
−1−ナフチルエチレンジアミン二塩酸塩(14%(容
量/容量)N−メチル−2−ピロリドン溶液)50μL
を順次加えてジアゾカップリングし、マイクロプレー
トリーダーにより630nmを対照波長として545nmで
吸光度を測定することによって定量した。Β-glucan and Et present in the test liquid
The amount of was determined by the following method. The Obayash
i, T. A β-glucan-specific chromogenic synthetic substrate method containing a factor G component prepared from horseshoe crab amebosite lysate and a chromogenic synthetic substrate (Boc-Leu-Gly-Arg-pNA (p-nitroanilide)) according to these methods Limulus reagent (hereinafter referred to as "G test") or non-specific Limulus reagent for chromogenic synthetic substrate method (toxicolor,
Seikagaku Kogyo Co., Ltd.) or the endotoxin-specific chromogenic synthetic substrate method Limulus reagent (Endospecie, Seikagaku Kogyo Co., Ltd.) is used to add 0.2 to 50 μL of the test solution.
Mol / L HEPES buffer (pH 7.6) dissolved in 50 μL of G test solution or 0.2 mol / L Tris
Add 50 μL of Toxicolor solution or Endospecy solution dissolved in -HCl buffer (pH 8.0), and add 3 at 37 ° C.
The reaction was carried out by heating for 0 minutes, and then 0.04% (weight / volume) sodium nitrite (1 mol / L hydrochloric acid solution) 50
μL, 0.3% (weight / volume) ammonium sulfamate 50 μL and 0.07% (weight / volume) N
-1-naphthylethylenediamine dihydrochloride (14% (volume / volume) N-methyl-2-pyrrolidone solution) 50 μL
Were sequentially added to carry out diazo coupling, and quantification was carried out by measuring the absorbance at 545 nm using 630 nm as a control wavelength by a microplate reader.
【0028】また、前処理剤溶液のNaOH濃度を種々
変化させて被検液中のNaOH濃度を種々調整した場合
の三重らせん構造β−グルカンの構造変化をSaito H. e
t al. (Carbohydr. Res., 74, 227-240(1979))の方法に
従って、13C−NMRにより測定した。その三重らせん
構造の割合と前処理された被検液の各テストの測定値
(吸光度)を表1に示す。Further, the structure change of the triple helix β-glucan when the NaOH concentration of the pretreatment agent solution is variously changed to variously adjust the NaOH concentration of the test solution is described by Saito H. e.
Tal. (Carbohydr. Res., 74, 227-240 (1979)), and was measured by 13 C-NMR. Table 1 shows the ratio of the triple helix structure and the measured value (absorbance) of each test of the pretreated test liquid.
【0029】[0029]
【表1】 [Table 1]
【0030】なお、表1中、NaOH濃度(モル/L)
は、被検液における濃度を示し、吸光度はブランク値を
差し引いた値を表示した。また、被検液としてEt水溶
液を蒸留水に置換、またはソニフィラン水溶液を蒸留水
に置換した場合も示した。表1によれば、Gテストにお
いて、注射用蒸留水のみによる処理では、β−グルカン
は全く検出されず、NaOHの濃度が0.03モル/L
以上では、吸光度の値が一定となる(試料No.1−1
および1−4〜10)。このことは、前処理した被検液
におけるβ−グルカンの構造変化を観察した結果から、
β−グルカンの三重らせん構造が解けるに従って吸光度
が増加していることと対応する。また、トキシカラーに
おいては、注射用蒸留水のみによる処理では、Etには
反応するが、β−グルカンとはやはり全く反応しない
(試料No.1−1および1−2)。NaOH濃度が、
0.03モル/L以上の場合に吸光度が一定となり、β
−グルカンが検出できるようになる(試料No.1−4
〜10)。エンドスペシーの場合は、注射用蒸留水のみ
による処理では、Etに反応し、β−グルカンとは全く
反応しない(試料No.1−1および1−2)。NaO
H濃度が0.03モル/L以上の場合に吸光度が0とな
り、Etの活性が失われることが判る。In Table 1, the NaOH concentration (mol / L)
Indicates the concentration in the test solution, and the absorbance is the value obtained by subtracting the blank value. Moreover, the case where the Et aqueous solution was replaced with distilled water or the sonifiran aqueous solution was replaced with distilled water was also shown as the test liquid. According to Table 1, in the G test, β-glucan was not detected at all when treated with only distilled water for injection, and the concentration of NaOH was 0.03 mol / L.
In the above, the value of absorbance is constant (Sample No. 1-1
And 1-4 to 10). This means that from the result of observing the structural change of β-glucan in the pretreated test liquid,
This corresponds to the fact that the absorbance increases as the triple helix structure of β-glucan is solved. Further, in the case of Toxicolor, treatment with only distilled water for injection reacts with Et but does not react with β-glucan at all (Sample Nos. 1-1 and 1-2). NaOH concentration
When 0.03 mol / L or more, the absorbance becomes constant and β
-Glucan can be detected (Sample No. 1-4
-10). In the case of endoscopy, treatment with only distilled water for injection reacts with Et and does not react with β-glucan at all (Sample Nos. 1-1 and 1-2). NaO
It can be seen that when the H concentration is 0.03 mol / L or more, the absorbance becomes 0 and the activity of Et is lost.
【0031】すなわち、本実施例では、試料が水溶液の
場合、NaOH濃度が0.03モル/L付近以上で、6
0℃、10分間前処理することにより、Etを不活性化
するとともにβ−グルカンの三重らせん構造を解いてG
因子活性化能を有する構造に変換してG因子を活性化す
るため、吸光度の値が一定となり、被検液中のβ−グル
カンの真の値をβ−グルカン特異的リムルス試薬ではも
ちろんのこと、非特異的リムルス試薬を用いても、正確
かつ高い信頼度を以て再現性よく検出することが可能で
あることが明らかである。That is, in this embodiment, when the sample is an aqueous solution, when the NaOH concentration is around 0.03 mol / L or more,
Pretreatment at 0 ° C. for 10 minutes inactivates Et and unravels the triple helix structure of β-glucan to G
Since the G value is activated by converting it into a structure having factor activation ability, the absorbance value becomes constant, and the true value of β-glucan in the test solution is of course the same as with the β-glucan-specific Limulus reagent. It is clear that even if a non-specific Limulus reagent is used, it can be detected accurately and with high reliability and reproducibility.
【0032】実施例2 健常人PRP180μLに、99%三重らせん構造から
なるレンチナン(味の素(株)販売、200ng/mL
水溶液)10μLとEt(Serratiamarce
scens由来、Sigma社販売、8ng/mL水溶
液)10μLとを添加し、これに蒸留水あるいは各種濃
度のKOH水溶液800μLを加え、混合後、37℃で
30分加温した。氷冷後、処理混液のうち、50μLを
試験管にとり、HCl水溶液50μLを加えて中和し、
これにGテスト液、トキシカラー液あるいはエンドスペ
シー液100μLを加え、37℃で30分間加温して反
応させ、次いで0.04%亜硝酸ナトリウム(0.48
モル/L塩酸溶液)、0.3%スルファミン酸アンモニ
ウム、0.07%N−1−ナフチルエチレンジアミン二
塩酸塩を各0.5mLずつ順次加えてジアゾカップリン
グし、545nmで吸光度を測定した。沈殿を生じた場
合は、遠心分離して、その上清を測定した。 該前処理
された被検液の各テストの測定値(吸光度)を表2に示
す。Example 2 To 180 μL of PRP of a healthy person, lentinan consisting of 99% triple helix structure (sold by Ajinomoto Co., Inc., 200 ng / mL)
Aqueous solution) 10 μL and Et (Serratia marce
10 μL of scens, sold by Sigma, 8 ng / mL aqueous solution), and 800 μL of distilled water or KOH aqueous solution of various concentrations were added thereto, and the mixture was heated at 37 ° C. for 30 minutes. After cooling with ice, 50 μL of the treated mixture was placed in a test tube, and 50 μL of an aqueous HCl solution was added to neutralize the mixture.
100 μL of G test solution, Toxicolor solution or Endospecy solution was added to this and heated at 37 ° C. for 30 minutes to react, and then 0.04% sodium nitrite (0.48
(Mol / L hydrochloric acid solution), 0.3% ammonium sulfamate, and 0.07% N-1-naphthylethylenediamine dihydrochloride (0.5 mL each) were sequentially added to perform diazo coupling, and the absorbance was measured at 545 nm. When a precipitate was formed, it was centrifuged and the supernatant was measured. Table 2 shows the measured values (absorbance) of each test of the pretreated test liquid.
【0033】[0033]
【表2】 [Table 2]
【0034】なお、表2中、KOH濃度(モル/L)
は、被検液における濃度を示し、吸光度はブランク値を
差し引いた値を表示した。ブランクは、PRPの代わり
に蒸留水を用い、前処理剤として注射用蒸留水を用い
た。また、被検液としてEt水溶液を注射用蒸留水に置
換、および/またはレンチナン水溶液を蒸留水に置換し
た場合も示した。In Table 2, KOH concentration (mol / L)
Indicates the concentration in the test solution, and the absorbance is the value obtained by subtracting the blank value. As a blank, distilled water was used instead of PRP, and distilled water for injection was used as a pretreatment agent. In addition, the case where the Et aqueous solution was replaced with distilled water for injection and / or the lentinan aqueous solution was replaced with distilled water as the test liquid was also shown.
【0035】表2によれば、PRP中には、リムルス反
応妨害因子が存在するため、注射用蒸留水のみによる処
理では、β−グルカンもEtもほとんど検出されず(N
o.2−1〜4)、この因子は、0.06モル/L以上
のKOH中で、37℃、30分間加温処理することによ
り、不活性化されることが判る(試料No.2−6〜1
2)。また、Etは処理KOH濃度の増加に伴って、活
性が低下し、0.7モル/L以上の処理によって、完全
に不活性化する(試料No.2−10〜12)。一方、
99%三重らせん構造をとるレンチナンは、0.06モ
ル/L以上のKOHで処理すると、三重らせんが変化
し、高い反応性を示す。すなわち、Etとβ−グルカン
が共存する血漿を処理時0.7モル/L以上となるKO
H水溶液で37℃、30分間前処理すれば、Etとβ−
グルカンが共存している検体でもβ−グルカン特異的試
薬であるGテストを用いなくとも両者に反応する通常の
リムルス試薬(非特異的リムルス試薬)により、β−グ
ルカンのみを正確に検出できることが判る(試料No.
2−10〜12)。According to Table 2, since there is a Limulus reaction-interfering factor in PRP, β-glucan and Et were hardly detected by the treatment with only distilled water for injection (N
o. 2-1 to 4), it is found that this factor is inactivated by heating in KOH of 0.06 mol / L or more at 37 ° C. for 30 minutes (Sample No. 2-6). ~ 1
2). Further, Et decreases in activity with an increase in the concentration of treated KOH, and is completely inactivated by the treatment of 0.7 mol / L or more (Sample No. 2-10 to 12). on the other hand,
Lentinan having a 99% triple-helix structure changes its triple-helix and exhibits high reactivity when treated with 0.06 mol / L or more of KOH. That is, the KO is 0.7 mol / L or more when plasma treated with Et and β-glucan is treated.
Pretreatment with aqueous H solution at 37 ° C for 30 minutes will result in Et and β-
It is found that even in a sample in which glucan coexists, only β-glucan can be accurately detected by a normal Limulus reagent (non-specific Limulus reagent) that reacts with both without using G test that is β-glucan-specific reagent. (Sample No.
2-10-12).
【0036】また、実際に臨床検体を実施例2に準じて
前処理剤で処理し、トキシカラーで測定したところ、深
在性真菌症患者検体のみが高値を示した。 実施例3 表3に示す金属イオンを含む水溶液に100%三重らせ
ん構造からなるシゾフィラン(商品名ソニフィラン)を
10ng/mLとなるように添加したもの0.2mL
に、0.1モル/LのEDTA4Na塩溶液0.025
mLを添加し氷冷下5分間放置後、3モル/L水酸化ナ
トリウム溶液0.025mLを添加するか(逐次添
加)、あるいは0.20モル/LのEDTA4Na塩溶
液を含む1.5モル/L水酸化ナトリウム0.05mL
を添加(同時添加)した後、室温下10分間放置後、注
射用蒸留水で10倍希釈し、その内の0.05mLを被
検液として、実施例1と同様にGテストを用いてその反
応性を調べた。結果を表3に示す。表中には金属イオン
を含まないソニフィラン水溶液をEDTA4Na塩を含
まない水酸化ナトリウム溶液で処理(処理時0.3モル
/L)した場合を100%、またEDTA4Na溶液お
よび水酸化ナトリウム溶液の代わりに注射用蒸留水を用
いた場合を0%とした相対活性を示した。なお、金属イ
オンを含む試料を測定する際のEDTA4Na塩の添加
効果を調べるために上記逐次添加においてEDTA4N
a塩溶液の代わりに等量の注射用蒸留水を用いた実験も
行った。また上記逐次添加の添加順序を逆にした実験も
行った。When clinical samples were actually treated with the pretreatment agent according to Example 2 and measured with toxicocolor, only the patients with deep-seated mycosis showed high values. Example 3 0.2 mL of an aqueous solution containing metal ions shown in Table 3 to which 10% schizophyllan (trade name Sonifiran) having a triple helix structure was added
And 0.125 mol / L EDTA4Na salt solution 0.025
After adding mL and standing for 5 minutes under ice cooling, 0.025 mL of 3 mol / L sodium hydroxide solution is added (sequential addition) or 1.5 mol / L containing 0.20 mol / L EDTA4Na salt solution L sodium hydroxide 0.05mL
Was added (simultaneous addition), allowed to stand at room temperature for 10 minutes, then diluted 10-fold with distilled water for injection, and 0.05 mL of the diluted solution was used as a test solution using the G test as in Example 1. The reactivity was investigated. The results are shown in Table 3. In the table, 100% of the case where the sodium ion solution containing no metal ion was treated with a sodium hydroxide solution containing no EDTA4Na salt (0.3 mol / L at the time of treatment), and instead of the EDTA4Na solution and the sodium hydroxide solution, The relative activity was 0% when using distilled water for injection. In order to investigate the effect of adding EDTA4Na salt when measuring a sample containing metal ions, EDTA4N was added in the above sequential addition.
An experiment was also performed using an equal amount of distilled water for injection instead of the salt solution a. An experiment was also conducted in which the addition order of the above-mentioned sequential addition was reversed.
【0037】[0037]
【表3】 表3 ――――――――――――――――――――――――――――――――――― 金属イオン水溶液 EDTA4NaとNaOHの添加の 相対活性 有無(+/−)と添加方法 (%) EDTA4Na NaOH 添加方法 (A) (B) ――――――――――――――――――――――――――――――――――― 注射用蒸留水 (対照例) − − 0 注射用蒸留水 (対照例) − + 100 10 mM MgCl2 − + 2.6 10 mM MgCl2 + + 逐次(A→B) 124.0 10 mM MgCl2 + + 逐次(B→A) 0.6 10 mM CaCl2 − + 2.8 10 mM CaCl2 + + 同時 105.9 0.5 mM FeCl2 − + 2.0 0.5 mM FeCl2 + + 逐次(A→B) 98.8 0.5 mM FeCl3 − + 0 0.5 mM FeCl3 + + 同時 95.6 0.05 mM MnSO4 − + 4.0 0.05 mM MnSO4 + + 逐次(A→B) 105.0 リンゲル液(含2.24mM CaCl2) + + 同時 113.2 人工腎臓用透析液 − + 3.8 人工腎臓用透析液 + + 同時 97.5 (含1.5mM CaCl2, 0.5mM MgCl2) PBS (+) + + 逐次(A→B) 107.4 (含0.901mM CaCl2, 0.492mM MgSO4) ハンクス液 + + 逐次(A→B) 105.2 (含1.26mM CaCl2, 0.812mM MgSO4) ―――――――――――――――――――――――――――――――――――[Table 3] Table 3 ――――――――――――――――――――――――――――――――――― Metal Ion Aqueous Solution Addition of EDTA4Na and NaOH Relative activity Presence (+/-) and addition method (%) EDTA4Na NaOH addition method (A) (B) ―――――――――――――――――――――――――――― ――――――――― Distilled water for injection (control example) − − 0 Distilled water for injection (control example) − + 100 10 mM MgCl 2 − + 2.6 10 mM MgCl 2 + + Sequential (A → B) 124.0 10 mM MgCl 2 + + Sequential (B → A) 0.6 10 mM CaCl 2 − + 2.8 10 mM CaCl 2 + + Simultaneous 105.9 0.5 mM FeCl 2 − + 2.0 0.5 mM FeCl 2 + + Sequential (A → B) 98.8 0.5 mM FeCl 3 − + 0 0.5 mM FeCl 3 + + Simultaneous 95.6 0.05 mM MnSO 4 − + 4.0 4.0 mM MnSO 4 + + Sequential (A → B) ) 105.0 Ringer's solution (containing 2.24 mM CaCl 2 ) + + Simultaneously 113.2 For artificial kidney Dialysate- + 3.8 Dialysis fluid for artificial kidney + + Simultaneous 97.5 (including 1.5 mM CaCl 2 , 0.5 mM MgCl 2 ) PBS (+) + + Sequential (A → B) 107.4 (including 0.901 mM CaCl) 2 , 0.492mM MgSO 4 ) Hank's solution + + Sequential (A → B) 105.2 (including 1.26mM CaCl 2 , 0.812mM MgSO 4 ) ―――――――――――――――――― ―――――――――――――――――
【0038】表3の結果より、三重らせん構造をとるシ
ゾフィランの水溶液中にMg2+やCa2+が存在するとア
ルカリのみで処理してもGテスト反応性は高まらない
が、キレート剤をアルカリ添加と同時あるいは添加前に
添加すると、シゾフィランのGテスト反応性が高まり、
高感度に検出定量できることが判った。上記実験におい
て水酸化ナトリウムの代わりに水酸化カリウムを用いた
実験を行ったが、上記とほぼ同様の結果が得られた。From the results shown in Table 3, the presence of Mg 2+ or Ca 2+ in the aqueous solution of schizophyllan having a triple helix structure does not increase the G test reactivity even if treated only with alkali, but the chelating agent is added with alkali. If added at the same time as or before the addition, the G-test reactivity of Schizophyllan increases,
It was found that the detection and quantification can be performed with high sensitivity. An experiment was conducted using potassium hydroxide instead of sodium hydroxide in the above experiment, and almost the same results as above were obtained.
【0039】[0039]
【発明の効果】本発明は、三重らせん構造を主体とする
β−グルカンの他に、Etおよび/またはG因子系反応
妨害因子(リムルス反応妨害因子)を含む試料中のβ−
グルカンを測定する際に、該試料を強アルカリ性の前処
理剤で処理するという簡便な手段を採用することによっ
て、上記Etおよび/またはG因子系反応妨害因子の反
応系への影響を完全に除去することができ、かつβ−グ
ルカンがG因子を活性化しない三重らせん構造をとって
いても、それをG因子活性化能を有する構造に変換でき
るので、Etにも反応性を有する非特異的リムルス試薬
を使用してβ−グルカンを正確に定量できる。また、本
発明は三重らせん構造を主体とするβ−グルカンの他に
金属イオンを含む試料中のβ−グルカンを測定する際
に、該試料をキレート剤の存在下において強アルカリ性
の前処理剤で処理することにより、強アルカリ処理によ
ってβ−グルカンの三重らせん構造がG因子活性化能を
有する構造に変換されるのを、金属イオンが阻害する現
象を防止することができるので、透析後、リンゲル液な
どの金属イオンを含み得る試料中のβ−グルカンを正確
に定量することができる。さらに、本発明の測定法を使
用して生体由来試料中のβ−グルカンを測定すると高精
度で再現性の高い結果が得られる。本発明のβ−グルカ
ンの測定法を臨床検査に応用することによって、通常の
検査法では診断がきわめて困難な深在性真菌感染症の診
断を迅速かつ正確に行うことができる。INDUSTRIAL APPLICABILITY The present invention provides a β-glucan mainly composed of a triple helix structure, as well as a β-glucan in a sample containing Et and / or factor G system reaction-interfering factor (limulus reaction-interfering factor).
When measuring glucan, the simple effect of treating the sample with a strongly alkaline pretreatment agent is employed to completely eliminate the influence of the Et and / or G factor reaction-interfering factors on the reaction system. And a β-glucan that has a triple helix structure that does not activate factor G can be converted into a structure capable of activating factor G, and thus is non-specific that also has reactivity with Et. The Limulus reagent can be used to accurately quantify β-glucan. Further, the present invention, when measuring β-glucan in a sample containing a metal ion in addition to β-glucan mainly having a triple helix structure, the sample is treated with a strong alkaline pretreatment agent in the presence of a chelating agent. By treatment, it is possible to prevent the metal ion from inhibiting the conversion of the triple helix structure of β-glucan into a structure having factor G activating ability by strong alkaline treatment. It is possible to accurately quantify β-glucan in a sample which may contain metal ions such as. Furthermore, when β-glucan in a biological sample is measured using the measuring method of the present invention, highly accurate and highly reproducible results can be obtained. By applying the method for measuring β-glucan of the present invention to a clinical test, a deep-seated fungal infection, which is extremely difficult to diagnose by an ordinary test method, can be quickly and accurately diagnosed.
【図1】カブトガニ・アメボサイト・ライセートの(1
→3)−β−D−グルカン及びエンドトキシンによるカ
スケード反応の反応機構を示す。Figure 1: Horseshoe crab, amebosite lysate (1
→ 3) The reaction mechanism of the cascade reaction by -β-D-glucan and endotoxin is shown.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年12月8日[Submission date] December 8, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項8[Name of item to be corrected] Claim 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0001[Correction target item name] 0001
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0001】[0001]
【産業上の利用分野】本発明は、(1→3)−β−D−
グルカン(以下「β−グルカン」ともいう)の測定方法
に関する。特に、反応妨害因子として試料中に含まれる
可能性のある、リムルスC因子系反応に関与するエンド
トキシン(以下「Et」とも記す)単独またはEtおよ
びリムルスG因子とβ−グルカンとの特異的反応を妨害
する反応妨害因子(以下「G因子系反応妨害因子」とも
いう)の双方を含む可能性のある試料中あるいはリンゲ
ル液、透析液等の金属イオンを含み得る試料中のβ−グ
ルカンをリムルス試薬を用いて高い精度で測定できる方
法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to (1 → 3) -β-D-
The present invention relates to a method for measuring glucan (hereinafter, also referred to as "β-glucan"). In particular, endotoxin (hereinafter also referred to as “Et”) involved in the Limulus factor C system reaction, which may be contained in the sample as a reaction-interfering factor, alone or a specific reaction between Et and Limulus factor G and β-glucan is described. The β-glucan in a sample that may contain both reaction-interfering factors (hereinafter also referred to as “G factor-based reaction-interfering factors”) that interfere with each other or in a sample that may contain metal ions such as Ringer's solution and dialysate is tested using a Limulus reagent. The present invention relates to a method that can be used to perform measurement with high accuracy.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0011[Correction target item name] 0011
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0011】[0011]
【課題を解決するための手段】本発明は、 三重らせ
ん構造を主体とする(1→3)−β−D−グルカンを含
み得る試料を、強アルカリ性条件下で前処理し、反応妨
害因子として試料中に含まれる可能性のある、エンドト
キシン単独またはエンドトキシンとG因子系反応妨害因
子とを破壊もしくは不活性化した後、リムルス試薬によ
るリムルス反応に付すことを特徴とする(1→3)−β
−D−グルカンの測定方法、 リムルス試薬が非特異
的リムルス試薬であることを特徴とする前記記載の
(1→3)−β−D−グルカンの測定方法、 アルカ
リ金属水酸化物を試料中に存在させて強アルカリ性条件
下とする前記または記載の(1→3)−β−D−グ
ルカンの測定方法、 試料中のアルカリ金属水酸化物
濃度を0.03〜2.0モル/Lの条件下で前処理する
ことを特徴とする前記に記載の測定方法、および前
処理を0〜135℃の条件下で行う前記〜のいずれ
か1項に記載の測定方法、 試料が金属イオンを含み
得るものであり、試料を、キレート剤の存在下において
前処理する前記記載の(1→3)−β−D−グルカン
の測定方法、 三重らせん構造を主体とする(1→
3)−β−D−グルカンと金属イオンとを含み得る試料
を、キレート剤の存在下において強アルカリ性条件下で
前処理した後、リムルス試薬によるリムルス反応に付す
ことを特徴とする(1→3)−β−D−グルカンの測定
方法、 前記前処理を、試料にキレート剤を添加後、
強アルカリ性条件下で行うか、または試料にキレート剤
を添加する際に強アルカリ性条件下とする前記記載の
(1→3)−β−D−グルカンの測定方法、 リムル
ス試薬が、カブトガニ血リンパ凝固系のC因子系成分を
実質的に含まないか、あるいはC因子系反応が阻害さ
れ、エンドトキシンと反応せず、(1→3)−β−D−
グルカンに特異的なものである、前記記載の(1→
3)−β−D−グルカンの測定方法である。According to the present invention, a sample containing (1 → 3) -β-D-glucan having a triple helix structure as a main component is pretreated under strongly alkaline conditions and used as a reaction interfering factor. The method is characterized by destroying or inactivating endotoxin alone or endotoxin and a factor G system reaction-interfering factor that may be contained in a sample, and then subjecting to a Limulus reaction by a Limulus reagent (1 → 3) -β
-D-glucan measuring method, the Limulus reagent is a non-specific Limulus reagent, the above-mentioned (1 → 3) -β-D-glucan measuring method, alkali metal hydroxide in a sample The method for measuring (1 → 3) -β-D-glucan described above or under the condition of being strongly alkaline under the condition that the alkali metal hydroxide concentration in the sample is 0.03 to 2.0 mol / L. Pretreatment is performed under the following, the measurement method described above, and the measurement method according to any one of the above, wherein the pretreatment is performed under a condition of 0 to 135 ° C., and the sample may contain a metal ion. The method for measuring (1 → 3) -β-D-glucan described above, in which a sample is pretreated in the presence of a chelating agent, mainly having a triple helix structure (1 →
3) A sample that may contain -β-D-glucan and a metal ion is pretreated in the presence of a chelating agent under strongly alkaline conditions and then subjected to a Limulus reaction with a Limulus reagent (1 → 3) ) Method for measuring -β-D-glucan, the pretreatment, after adding a chelating agent to the sample,
Method of measuring (1 → 3) -β-D- glucan of the claimed to strongly alkaline conditions at the time of adding or carried out in strongly alkaline conditions, or a chelating agent to the sample, the Limulus reagent, Limulus blood It does not substantially contain the factor C component of the lymphoid coagulation system, or the factor C system reaction is inhibited, and it does not react with endotoxin, and (1 → 3) -β-D-
It is specific to glucan (1 →
3) A method for measuring -β-D-glucan.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0036[Correction target item name] 0036
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0036】また、実際に臨床検体を実施例2に準じて
前処理剤で処理し、トキシカラーで測定したところ、深
在性真菌症患者検体のみが高値を示した。 実施例3 表3に示す金属イオンを含む水溶液に100%三重らせ
ん構造からなるシゾフィラン(商品名ソニフィラン)を
1.0ng/mLとなるように添加したもの0.2mL
に、0.1モル/LのEDTA4Na塩溶液0.025
mLを添加し氷冷下5分間放置後、3モル/L水酸化ナ
トリウム溶液0.025mLを添加するか(逐次添
加)、あるいは0.20モル/LのEDTA4Na塩溶
液を含む1.5モル/L水酸化ナトリウム0.05mL
を添加(同時添加)した後、室温下10分間放置後、注
射用蒸留水で10倍希釈し、その内の0.05mLを被
検液として、実施例1と同様にGテストを用いてその反
応性を調べた。結果を表3に示す。表中には金属イオン
を含まないソニフィラン水溶液をEDTA4Na塩を含
まない水酸化ナトリウム溶液で処理(処理時0.3モル
/L)した場合を100%、またEDTA4Na溶液お
よび水酸化ナトリウム溶液の代わりに注射用蒸留水を用
いた場合を0%とした相対活性を示した。なお、金属イ
オンを含む試料を測定する際のEDTA4Na塩の添加
効果を調べるために上記逐次添加においてEDTA4N
a塩溶液の代わりに等量の注射用蒸留水を用いた実験も
行った。また上記逐次添加の添加順序を逆にした実験も
行った。When clinical samples were actually treated with the pretreatment agent according to Example 2 and measured with toxicocolor, only the patients with deep-seated mycosis showed high values. Example 3 Schizophyllan (trade name Sonifiran) having a 100% triple helix structure was added to an aqueous solution containing metal ions shown in Table 3.
0.2 mL added to give 1.0 ng / mL
And 0.125 mol / L EDTA4Na salt solution 0.025
After adding mL and standing for 5 minutes under ice cooling, 0.025 mL of 3 mol / L sodium hydroxide solution is added (sequential addition) or 1.5 mol / L containing 0.20 mol / L EDTA4Na salt solution L sodium hydroxide 0.05mL
Was added (simultaneous addition), allowed to stand at room temperature for 10 minutes, then diluted 10-fold with distilled water for injection, and 0.05 mL of the diluted solution was used as a test solution using the G test as in Example 1. The reactivity was investigated. The results are shown in Table 3. In the table, 100% of the case where the sodium ion solution containing no metal ion was treated with a sodium hydroxide solution containing no EDTA4Na salt (0.3 mol / L at the time of treatment), and instead of the EDTA4Na solution and the sodium hydroxide solution, The relative activity was 0% when using distilled water for injection. In order to investigate the effect of adding EDTA4Na salt when measuring a sample containing metal ions, EDTA4N was added in the above sequential addition.
An experiment was also performed using an equal amount of distilled water for injection instead of the salt solution a. An experiment was also conducted in which the addition order of the above-mentioned sequential addition was reversed.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0039[Correction target item name] 0039
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0039】[0039]
【発明の効果】本発明は、三重らせん構造を主体とする
β−グルカンの他に、Etおよび/またはG因子系反応
妨害因子(リムルス反応妨害因子)を含む試料中のβ−
グルカンを測定する際に、該試料を強アルカリ性の前処
理剤で処理するという簡便な手段を採用することによっ
て、上記Etおよび/またはG因子系反応妨害因子の反
応系への影響を完全に除去することができ、かつβ−グ
ルカンがG因子を活性化しない三重らせん構造をとって
いても、それをG因子活性化能を有する構造に変換でき
るので、Etにも反応性を有する非特異的リムルス試薬
を使用してβ−グルカンを正確に定量できる。また、本
発明は三重らせん構造を主体とするβ−グルカンの他に
金属イオンを含む試料中のβ−グルカンを測定する際
に、該試料をキレート剤の存在下において強アルカリ性
の前処理剤で処理することにより、強アルカリ処理によ
ってβ−グルカンの三重らせん構造がG因子活性化能を
有する構造に変換されるのを、金属イオンが阻害する現
象を防止することができるので、透析液、リンゲル液な
どの金属イオンを含み得る試料中のβ−グルカンを正確
に定量することができる。さらに、本発明の測定法を使
用して生体由来試料中のβ−グルカンを測定すると高精
度で再現性の高い結果が得られる。本発明のβ−グルカ
ンの測定法を臨床検査に応用することによって、通常の
検査法では診断がきわめて困難な深在性真菌感染症の診
断を迅速かつ正確に行うことができる。INDUSTRIAL APPLICABILITY The present invention provides a β-glucan mainly composed of a triple helix structure, as well as a β-glucan in a sample containing Et and / or factor G system reaction-interfering factor (limulus reaction-interfering factor).
When measuring glucan, the simple effect of treating the sample with a strongly alkaline pretreatment agent is employed to completely eliminate the influence of the Et and / or G factor reaction-interfering factors on the reaction system. And a β-glucan that has a triple helix structure that does not activate factor G can be converted into a structure capable of activating factor G, and thus is non-specific that also has reactivity with Et. The Limulus reagent can be used to accurately quantify β-glucan. Further, the present invention, when measuring β-glucan in a sample containing a metal ion in addition to β-glucan mainly having a triple helix structure, the sample is treated with a strong alkaline pretreatment agent in the presence of a chelating agent. by processing, that the triple helix structure of β- glucan by strong alkali treatment is converted into a structure having a factor G activating ability, it is possible to prevent the phenomenon of metal ions to inhibit, dialysis solution, Ringer's solution It is possible to accurately quantify β-glucan in a sample which may contain metal ions such as. Furthermore, when β-glucan in a biological sample is measured using the measuring method of the present invention, highly accurate and highly reproducible results can be obtained. By applying the method for measuring β-glucan of the present invention to a clinical test, a deep-seated fungal infection, which is extremely difficult to diagnose by an ordinary test method, can be quickly and accurately diagnosed.
Claims (9)
−β−D−グルカンを含み得る試料を、強アルカリ性条
件下で前処理し、反応妨害因子として試料中に含まれる
可能性のある、エンドトキシン単独またはエンドトキシ
ンとG因子系反応妨害因子とを破壊もしくは不活性化し
た後、リムルス試薬によるリムルス反応に付すことを特
徴とする(1→3)−β−D−グルカンの測定方法。1. Mainly having a triple helix structure (1 → 3)
A sample that may contain -β-D-glucan is pretreated under strongly alkaline conditions to destroy endotoxin alone or endotoxin and a factor G system reaction-interfering factor which may be contained in the sample as a reaction-interfering factor. A method for measuring (1 → 3) -β-D-glucan, which comprises subjecting to a Limulus reaction with a Limulus reagent after inactivation.
あることを特徴とする請求項1記載の(1→3)−β−
D−グルカンの測定方法。2. The (1 → 3) -β- of claim 1, wherein the Limulus reagent is a non-specific Limulus reagent.
A method for measuring D-glucan.
せて強アルカリ性条件下とする請求項1または2記載の
(1→3)−β−D−グルカンの測定方法。3. The method for measuring (1 → 3) -β-D-glucan according to claim 1 or 2, wherein an alkali metal hydroxide is present in the sample and the sample is subjected to strong alkaline conditions.
0.03〜2.0モル/Lの条件下で前処理する請求項
3記載の(1→3)−β−D−グルカンの測定方法。4. The (1 → 3) -β-D-glucan according to claim 3, which is pretreated under the condition that the concentration of the alkali metal hydroxide in the sample is 0.03 to 2.0 mol / L. Measuring method.
求項1〜4のいずれか1項に記載の(1→3)−β−D
−グルカンの測定方法。5. The (1 → 3) -β-D according to any one of claims 1 to 4, wherein the pretreatment is carried out under a condition of 0 to 135 ° C.
-A method for measuring glucan.
り、キレート剤の存在下において前処理する請求項1記
載の(1→3)−β−D−グルカンの測定方法。6. The method for measuring (1 → 3) -β-D-glucan according to claim 1, wherein the sample can contain a metal ion and is pretreated in the presence of a chelating agent.
−β−D−グルカンと金属イオンとを含み得る試料を、
キレート剤の存在下において強アルカリ性条件下で前処
理した後、リムルス試薬によるリムルス反応に付すこと
を特徴とする(1→3)−β−D−グルカンの測定方
法。7. A triple helix structure is mainly used (1 → 3).
A sample that may contain -β-D-glucan and metal ions,
A method for measuring (1 → 3) -β-D-glucan, which comprises subjecting to preliminary treatment in the presence of a chelating agent under strongly alkaline conditions and then subjecting it to a Limulus reaction with a Limulus reagent.
後、強アルカリ条件下で行うか、または試料にキレート
剤を添加する際に強アルカリ条件下とする請求項7記載
の(1→3)−β−D−グルカンの測定方法。8. The method according to claim 1, wherein the pretreatment is performed under strong alkaline conditions after adding the chelating agent to the sample or under strong alkaline condition when adding the chelating agent to the sample. 3) A method for measuring -β-D-glucan.
固系のC因子系成分を実質的に含まないか、あるいはC
因子系反応が阻害され、エンドトキシンと反応せず、
(1→3)−β−D−グルカンに特異的なものである、
請求項8記載の(1→3)−β−D−グルカンの測定方
法。9. The Limulus reagent is substantially free of Factor C component of the horseshoe crab hemolymph coagulation system, or C
Factor system reaction is inhibited, it does not react with endotoxin,
Specific to (1 → 3) -β-D-glucan,
The method for measuring (1 → 3) -β-D-glucan according to claim 8.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21629594A JP3553656B2 (en) | 1993-09-10 | 1994-09-09 | Method for measuring (1 → 3) -β-D-glucan |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5-248550 | 1993-09-10 | ||
| JP24855093 | 1993-09-10 | ||
| JP21629594A JP3553656B2 (en) | 1993-09-10 | 1994-09-09 | Method for measuring (1 → 3) -β-D-glucan |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07128337A true JPH07128337A (en) | 1995-05-19 |
| JP3553656B2 JP3553656B2 (en) | 2004-08-11 |
Family
ID=26521349
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21629594A Expired - Lifetime JP3553656B2 (en) | 1993-09-10 | 1994-09-09 | Method for measuring (1 → 3) -β-D-glucan |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3553656B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006080448A1 (en) | 2005-01-27 | 2006-08-03 | Seikagaku Corporation | Pretreatment agent for limulus test |
| WO2020022467A1 (en) * | 2018-07-27 | 2020-01-30 | 積水メディカル株式会社 | METHOD FOR IMMUNOLOGICAL ANALYSIS OF (1→3)-β-D-GLUCAN IN BIOLOGICAL SAMPLE, KIT FOR ANALYSIS OF (1→3)- β-D-GLUCAN, AND ALKALI PRETREATMENT SOLUTION FOR BIOLOGICAL SAMPLE FOR USE IN METHOD FOR IMMUNOLOGICAL ANALYSIS OF (1→3)- β-D-GLUCAN |
-
1994
- 1994-09-09 JP JP21629594A patent/JP3553656B2/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006080448A1 (en) | 2005-01-27 | 2006-08-03 | Seikagaku Corporation | Pretreatment agent for limulus test |
| US7867722B2 (en) | 2005-01-27 | 2011-01-11 | Seikagaku Corporation | Pretreatment agent for limulus test |
| WO2020022467A1 (en) * | 2018-07-27 | 2020-01-30 | 積水メディカル株式会社 | METHOD FOR IMMUNOLOGICAL ANALYSIS OF (1→3)-β-D-GLUCAN IN BIOLOGICAL SAMPLE, KIT FOR ANALYSIS OF (1→3)- β-D-GLUCAN, AND ALKALI PRETREATMENT SOLUTION FOR BIOLOGICAL SAMPLE FOR USE IN METHOD FOR IMMUNOLOGICAL ANALYSIS OF (1→3)- β-D-GLUCAN |
| JPWO2020022467A1 (en) * | 2018-07-27 | 2020-08-06 | 積水メディカル株式会社 | Immunological analysis method of (1→3)-β-D-glucan in a biological sample, (1→3)-β-D-glucan analysis kit, and (1→3)-β-D-glucan Alkaline pretreatment liquid for biological samples for use in immunological analysis methods |
| US20210270821A1 (en) * | 2018-07-27 | 2021-09-02 | Sekisui Medical Co., Ltd. | IMMUNOASSAY METHOD FOR (carbon 1 to carbon 3 bonded)-BETA-D-GLUCAN IN BIOLOGICAL SAMPLE, ASSAY KIT FOR (carbon 1 to carbon 3 bonded)-BETA-D-GLUCAN, AND ALKALI PRETREATMENT SOLUTION FOR BIOLOGICAL SAMPLE FOR USE IN IMMUNOASSAY METHOD FOR (carbon 1 to carbon 3 bonded)-BETA-D-GLUCAN |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3553656B2 (en) | 2004-08-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5702882A (en) | Reagent for endotoxin-specific assay | |
| JP3524120B2 (en) | Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit, and sample determination method | |
| KR100255260B1 (en) | Endotoxin assay reagent and endotoxin assay method using the same | |
| US7846678B2 (en) | Enhancing endotoxin detection | |
| JPH06130064A (en) | Peculiar measuring agent for endotoxin for solid phase-based reaction | |
| JPH07128337A (en) | Measuring method for (1-3)-beta-d-glucan | |
| JP6674993B2 (en) | Pretreatment agent and pretreatment method for antithrombin III subjected to Limulus test | |
| EP1710584B1 (en) | Method of measuring lipoarabinomannan and application thereof | |
| JP3614849B2 (en) | Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit and sample determination method | |
| US6168924B1 (en) | Limulus reaction-activating substance, method for inactivating the substance and measuring its amount, and method for measuring limulus reaction | |
| US20020039756A1 (en) | Process for the diagnostic assessment and monitoring, as well as medicaments for the therapy of states of shock in humans | |
| JP3869094B2 (en) | Endotoxin measurement method | |
| JP3512524B2 (en) | Limulus test reagents and methods for measuring limulus test reactive substances |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040428 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040430 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 10 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |