JPH07128467A - Micromotion carrier - Google Patents
Micromotion carrierInfo
- Publication number
- JPH07128467A JPH07128467A JP27407693A JP27407693A JPH07128467A JP H07128467 A JPH07128467 A JP H07128467A JP 27407693 A JP27407693 A JP 27407693A JP 27407693 A JP27407693 A JP 27407693A JP H07128467 A JPH07128467 A JP H07128467A
- Authority
- JP
- Japan
- Prior art keywords
- fine movement
- movement drive
- movable portion
- movable part
- movable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Details Of Measuring And Other Instruments (AREA)
Abstract
(57)【要約】
【目的】 可動部の高さ方向の面ぶれを防止し、より精
密かつ高速な駆動を達成する。
【構成】 微動駆動坦体は、平面内において微動駆動す
る微動駆動機構を収容する固定容器5を備えている。固
定容器5の内部において、微動駆動機構の可動部1は可
動部1を挟持するように配設された一対の圧電素子2に
より1軸方向(X方向)に駆動可能となっている。圧電
素子2は変位量を確実に可動部1に伝えるために、球3
を介して可動部1に点接触している。さらに、可動部1
の上下にはZ方向拘束部材として弾性体6が挿入され、
弾性体6は固定容器5により可動部1に押しつけられて
いる。可動部1には、固定容器5の上面より突出した4
つの伝達部1aが形成されている。固定容器5の外側に
は、試料台4が伝達部1aに可動部1の駆動方向と平行
になるように接着されている。
(57) [Abstract] [Purpose] To prevent surface deviation in the height direction of the movable part and achieve more precise and high-speed drive. [Structure] The fine movement drive carrier is provided with a fixed container 5 which accommodates a fine movement drive mechanism for finely driving in a plane. Inside the fixed container 5, the movable part 1 of the fine movement drive mechanism can be driven in one axis direction (X direction) by a pair of piezoelectric elements 2 arranged so as to sandwich the movable part 1. The piezoelectric element 2 is provided with a ball 3
Is in point contact with the movable portion 1 via the. Furthermore, the movable part 1
Elastic bodies 6 are inserted as Z-direction restraining members above and below,
The elastic body 6 is pressed against the movable portion 1 by the fixed container 5. The movable part 1 has four protrusions 4 that protrude from the upper surface of the fixed container 5.
One transmission part 1a is formed. On the outside of the fixed container 5, a sample table 4 is adhered to the transmission part 1a so as to be parallel to the driving direction of the movable part 1.
Description
【0001】[0001]
【産業上の利用分野】本発明は、走査型トンネル顕微
鏡、走査型トンネル顕微鏡の原理を用いた又は応用した
情報記録及び/又は再生装置等に用いる、精密な位置制
御を要する微動駆動担体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine-tuning drive carrier for use in a scanning tunneling microscope, an information recording and / or reproducing apparatus using or applying the principle of a scanning tunneling microscope, which requires precise position control.
【0002】[0002]
【従来の技術】近年、試料の表面状態を原子オーダで観
察できるSTMが注目を浴びている。G.Binnigらによっ
て開発されたSTM[G.Binnig et al.,Helvetica Phys
icaActa,55,726(1982) ]は、金属の探針(プローブ電
極)と試料表面からなるを導電性物質間に電圧を加え、
プローブ電極を試料表面に1nm程度の距離まで近づけ
るとトンネル電流が流れることを利用して試料の表面状
態を観察する方法である。この電流は両者の距離変化に
敏感であり、トンネル電流を一定に保つようにプローブ
電極を走査するか、もしくはプローブ電極を一定高さに
保ちながら走査した時のトンネル電流の変化を測定する
ことにより、試料表面の状態を知ることができる。2. Description of the Related Art In recent years, an STM that can observe the surface state of a sample on the atomic order has attracted attention. STM developed by G. Binnig et al. [G. Binnig et al., Helvetica Phys
icaActa, 55,726 (1982)] applies a voltage between a conductive substance consisting of a metal probe (probe electrode) and the sample surface,
This is a method of observing the surface state of the sample by utilizing the fact that a tunnel current flows when the probe electrode is brought close to the sample surface to a distance of about 1 nm. This current is sensitive to changes in the distance between the two.By scanning the probe electrode so as to keep the tunnel current constant, or by measuring the change in tunnel current when scanning while keeping the probe electrode at a constant height. , It is possible to know the condition of the sample surface.
【0003】この際、面内方向の分解能は0.1nm程
度と非常に高感度であるため、探針と試料を相対移動さ
せる微動駆動機構には、面内方向に正確な位置決めがで
き、更に高速走査時の高さ方向の面ぶれを生じないもの
が求められている。At this time, since the resolution in the in-plane direction is very high at about 0.1 nm, the fine movement drive mechanism for relatively moving the probe and the sample can perform accurate positioning in the in-plane direction. There is a demand for a device that does not cause surface wobbling in the height direction during high-speed scanning.
【0004】図9は従来の微動駆動機構を示す構成図で
ある。FIG. 9 is a block diagram showing a conventional fine movement drive mechanism.
【0005】従来の微動駆動機構において、図9に示す
ように円柱状の可動部101は、周囲に円周方向に等し
い間隔の4つのθ方向平行ばね102を介して、矩形形
状の第1のフレーム104に支持されている。各θ方向
平行ばね102と同じ位置には、それぞれ可動部101
を円周方向に駆動させるためのθ方向圧電素子104が
配設されている。第1のフレーム103は、第1のフレ
ーム103の周囲を囲む矩形形状の第2のフレーム10
5に、第1のフレーム103をY方向に変位させるY方
向圧電素子106及び第1のフレーム103をY方向に
案内するためのY方向平行ばね107を介して支持され
ている。第2のフレーム105は、第2のフレーム10
5を囲む矩形の開口を有するベース108に、第2のフ
レーム105をX方向に変位させるX方向圧電素子10
9及び第2のフレーム105をX方向に案内するための
X方向平行ばね110を介して支持されている。このよ
うな構成に基づき、所定の圧電素子に電圧を印加するこ
とにより可動部101をX方向、Y方向及びθ方向にナ
ノメータオーダで制御していた。In the conventional fine movement drive mechanism, as shown in FIG. 9, the cylindrical movable portion 101 has a rectangular first portion via four θ-direction parallel springs 102 at equal intervals in the circumferential direction. It is supported by the frame 104. At the same position as each θ-direction parallel spring 102, the movable portion 101 is
A θ-direction piezoelectric element 104 for driving the actuator in the circumferential direction is provided. The first frame 103 is a rectangular second frame 10 that surrounds the periphery of the first frame 103.
5, a Y-direction piezoelectric element 106 for displacing the first frame 103 in the Y-direction and a Y-direction parallel spring 107 for guiding the first frame 103 in the Y-direction are supported. The second frame 105 is the second frame 10
An X-direction piezoelectric element 10 for displacing the second frame 105 in the X-direction on a base 108 having a rectangular opening that surrounds 5.
9 and the second frame 105 are supported via an X-direction parallel spring 110 for guiding the X-direction and the second frame 105. Based on such a configuration, the movable portion 101 is controlled in the X direction, the Y direction, and the θ direction on the nanometer order by applying a voltage to a predetermined piezoelectric element.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記微
動駆動機構において、可動部を圧電素子で駆動する際に
対向位置にある圧電素子の軸ずれ等により、圧電素子の
駆動方向と垂直な高さ方向に可動部が振動してしまうと
いう問題点があった。However, in the above-described fine movement drive mechanism, when the movable portion is driven by the piezoelectric element, due to axial misalignment of the piezoelectric element at the opposing position, a height direction perpendicular to the driving direction of the piezoelectric element is caused. However, there is a problem that the movable part vibrates.
【0007】上記問題点を解決するために、圧電素子の
駆動方向と垂直な高さ方向への変位を拘束している平行
ばね部を、高さ方向に厚くすることにより可動部の振動
防止を行っていたが、それでも可動部の高さ方向の面ぶ
れをナノメータオーダで制御するのは容易ではなかっ
た。In order to solve the above problems, the parallel spring portion, which restrains the displacement of the piezoelectric element in the height direction perpendicular to the driving direction, is thickened in the height direction to prevent vibration of the movable portion. However, it was not easy to control the surface runout of the movable part in the height direction on the order of nanometers.
【0008】本発明は、上記従来技術の問題点に鑑みて
なされたものであって、可動部の高さ方向の面ぶれを防
止し、より精密かつ高速な駆動を達成し得る微動駆動坦
体を提供することを目的とする。The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to prevent surface wobbling of the movable portion in the height direction and achieve a more precise and high speed drive carrier. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
の手段としての、本発明の微動駆動坦体は、平面内にお
いて微動駆動する微動駆動機構及び該微動駆動機構の平
面内における駆動方向に対して垂直な高さ方向の変動を
拘束する拘束部材を収容する固定容器と、前記固定容器
の外側に前記微動駆動機構の駆動方向に対して平行に設
置され、前記微動駆動機構の平面内における微動駆動に
伴い移動する試料台と、を有することを特徴とする。As a means for achieving the above object, a fine movement drive carrier of the present invention is a fine movement drive mechanism for fine movement driving in a plane and a driving direction in the plane of the fine movement drive mechanism. A fixed container that houses a restraint member that restrains fluctuations in the vertical direction with respect to the vertical direction, and is installed outside the fixed container in parallel to the driving direction of the fine movement drive mechanism, and in the plane of the fine movement drive mechanism. And a sample table that moves with fine movement drive.
【0010】また、前記微動駆動機構は、第1の可動部
と、前記第1の可動部を囲む第2の可動部と、前記第2
の可動部を囲む固定部とを備え、前記第1の可動部には
前記第1の可動部の移動量を前記試料台に伝達する伝達
部が形成され、前記第1の可動部と前記第2の可動部と
の間には、前記第1の可動部を第1の軸方向に変位させ
る第1の圧電素子、及び前記第1の可動部を前記第2の
可動部に対して前記第1の軸方向に案内可能に弾性的に
支持する第1の支持部が配設され、前記第2の可動部と
前記固定部との間には、前記第2の可動部を第2の軸方
向に変位させる第2の圧電素子、及び前記第2の可動部
を前記固定部に対して前記第2の軸方向に案内可能に弾
性的に支持する第2の支持部が配設され、前記第1の軸
方向及び前記第2の軸方向は平面内にて互いに直交して
いることを特徴とするもので、前記拘束部材が前記第1
の可動部の駆動方向に対して垂直な高さ方向からはさみ
込むように設けられているものや、前記微動駆動機構の
第1の軸方向を主走査方向としたものや、前記第1及び
第2の支持部は平行ばねを用いたものでもよく、この場
合には、前記拘束部材が1つもしくは複数設けられてい
るものや、前記拘束部材として、減衰効果のある弾性体
や平行ばねを用いるものでもよい。Further, the fine movement drive mechanism includes a first movable portion, a second movable portion surrounding the first movable portion, and the second movable portion.
A fixed part surrounding the movable part of the first movable part, and a transmission part for transmitting the movement amount of the first movable part to the sample table is formed in the first movable part. A first piezoelectric element that displaces the first movable portion in a first axial direction between the second movable portion and the second movable portion; A first support portion elastically supporting the first movable portion in the axial direction is disposed, and the second movable portion is provided between the second movable portion and the fixed portion. A second piezoelectric element that displaces in a direction, and a second support portion that elastically supports the second movable portion with respect to the fixed portion so that the second movable portion can be guided in the second axial direction. The first axial direction and the second axial direction are orthogonal to each other in a plane, and the restraint member is the first axial direction.
Is provided so as to be sandwiched from a height direction perpendicular to the driving direction of the movable part, one in which the first axial direction of the fine movement driving mechanism is the main scanning direction, and the first and the second The second supporting portion may use a parallel spring. In this case, one or a plurality of the restraining members are provided, or an elastic body having a damping effect or a parallel spring is used as the restraining member. It may be one.
【0011】そして、前記平行ばねを板ばねとしたり、
弾性ヒンジばねとすることもできる。The parallel spring may be a leaf spring,
It may be an elastic hinge spring.
【0012】さらに、前記固定容器の内部に粘性を有す
る液体が封入されているものであってもよい。Further, the fixed container may be filled with a viscous liquid.
【0013】[0013]
【作用】上記のとおり構成された本発明では、微動駆動
機構により試料台を平面内において駆動する際、前記微
動駆動機構の平面内における駆動方向に対して垂直な高
さ方向の変動は拘束部材により拘束され、その結果、前
記試料台の高さ方向の振動が抑えられる。したがって、
本発明の微動駆動機構を走査型トンネル顕微鏡に利用し
た際には、高速走査時の高さ方向の面ぶれが生じず、よ
り精密な観察が可能となる。In the present invention constructed as described above, when the sample stage is driven in the plane by the fine movement drive mechanism, fluctuations in the height direction perpendicular to the driving direction in the plane of the fine movement drive mechanism are restrained by the restraining member. The result is that the vibration of the sample table in the height direction is suppressed. Therefore,
When the fine movement drive mechanism of the present invention is used in a scanning tunneling microscope, surface wobbling in the height direction during high-speed scanning does not occur, and more precise observation is possible.
【0014】[0014]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0015】(第1の実施例)図1は本発明の微動駆動
担体の第1の実施例を示す縦断面図、図2は図1に示し
た微動駆動担体のZ方向から見た平面図である。(First Embodiment) FIG. 1 is a vertical sectional view showing a first embodiment of a fine movement drive carrier of the present invention, and FIG. 2 is a plan view of the fine movement drive carrier shown in FIG. Is.
【0016】本実施例の微動駆動坦体は、図1及び図2
に示すように後述する微動駆動機構を収容する固定容器
5を備えている。固定容器5の内部において、微動駆動
機構の可動部1は可動部1を挟持するように配設された
一対の圧電素子2により1軸方向(図1においてX方
向)に駆動可能となっている。圧電素子2は変位量を確
実に可動部1に伝えるために、球3を介して可動部1に
点接触している。なお、圧電素子2は、予めプリロード
例えば2.5kg を与えられて配設されている。さらに、可
動部1の上下にはZ方向拘束部材として弾性体6が挿入
され(図1及び図2において斜線の位置)、弾性体6は
固定容器5により可動部1に押しつけられている。可動
部1には、固定容器5の上面より突出した4つの伝達部
1aが形成されている。固定容器5の外側には、試料台
4が伝達部1aに可動部1の駆動方向と平行になるよう
に接着されている。これにより、試料台4は可動部1の
駆動に伴って面内方向に移動可能となっている。なお、
固定容器5の上面には、前記保持部1aが突出かつ微動
可能な隙間が設けられている。The fine movement drive carrier of this embodiment is shown in FIGS.
As shown in FIG. 3, a fixed container 5 that houses a later-described fine movement drive mechanism is provided. Inside the fixed container 5, the movable part 1 of the fine movement drive mechanism can be driven in one axis direction (X direction in FIG. 1) by a pair of piezoelectric elements 2 arranged so as to sandwich the movable part 1. . The piezoelectric element 2 is in point contact with the movable portion 1 via the sphere 3 in order to reliably transmit the displacement amount to the movable portion 1. The piezoelectric element 2 is provided with a preload of 2.5 kg in advance. Further, elastic bodies 6 are inserted as Z-direction restraining members above and below the movable portion 1 (positions shown by diagonal lines in FIGS. 1 and 2), and the elastic body 6 is pressed against the movable portion 1 by the fixed container 5. The movable part 1 is formed with four transmission parts 1 a protruding from the upper surface of the fixed container 5. On the outside of the fixed container 5, a sample table 4 is adhered to the transmission part 1a so as to be parallel to the driving direction of the movable part 1. As a result, the sample table 4 can move in the in-plane direction as the movable unit 1 is driven. In addition,
On the upper surface of the fixed container 5, there is provided a clearance through which the holding portion 1a can project and finely move.
【0017】ここで、上記固定容器5の内部に収容され
た微動駆動機構について説明する。Here, the fine movement drive mechanism housed inside the fixed container 5 will be described.
【0018】図3は、図1及び図2に示した固定容器に
収容された微動駆動機構をZ方向から見た平面図であ
る。FIG. 3 is a plan view of the fine movement drive mechanism housed in the fixed container shown in FIGS. 1 and 2 as seen from the Z direction.
【0019】図3において、第1の軸方向としてX方向
をとり、第2の軸方向としてY方向をとっており、X方
向とY方向とは平面内において互いに直交している。In FIG. 3, the first axial direction is the X direction and the second axial direction is the Y direction. The X direction and the Y direction are orthogonal to each other in a plane.
【0020】微動駆動機構の第1の可動部としての可動
部1は、可動部1に対して空間を介して囲む矩形形状の
第2の可動部としてのフレーム8に、可動部1をX方向
に変位させる第1の圧電素子としてのX方向圧電素子2
1a,21b、及び可動部1をX方向に案内する第1の
平行ばね部としてのX方向平行ばね71a〜71dを介
して支持されている。フレーム8は、フレーム8に対し
て空間を介して囲む矩形形状の固定部としてのベース9
に、フレーム8をY方向に変位させる第2の圧電素子と
してのY方向圧電素子22a,22b、及びフレーム8
をY方向に案内する第2の平行ばね部としてのY方向平
行ばね72a〜72dを介して支持されている。The movable part 1 as the first movable part of the fine movement drive mechanism is mounted on a frame 8 as a second movable part having a rectangular shape which surrounds the movable part 1 with a space therebetween. X-direction piezoelectric element 2 as the first piezoelectric element to be displaced in the direction
It is supported via 1a, 21b and X-direction parallel springs 71a to 71d as a first parallel spring part for guiding the movable part 1 in the X-direction. The frame 8 includes a base 9 as a rectangular fixed part that surrounds the frame 8 with a space.
In addition, Y-direction piezoelectric elements 22a and 22b as second piezoelectric elements for displacing the frame 8 in the Y direction, and the frame 8
Are supported via Y-direction parallel springs 72a to 72d as a second parallel spring portion that guides in the Y-direction.
【0021】次に、上記微動駆動機構の動作を説明す
る。Next, the operation of the fine movement drive mechanism will be described.
【0022】図3において、可動部1をX方向プラス側
へ動かすには、X方向圧電素子21aに縮む電圧を、X
方向圧電素子21bに伸びる電圧を印加することで行
う。また、逆にマイナス側へ動かすには、X方向圧電素
子21aに伸びる電圧を、21bに縮む電圧を印加する
ことで行う。Y方向に動かすには、Y方向圧電素子22
a,22bに上述と同様の電圧を印加すれば良い。可動
部1の動きは、平行ばねにて1軸方向に規定され、変位
は圧電素子により与えられる。可動部1の駆動に際し、
可動部1のX方向への駆動速度は、Y方向への駆動速度
より高速で駆動され、X軸方向が主走査方向となる。In FIG. 3, in order to move the movable portion 1 to the plus side in the X direction, the voltage contracted to the X direction piezoelectric element 21a is set to X.
This is performed by applying a voltage that extends to the directional piezoelectric element 21b. On the contrary, in order to move it to the minus side, a voltage that extends in the X-direction piezoelectric element 21a and a voltage that contracts in 21b is applied. To move in the Y direction, the Y direction piezoelectric element 22
The same voltage as described above may be applied to a and 22b. The movement of the movable portion 1 is defined by a parallel spring in one axial direction, and the displacement is given by a piezoelectric element. When driving the movable part 1,
The moving speed of the movable portion 1 in the X direction is higher than that in the Y direction, and the X-axis direction is the main scanning direction.
【0023】駆動用には、6.5μm/100V の変位感度を
持つ 2 ×3 ×9 mm のトーキン(株)製圧電素子を用い
た。For driving, a 2 × 3 × 9 mm piezoelectric element manufactured by Tokin Co., Ltd. having a displacement sensitivity of 6.5 μm / 100 V was used.
【0024】図1に示した微動駆動担体の試料台4の上
にターゲットを接着し、一対のX方向圧電素子の変位量
が互いに逆になるような電圧を印加し、X方向の変位量
を静電容量型の変位計で検出し、周波数特性を測定した
ところ、固有振動数は約5kHzであった。同様にY方
向についても測定したところ、固有振動数は約3kHz
であった。The target is adhered onto the sample stage 4 of the fine movement drive carrier shown in FIG. 1, and a voltage is applied such that the displacement amounts of the pair of X-direction piezoelectric elements are opposite to each other, and the displacement amount in the X-direction is adjusted. When the frequency characteristic was measured by detecting with a capacitance type displacement meter, the natural frequency was about 5 kHz. Similarly, when measured in the Y direction, the natural frequency is about 3 kHz.
Met.
【0025】X、Y方向の位置決め精度は共に数〜数十
ナノメータと非常に良かった。The positioning accuracy in the X and Y directions was very good, ranging from several nanometers to several tens of nanometers.
【0026】また、X、Y方向に駆動した時のZ方向の
変位量(振動)をレーザー光を用いた変位計で測定した
ところ、ナノメータオーダであった。When the displacement amount (vibration) in the Z direction when driven in the X and Y directions was measured by a displacement meter using laser light, it was on the order of nanometers.
【0027】本実施例では、可動部を駆動する際に、可
動部を挟持するように配設された圧電素子の変位量を互
いに逆になるように電圧を印加する手段として、圧電素
子の外側の電極に所定の電圧例えば100Vを印加し、
内側の電極を等電圧にし、内側の電極に与える電圧の値
を変化させることにより行った。In this embodiment, when the movable portion is driven, the outside of the piezoelectric element is used as a means for applying a voltage so that the displacement amounts of the piezoelectric elements arranged so as to sandwich the movable portion are opposite to each other. Apply a predetermined voltage to the electrode of 100V,
It was performed by setting the inner electrode to an equal voltage and changing the value of the voltage applied to the inner electrode.
【0028】本実施例では、弾性体6としてシート状の
シリコンゴムを用いたが、これはある程度の弾性定数を
持つものであれば何でも良く、フッ素ゴムなどのゴム、
またはポリウレタンもしくはテフロンなどの樹脂でもよ
い。In the present embodiment, sheet-like silicone rubber is used as the elastic body 6, but any material having a certain elastic constant, such as fluororubber, can be used.
Alternatively, a resin such as polyurethane or Teflon may be used.
【0029】また、可動部の動きを固定容器5の外側に
伝達する手段として、可動部1に形成された伝達部1a
を4本用いたが、これはなんら制限されるものではな
く、図4に示すように可動部中央に伝達部1bが1本突
設されたものでも良い。As a means for transmitting the movement of the movable portion to the outside of the fixed container 5, the transmission portion 1a formed on the movable portion 1
However, the number is not limited at all, and one transmitting portion 1b may be provided at the center of the movable portion as shown in FIG.
【0030】さらに、図5に示すように固定容器5から
突出する伝達部1aの回りの隙間に、シールド10を施
すことにより、可動部1の振動を防止するための粘性液
体を固定容器内部に封入することができ、その結果、よ
り可動部1の寄生振動等を緩和することができる。Further, as shown in FIG. 5, a viscous liquid for preventing vibration of the movable part 1 is provided inside the fixed container by providing a shield 10 in a gap around the transmission part 1a protruding from the fixed container 5. It can be enclosed, and as a result, parasitic vibration and the like of the movable portion 1 can be further mitigated.
【0031】(第2の実施例)図6は本発明の微動駆動
坦体の第2の実施例を示す縦断面図、図7は図6に示し
た微動駆動担体のZ方向から見た平面図である。(Second Embodiment) FIG. 6 is a vertical sectional view showing a second embodiment of the fine movement drive carrier of the present invention, and FIG. 7 is a plan view of the fine movement drive carrier shown in FIG. 6 viewed from the Z direction. It is a figure.
【0032】本実施例の微動駆動坦体は、図6及び図7
に示すように第1の実施例と同様の微動駆動機構を収容
する固定容器35を備えている。固定容器35の内部に
は可動部31を有し、可動部31は可動部31を挟持す
るように配設された一対の圧電素子32により1軸方向
(図6においてX方向)に駆動可能となっている。圧電
素子32は変位量を確実に可動部31に伝えるために、
球33を介して可動部31に点接触している。なお、圧
電素子32は、予めプリロード例えば2.5kg を与えられ
て配設されている。固定容器35の内部の可動部31の
上下にはZ方向拘束部材としての拘束球36が配置さ
れ、拘束球36は固定容器35により弾性変形の範囲内
で可動部31に押し付けられており、その大きさは固定
容器35の寸法により決定される。具体的には、直径1m
m の鋼球を4個づつ可動部31と固定容器35の間に挿
入している。可動部31には、固定容器35の上面より
突出する4つの伝達部31aが形成されている。伝達部
31aには試料台34が接着され、試料台34は可動部
31に伴い面内方向に移動する。なお、固定容器35の
上面には、前記伝達部31aが突出かつ微動可能な隙間
が設けられている。The fine movement drive carrier of this embodiment is shown in FIGS.
As shown in FIG. 5, a fixed container 35 for accommodating a fine movement drive mechanism similar to that of the first embodiment is provided. A movable portion 31 is provided inside the fixed container 35, and the movable portion 31 can be driven in one axis direction (X direction in FIG. 6) by a pair of piezoelectric elements 32 arranged so as to sandwich the movable portion 31. Has become. The piezoelectric element 32 transmits the displacement amount to the movable portion 31 without fail,
It is in point contact with the movable portion 31 via the sphere 33. The piezoelectric element 32 is provided with a preload of 2.5 kg in advance. A constraining ball 36 as a Z-direction constraining member is arranged above and below the movable part 31 inside the fixed container 35, and the constraining ball 36 is pressed against the movable part 31 within the range of elastic deformation by the fixed container 35. The size is determined by the size of the fixed container 35. Specifically, the diameter is 1m
Four m steel balls are inserted between the movable part 31 and the fixed container 35. The movable portion 31 is formed with four transmission portions 31 a protruding from the upper surface of the fixed container 35. A sample table 34 is adhered to the transmission part 31 a, and the sample table 34 moves in the in-plane direction along with the movable part 31. A gap is provided on the upper surface of the fixed container 35 so that the transmission portion 31a can project and finely move.
【0033】図6に示した微動駆動担体の試料台34の
上にターゲットを接着し、一対のX方向圧電素子の変位
量が互いに逆になるような電圧を印加し、X方向の変位
量を静電容量型の変位計で検出し、周波数特性を測定し
たところ、固有振動数は約5kHzであった。同様にY
方向についても測定したところ、固有振動数は約3kH
zであった。The target is adhered onto the sample table 34 of the fine movement drive carrier shown in FIG. 6, and a voltage is applied so that the displacement amounts of the pair of X-direction piezoelectric elements are opposite to each other, and the displacement amount in the X-direction is adjusted. When the frequency characteristic was measured by detecting with a capacitance type displacement meter, the natural frequency was about 5 kHz. Similarly Y
When the direction was also measured, the natural frequency was about 3 kHz.
It was z.
【0034】X、Y方向の位置決め精度は共に数〜数十
ナノメータと非常に良かった。The positioning accuracy in the X and Y directions was very good, ranging from several nanometers to several tens of nanometers.
【0035】また、X、Y方向に駆動した時のZ方向の
変位量(振動)をレーザー光を用いた変位計で測定した
ところ、ナノメータオーダであった。The displacement amount (vibration) in the Z direction when driven in the X and Y directions was measured by a displacement meter using laser light, and was on the order of nanometers.
【0036】本実施例では、可動部を駆動する際に、可
動部に対向して配置されている圧電素子の変位量を互い
に逆になるように電圧を印加する手段として、圧電素子
の外側の電極に所定の電圧例えば100Vを印加し、内
側の電極を等電圧にし、内側の電極に与える電圧の値を
変化させることにより行った。In this embodiment, when the movable portion is driven, as means for applying a voltage so that the displacement amounts of the piezoelectric elements arranged facing the movable portion are opposite to each other, the outside of the piezoelectric element is used. A predetermined voltage, such as 100 V, was applied to the electrodes, the inner electrodes were made equal voltage, and the value of the voltage applied to the inner electrodes was changed.
【0037】また本実施例では、Z方向の拘束部材とし
て拘束球36を用いたがこれは平行ばね機構であれば何
でも良く、固定容器35の内側部に突起物を形成しそれ
を平行ばねとして用いてもよい。あるいは可動部側に突
起物を形成してもよい。In this embodiment, the restraint ball 36 is used as the restraining member in the Z direction, but any restraint ball mechanism may be used as long as it is a parallel spring mechanism. You may use. Alternatively, a protrusion may be formed on the movable portion side.
【0038】さらに、第1の実施例及び第2の実施例に
述べた平行ばねは、弾性ヒンジばねでもかまわない。Further, the parallel springs described in the first and second embodiments may be elastic hinge springs.
【0039】(第3の実施例)図8は本発明の微動駆動
坦体を用いた走査型トンネル顕微鏡を示す概略構成図で
ある。(Third Embodiment) FIG. 8 is a schematic structural view showing a scanning tunneling microscope using the fine movement drive carrier of the present invention.
【0040】本実施例では、第1及び第2の実施例にて
説明した微動駆動担体を走査型トンネル顕微鏡(以後S
TMと略す)のXY微動機構として用いた。In this embodiment, the fine movement drive carrier described in the first and second embodiments is replaced with a scanning tunneling microscope (hereinafter referred to as S
(Abbreviated as TM) used as an XY fine movement mechanism.
【0041】図8に示すXY方向粗動機構57の上面に
は、第1及び第2の実施例と同様の、試料台55を備え
たXY方向微動機構56が固定され、試料台55の上面
には試料54が保持されている。試料54の上方には、
機械切断で作製したプラチナ−ロジウム製の探針51を
Z方向に駆動するZ方向微動機構52及びZ方向粗動機
構53が設置されている。On the upper surface of the XY direction coarse movement mechanism 57 shown in FIG. 8, the same XY direction fine movement mechanism 56 having the sample stage 55 as in the first and second embodiments is fixed, and the upper surface of the sample stage 55. A sample 54 is held in. Above the sample 54,
A Z-direction fine movement mechanism 52 and a Z-direction coarse movement mechanism 53 for driving the platinum-rhodium probe 51 produced by mechanical cutting in the Z direction are installed.
【0042】さらに上記の走査型トンネル顕微鏡は、探
針51と試料54との間にバイアス電圧を印加する電圧
印加回路59と、探針51と試料54との間に流れる電
流を電圧に変換しこれを増幅する電流増幅回路60と、
探針51をZ方向に駆動するためのZ方向駆動回路61
と、XY方向微動及び粗動機構を駆動するためのXY方
向駆動回路62と、表示装置63と、前記各回路等を制
御するマイクロコンピュータ58とを備え、トンネル電
流を一定に保つように探針51を走査するか、もしくは
探針51を一定高さに保ちながら走査した時のトンネル
電流の変化を測定することにより、試料54の表面状態
を表示装置63を用いて観察できる。Further, the scanning tunneling microscope described above converts the current flowing between the probe 51 and the sample 54 into a voltage, and the voltage application circuit 59 for applying a bias voltage between the probe 51 and the sample 54. A current amplification circuit 60 for amplifying this,
Z-direction drive circuit 61 for driving the probe 51 in the Z-direction
An XY direction drive circuit 62 for driving the XY direction fine movement and coarse movement mechanisms, a display device 63, and a microcomputer 58 for controlling each circuit and the like, and a probe for keeping the tunnel current constant. The surface state of the sample 54 can be observed using the display device 63 by scanning 51 or measuring the change in tunnel current when scanning is performed while keeping the probe 51 at a constant height.
【0043】本装置で探針と試料(例えばグラファイ
ト)間に1Vのバイアス電圧を印加し、トンネル電流を
10nA一定となるように2次元走査を行ったところ、
可動部の振動によるSTM像の乱れもなくきれいにグラ
ファイトの原子像を観察することができた。When a bias voltage of 1 V was applied between the probe and the sample (for example, graphite) by this apparatus and two-dimensional scanning was performed so that the tunnel current was constant at 10 nA,
The atomic image of graphite could be clearly observed without any disturbance in the STM image due to the vibration of the movable part.
【0044】[0044]
【発明の効果】以上説明したように本発明は、固定容器
の内部に微動駆動機構を収容し、微動駆動機構の可動部
の上下に拘束部材例えばボール等の平行ばね又はダンパ
ー材等の弾性体を配置することにより、可動部の高さ方
向の変動が防止され、その結果、より精密で、より高速
な駆動ができる。As described above, according to the present invention, the fine movement drive mechanism is housed in the fixed container, and the elastic member such as the restraining member such as a parallel spring such as a ball or the damper material is provided above and below the movable portion of the fine movement drive mechanism. By arranging, the variation in the height direction of the movable portion is prevented, and as a result, more precise and higher speed driving can be performed.
【図1】本発明の微動駆動担体の第1の実施例を示す縦
断面図である。FIG. 1 is a vertical sectional view showing a first embodiment of a fine movement drive carrier according to the present invention.
【図2】図1に示した微動駆動担体のZ方向から見た平
面図である。FIG. 2 is a plan view of the fine movement drive carrier shown in FIG. 1, seen from the Z direction.
【図3】図1及び図2に示した固定容器に収容された微
動駆動機構をZ方向から見た平面図である。FIG. 3 is a plan view of the fine movement drive mechanism housed in the fixed container shown in FIGS. 1 and 2 as viewed from the Z direction.
【図4】本発明の微動振動機構の第1の実施例における
伝達部の他の例を示す図である。FIG. 4 is a diagram showing another example of the transmission portion in the first embodiment of the fine vibration mechanism of the present invention.
【図5】本発明の微動駆動機構の第1の実施例におい
て、さらなる振動防止を図った例を示す図である。FIG. 5 is a diagram showing an example of further preventing vibration in the first embodiment of the fine movement drive mechanism of the present invention.
【図6】本発明の微動駆動坦体の第2の実施例を示す縦
断面図である。FIG. 6 is a longitudinal sectional view showing a second embodiment of the fine movement drive carrier of the present invention.
【図7】図6に示した微動駆動担体のZ方向から見た平
面図である。FIG. 7 is a plan view of the fine movement drive carrier shown in FIG. 6, viewed from the Z direction.
【図8】本発明の微動駆動坦体を用いた走査型トンネル
顕微鏡を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a scanning tunneling microscope using a fine movement drive carrier of the present invention.
【図9】従来の微動駆動機構を示す構成図である。FIG. 9 is a configuration diagram showing a conventional fine movement drive mechanism.
1,31 可動部 1a,1b,31a 伝達部 2,32 圧電素子 3,33 球 4,34,55 試料台 5,35 固定容器 6 弾性体 8 フレーム 9 ベース 10 シールド 21a,21b X方向圧電素子 22a,22b Y方向圧電素子 36 拘束球 71a〜71d X方向平行ばね 72a〜72d Y方向平行ばね 51 探針 52 Z方向微動機構 53 Z方向粗動機構 54 試料 56 XY方向微動機構 57 XY方向粗動機構 60 電流増幅回路 61 Z方向駆動回路 62 XY方向駆動回路 63 表示装置 1,31 Movable part 1a, 1b, 31a Transmission part 2,32 Piezoelectric element 3,33 Sphere 4,34,55 Sample stand 5,35 Fixed container 6 Elastic body 8 Frame 9 Base 10 Shield 21a, 21b X direction piezoelectric element 22a , 22b Y direction piezoelectric element 36 Restraint sphere 71a-71d X direction parallel spring 72a-72d Y direction parallel spring 51 Probe 52 Z direction fine movement mechanism 53 Z direction coarse movement mechanism 54 Sample 56 XY direction fine movement mechanism 57 XY direction coarse movement mechanism 60 current amplification circuit 61 Z-direction drive circuit 62 XY-direction drive circuit 63 display device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川瀬 俊光 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshimitsu Kawase 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (11)
構及び該微動駆動機構の平面内における駆動方向に対し
て垂直な高さ方向の変動を拘束する拘束部材を収容する
固定容器と、 前記固定容器の外側に前記微動駆動機構の駆動方向に対
して平行に設置され、前記微動駆動機構の平面内におけ
る微動駆動に伴い移動する試料台と、を有する微動駆動
担体。1. A fixed container for accommodating a fine movement drive mechanism for fine movement in a plane and a restraint member for restraining fluctuations in a height direction perpendicular to a driving direction of the fine movement drive mechanism, and the fixed container. A fine movement drive carrier having a sample table, which is installed outside of and parallel to the driving direction of the fine movement drive mechanism, and moves along with the fine movement drive in the plane of the fine movement drive mechanism.
試料台に伝達する伝達部が形成され、 前記第1の可動部と前記第2の可動部との間には、前記
第1の可動部を第1の軸方向に変位させる第1の圧電素
子、及び前記第1の可動部を前記第2の可動部に対して
前記第1の軸方向に案内可能に弾性的に支持する第1の
支持部が配設され、 前記第2の可動部と前記固定部との間には、前記第2の
可動部を第2の軸方向に変位させる第2の圧電素子、及
び前記第2の可動部を前記固定部に対して前記第2の軸
方向に案内可能に弾性的に支持する第2の支持部が配設
され、 前記第1の軸方向及び前記第2の軸方向は平面内にて互
いに直交していることを特徴とする請求項1記載の微動
駆動坦体。2. The fine movement drive mechanism includes a first movable portion, a second movable portion that surrounds the first movable portion, and a fixed portion that surrounds the second movable portion. A transmission part that transmits the movement amount of the first movable part to the sample stage is formed in the movable part of the first movable part, and the first movable part and the second movable part are provided between the first movable part and the first movable part. A first piezoelectric element that displaces the movable portion in a first axial direction; and a first piezoelectric element that elastically supports the first movable portion with respect to the second movable portion so that the movable portion can be guided in the first axial direction. And a second piezoelectric element for displacing the second movable portion in a second axial direction between the second movable portion and the fixed portion. A second supporting portion that elastically supports the movable portion of the movable portion relative to the fixed portion so as to be guided in the second axial direction, the first axial direction and the second axial direction. Axial micromotion drive carrier of claim 1, wherein the mutually orthogonal in a plane.
方向に対して垂直な高さ方向からはさみ込むように設け
られていることを特徴とする請求項2記載の微動駆動担
体。3. The fine movement drive carrier according to claim 2, wherein the restraint member is provided so as to be sandwiched from a height direction perpendicular to a driving direction of the first movable portion.
査方向とした請求項2記載の微動駆動担体。4. The fine movement drive carrier according to claim 2, wherein a first axial direction of the fine movement drive mechanism is a main scanning direction.
用いたことを特徴とする請求項2記載の微動駆動坦体。5. The fine movement drive carrier according to claim 2, wherein the first and second support portions are parallel springs.
れていることを特徴とする請求項1乃至5のいづれか1
項に記載の微動駆動担体。6. One of the restraint members according to claim 1, wherein one or a plurality of restraint members are provided.
The fine movement drive carrier according to item.
性体を用いることを特徴とする請求項1乃至5のいづれ
か1項に記載の微動駆動担体。7. The fine movement drive carrier according to claim 1, wherein an elastic body having a damping effect is used as the restraint member.
ことを特徴とする請求項1乃至5のいづれか1項に記載
の微動駆動担体。8. The fine movement drive carrier according to claim 1, wherein a parallel spring is used as the restraint member.
たは8記載の微動駆動担体。9. The fine movement drive carrier according to claim 5, wherein the parallel spring is a leaf spring.
請求項5または8記載の微動駆動担体。10. The fine movement drive carrier according to claim 5, wherein the parallel spring is an elastic hinge spring.
体が封入されていることを特徴とする請求項1乃至10
のいづれか1項に記載の微動駆動担体。11. The viscous liquid is sealed inside the fixed container.
The fine movement drive carrier described in any one of 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27407693A JPH07128467A (en) | 1993-11-02 | 1993-11-02 | Micromotion carrier |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27407693A JPH07128467A (en) | 1993-11-02 | 1993-11-02 | Micromotion carrier |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07128467A true JPH07128467A (en) | 1995-05-19 |
Family
ID=17536645
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27407693A Pending JPH07128467A (en) | 1993-11-02 | 1993-11-02 | Micromotion carrier |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07128467A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009001611A1 (en) * | 2007-06-27 | 2008-12-31 | Ulvac, Inc. | Coarse-fine movement device and fluid supply device with the same |
| JP2009008661A (en) * | 2007-05-31 | 2009-01-15 | Sii Nanotechnology Inc | Positioning device and scanning probe microscope using the same |
| JP2013118170A (en) * | 2011-10-31 | 2013-06-13 | Hitachi High-Technologies Corp | Sample stage and charged particle device |
| WO2018131343A1 (en) * | 2017-01-10 | 2018-07-19 | 国立大学法人大阪大学 | Scanner and scanning probe microscope |
| WO2019137695A1 (en) * | 2018-01-15 | 2019-07-18 | Festool Gmbh | Machining device |
| JP2020041669A (en) * | 2018-09-13 | 2020-03-19 | キヤノン株式会社 | Support device |
-
1993
- 1993-11-02 JP JP27407693A patent/JPH07128467A/en active Pending
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009008661A (en) * | 2007-05-31 | 2009-01-15 | Sii Nanotechnology Inc | Positioning device and scanning probe microscope using the same |
| WO2009001611A1 (en) * | 2007-06-27 | 2008-12-31 | Ulvac, Inc. | Coarse-fine movement device and fluid supply device with the same |
| US8049454B2 (en) | 2007-06-27 | 2011-11-01 | Ulvac, Inc. | Rough and fine movement device, and liquid supply device incorporating the same |
| JP2013118170A (en) * | 2011-10-31 | 2013-06-13 | Hitachi High-Technologies Corp | Sample stage and charged particle device |
| WO2018131343A1 (en) * | 2017-01-10 | 2018-07-19 | 国立大学法人大阪大学 | Scanner and scanning probe microscope |
| JPWO2018131343A1 (en) * | 2017-01-10 | 2020-02-06 | 国立大学法人大阪大学 | Scanner and scanning probe microscope |
| US10884022B2 (en) | 2017-01-10 | 2021-01-05 | Osaka University | Scanner and scanning probe microscope |
| WO2019137695A1 (en) * | 2018-01-15 | 2019-07-18 | Festool Gmbh | Machining device |
| US11667032B2 (en) | 2018-01-15 | 2023-06-06 | Festool Gmbh | Processing device |
| JP2020041669A (en) * | 2018-09-13 | 2020-03-19 | キヤノン株式会社 | Support device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1318980C (en) | Scanning tunnel-current-detecting device and method for detecting tunnel current and scanning tunnelling microscope and recording/reproducing device using thereof | |
| JP4614398B2 (en) | Scanning probe microscope | |
| US5220555A (en) | Scanning tunnel-current-detecting device and method for detecting tunnel current and scanning tunnelling microscope and recording/reproducing device using thereof | |
| US6501210B1 (en) | Positioning mechanism having elongate bending elements oriented perpendicular to the direction of movement | |
| JP2631485B2 (en) | Positioning device | |
| US6538348B2 (en) | Stage device capable of moving an object to be positioned precisely to a target position | |
| US8495761B2 (en) | Planar positioning device and inspection device provided with the same | |
| EP0772800A1 (en) | Lithographic device with a three-dimensionally positionable mask holder | |
| US5438206A (en) | Positioning device | |
| JPH04155635A (en) | Information recording unit, apparatus and method for information recording and/or reproducing and information recording medium | |
| JPH07128467A (en) | Micromotion carrier | |
| US4837445A (en) | Coarse adjusting device of scanning tunneling microscope | |
| JPH0651831A (en) | Two-dimensional position adjusting device | |
| US20080061232A1 (en) | Scanning Probe Microscope Fine-Movement Mechanism and Scanning Probe Microscope Using Same | |
| US5055680A (en) | Scanning tunneling microscope | |
| JPH079363B2 (en) | Surface mechanical property measuring device | |
| JP3124617B2 (en) | Fine movement drive mechanism | |
| JP3428403B2 (en) | Friction force probe microscope and method for identifying atomic species and materials using friction force probe microscope | |
| JPH0240594A (en) | Flap stage | |
| JPH06323845A (en) | Thin film force detection probe for scanning force microscope | |
| KR100430494B1 (en) | Positioning apparatus having an object table without the influence of vibration and lithographic apparatus provided with the positioning apparatus | |
| Chetwynd | Linear translation mechanisms for nanotechnology applications | |
| JP3512259B2 (en) | Scanning probe microscope | |
| JPH06258070A (en) | Scanning probe microscope | |
| JPH0240593A (en) | Flap stage |