[go: up one dir, main page]

JPH07128707A - Finder optical system using low moisture absorption organic material - Google Patents

Finder optical system using low moisture absorption organic material

Info

Publication number
JPH07128707A
JPH07128707A JP5277032A JP27703293A JPH07128707A JP H07128707 A JPH07128707 A JP H07128707A JP 5277032 A JP5277032 A JP 5277032A JP 27703293 A JP27703293 A JP 27703293A JP H07128707 A JPH07128707 A JP H07128707A
Authority
JP
Japan
Prior art keywords
optical system
organic material
optical
low hygroscopic
hygroscopic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5277032A
Other languages
Japanese (ja)
Inventor
Hiroshi Takase
弘 高瀬
Shige Kanamori
樹 金森
Masaki Imaizumi
正喜 今泉
Masaru Morooka
優 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5277032A priority Critical patent/JPH07128707A/en
Priority to US08/335,352 priority patent/US5581400A/en
Publication of JPH07128707A publication Critical patent/JPH07128707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/14Viewfinders

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Viewfinders (AREA)

Abstract

PURPOSE:To provide a finder optical system using a low moisture absorption organic material for reducing the transitional fluctuation of optical characteristic caused with the moisture absorption of the component member of the optical system. CONSTITUTION:This optical system is constituted of an objective lens system 1 having positive refractive power as a whole, 1st and 2nd prisms 2 and 3 provided as an image erect system, having very long optical path and having different aspect ratio, and an ocular system 4; and further the 1st and the 2nd prisms 2 and 3 are formed of the low moisture absorption organic material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銀塩カメラ,電子撮像
機器のファインダー系並びに双眼鏡等に用いられる眼に
よって被写体像を観察する光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver salt camera, a viewfinder system of electronic image pickup equipment, and an optical system for observing a subject image with eyes used for binoculars and the like.

【0002】[0002]

【従来の技術】有機材料を光学系に用いる場合、一般
に、大気中の水蒸気を吸収或いは光学系中の水分を排出
することにより、レンズの屈折率や寸法に変化が生じて
光学特性の変動をもたらすことが知られている。この対
策として、特開平3−181908号公報に開示されて
いるように、有機材料を用いた素子を各鏡枠の内部に配
置し、大気と接する最外側を無機材料(吸湿のない材料
としか記載されていないが、実施例の光学特性から判断
して光学ガラスしか該当しない)で形成して、蓋をして
内部の湿度が組立時の状態に保持される構造とし、これ
により大気中の湿度の変化に作用されず一定の光学特性
が維持できる方法が知られている。又、特開平4−34
9418号公報に開示されているように、ノルボルネン
骨格を有する熱可塑性樹脂を対物レンズの一つに用いて
吸湿によるレンズ変形に基づく光学特性の劣化を防止す
る方法が知られている。更に、本願と同一出願人によっ
て出願中の特願平5−113197号明細書に記載され
ているように、焦点検出装置のレンズに吸水線膨張率の
小さい材質(例えばポリオレフィン樹脂)で形成し、湿
度変化に伴う屈折率や形状変化による焦点検出性能の低
下を防止する方法も知られている。
2. Description of the Related Art In general, when an organic material is used in an optical system, absorption of water vapor in the atmosphere or discharge of water in the optical system causes a change in the refractive index and size of the lens to cause fluctuations in optical characteristics. Known to bring. As a countermeasure against this, as disclosed in Japanese Patent Application Laid-Open No. 3-181908, an element using an organic material is arranged inside each lens frame, and the outermost portion in contact with the atmosphere is made of an inorganic material (only a material that does not absorb moisture). Although it is not described, only optical glass is applicable, judging from the optical characteristics of the example), and the structure is such that the internal humidity is maintained at the time of assembly by covering with a lid. A method is known in which constant optical characteristics can be maintained without being affected by changes in humidity. In addition, JP-A-4-34
As disclosed in Japanese Patent No. 9418, a method is known in which a thermoplastic resin having a norbornene skeleton is used as one of the objective lenses to prevent deterioration of optical characteristics due to lens deformation due to moisture absorption. Further, as described in Japanese Patent Application No. 5-113197 filed by the same applicant as the present application, the lens of the focus detection device is formed of a material having a small coefficient of linear expansion of water absorption (for example, a polyolefin resin), There is also known a method of preventing a decrease in focus detection performance due to a change in refractive index or a shape due to a change in humidity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
3−181908号公報に記載された方法では、蓋とし
て使用する光学部品が必要とされるため、確実に部品点
数の増加を招く。而も、可動群を装置内部に封じ込める
ことは、空気ポンプの効果により前記可動群の作動が円
滑に行われなくなるので、可動群毎に必ず蓋の役割をす
る光学部品を二点ずつ配置しなくてはならない。よっ
て、益々装置の構成部品点数の増加を招き、変倍部を含
む光学系への適用は実質上不可能になる。
However, in the method disclosed in Japanese Patent Laid-Open No. 3-181908, an optical component used as a lid is required, so that the number of components is surely increased. In addition, if the movable group is enclosed inside the device, the operation of the movable group will not be performed smoothly due to the effect of the air pump. Therefore, it is not necessary to arrange two optical parts that function as a lid for each movable group. must not. Therefore, the number of component parts of the apparatus is further increased, and application to an optical system including a variable power portion becomes substantially impossible.

【0004】又、特開平4−349418号公報及び本
願と同一出願人が出願中の特願平5−113197号明
細書では、吸湿による屈折率変化や形状変化が均質に発
生することを想定し、それによって影響を受けやすく元
来パワーを有するレンズ部品に低吸湿材料を用いる方法
が記載されているが、均質に変化が起こるのは吸湿が飽
和した状態であり、実使用される状況下においては、屈
折率はレンズの表面近傍と中心部とでは異なり、いわゆ
る不均質な分布が生じているはずである。この場合、元
来パワーを有しない光学部品にも屈折率の分布によるパ
ワーが発生することになる。そして、飽和して均質化し
てしまうと、ノンパワーに近づくことになる。しかしな
がら、このような過渡的な特性の変動を減らす方法は云
うに及ばず、こうした問題の所在についてさえ、上記何
れの先行例においても認識されていない。
Further, in Japanese Patent Application Laid-Open No. 4-349418 and Japanese Patent Application No. 5-113197 filed by the same applicant as the present application, it is assumed that a change in refractive index and a change in shape due to moisture absorption occur uniformly. , A method of using a low hygroscopic material for a lens component which is easily affected by it and originally has power is described, but it is in a saturated state of hygroscopicity that a uniform change occurs in a situation where it is actually used. The refractive index is different between the vicinity of the surface of the lens and the central part, and so-called inhomogeneous distribution should occur. In this case, power is generated due to the distribution of the refractive index even in an optical component that originally has no power. Then, when it is saturated and homogenized, it approaches non-power. However, not to mention a method for reducing such transient characteristic variation, even the location of such a problem is not recognized in any of the above-mentioned prior art examples.

【0005】そこで、上記のような従来技術の有する問
題点に鑑み、本発明は、光学系の構成部材の吸湿に伴う
過渡的な特性変動を軽減するために、前記部材を適切な
低吸湿有機材料で形成した低吸湿有機材料を用いたファ
インダー光学系を提供することを目的としている。
In view of the problems of the prior art as described above, the present invention provides an appropriate low hygroscopic organic material in order to reduce transient characteristic fluctuations due to moisture absorption of the constituent members of the optical system. An object is to provide a finder optical system using a low hygroscopic organic material formed of a material.

【0006】[0006]

【課題を解決するための手段及び作用】上記目的を達成
するため、本発明による低吸湿有機材料を用いたファイ
ンダー光学系は、被写体側より、対物レンズ系と、前記
対物レンズ系によって形成された被写体像を正立させる
像正立系と、前記像を観察者の眼球により観察できるよ
うにアイポイントへ導く接眼レンズから成る光学系にお
いて、前記光学系を低吸湿有機材料を用いた部材により
構成したことを特徴としている。更に、本発明の光学系
は、比較的中肉が厚く光軸に垂直な断面形状の縦横の長
さの比が相違するレンズ,比較的光路長が長く光軸に垂
直な断面形状の縦横の長さの比が異なるプリズム及び境
界面の一部がコーティング若しくは塗料等により被膜さ
れている光学部品が夫々低吸湿有機材料により形成され
ていることを特徴としている。
In order to achieve the above object, a finder optical system using a low hygroscopic organic material according to the present invention is formed by an objective lens system and the objective lens system from the object side. In an optical system including an image erecting system for erecting a subject image and an eyepiece for guiding the image to an eye point so that the image can be observed by an observer's eye, the optical system is composed of a member using a low hygroscopic organic material. It is characterized by having done. Further, the optical system of the present invention includes a lens having a relatively thick thickness and a sectional shape perpendicular to the optical axis having a different vertical / horizontal length ratio, and an optical system having a comparatively long optical path length and a sectional shape perpendicular to the optical axis. It is characterized in that prisms having different length ratios and optical parts in which a part of the boundary surface is coated or coated with paint or the like are made of a low hygroscopic organic material.

【0007】ところで、屈折率分布が光学部品のパワー
に与える影響は以下の通りである。 (1) 光軸方向の屈折率勾配は殆どパワーに影響を与
えない。 (2) 光軸と垂直方向との屈折率の勾配が大きい程、
パワーも大きくなる。 (3) 光軸と傾いた方向との屈折率勾配は、上記
(1)と(2)との間の状態の下でパワーへの影響度が
変化する。 (4) 光線の通過する媒質の厚みが大きい程、パワー
も大きくなる。 (5) 光軸に垂直で互いに直交する方向の屈折率勾配
が異なると、アジマスによりパワーが異なり、光軸上に
非点隔差が発生する。 更に、屈折率勾配が形成される状態においては、 (6) 光軸から外気と接する面までの距離が異なると
屈折率勾配が異なるということが云える。
The influence of the refractive index distribution on the power of optical components is as follows. (1) The refractive index gradient in the optical axis direction hardly affects the power. (2) The larger the gradient of the refractive index between the optical axis and the vertical direction,
The power also increases. (3) The degree of influence on the power of the refractive index gradient between the optical axis and the inclined direction changes under the condition between the above (1) and (2). (4) The power increases as the thickness of the medium through which the light ray passes increases. (5) If the refractive index gradients in the directions perpendicular to the optical axis and orthogonal to each other are different, the power is different due to azimuth, and astigmatic difference occurs on the optical axis. Further, in the state where the refractive index gradient is formed, (6) It can be said that the refractive index gradient is different if the distance from the optical axis to the surface in contact with the outside air is different.

【0008】従って、上記性質から推定して以下の形態
を有する光学部品について、屈折率分布に基づくパワー
の発生や中心でのアスの発生が顕著になると考えられ
る。 (イ) 上記(4)を根拠として、光軸に沿った距離の
長い光学部品。 (ロ) 上記(1)に従う入射面や(3)に従う反射面
といった光学面に対し、(2)に従う外側面の面積が無
視できない光学系。 (ハ) 上記(6)に従う光軸に垂直な断面の形状が等
方的なものから著しく外れる、例えば縦横の長さの比が
大きく異なる光学部品。 (ニ) 境界面の一部がコーティングや塗装で覆われて
いて吸湿に関与できる面積や方向に偏りが生じる部品。
Therefore, it is considered that the generation of power based on the refractive index distribution and the generation of astigmatism at the center become conspicuous in the optical component having the following form estimated from the above properties. (A) An optical component having a long distance along the optical axis based on the above (4). (B) An optical system in which the area of the outer surface according to (2) is not negligible with respect to the optical surface such as the incident surface according to (1) or the reflecting surface according to (3). (C) An optical component in which the shape of the cross section perpendicular to the optical axis according to (6) above is significantly deviated from isotropic, for example, the ratio of the length to the length is greatly different. (D) A part of the boundary surface is covered with coating or paint, and there is a deviation in the area or direction in which it can participate in moisture absorption.

【0009】従って、上記形態を有する光学部品に低吸
湿材料を用いることによって、吸湿により発生する過渡
的な光学特性の変化を軽減することができる。特に、前
記材料に有機材料を用いれば、光学系の成形が容易にな
り、又、光学系の製造工程における低コスト化及び光学
系の軽量化を同時に達成でき、高品質で使い易い光学系
を提供できる。
Therefore, by using a low hygroscopic material for the optical component having the above-described configuration, it is possible to reduce a transient change in optical characteristics caused by moisture absorption. In particular, if an organic material is used as the material, molding of the optical system can be facilitated, and cost reduction and weight reduction of the optical system can be achieved at the same time, and an optical system of high quality and easy to use can be obtained. Can be provided.

【0010】[0010]

【実施例】以下、図示した実施例に基づき本発明を詳細
に説明する。図1乃至3は、本発明の第一実施例を示し
ている。図1は、本実施例における光学系のレンズ構成
図である。図2は、図1に示した光学系の光軸に沿った
断面図であり、(a)は低倍率端,(b)は中間倍率,
(c)は高倍率端での状態を夫々示した図である。又、
図3は、本実施例の光学系の収差曲線図であり、(a)
は低倍率端,(b)は中間倍率,(c)は高倍率端での
状態を夫々示した図である。本実施例の光学系は、図1
に示したように、全体として正の屈折力を有する対物レ
ンズ系1と、像正立系として設けられた第一プリズム2
及び第二プリズム3と、接眼レンズ系4とから構成され
ている。又、第一プリズム2及び第二プリズム3は、光
路長が非常に長く縦横の長さの比が大きく異なってお
り、更に、低吸湿有機材料を用いて形成することによ
り、発生する過渡的な光学特性の変化を軽減することが
できる。更に、上記第一及び第二プリズム以外のレンズ
を比較的中肉が厚く縦横の長さの比が異なるように構成
し、且つ、低吸湿有機材料を用いて形成することで、吸
湿により発生する過渡的な光学特性の変化をより一層軽
減できる。
The present invention will be described in detail below with reference to the illustrated embodiments. 1 to 3 show a first embodiment of the present invention. FIG. 1 is a lens configuration diagram of an optical system in the present embodiment. 2 is a sectional view taken along the optical axis of the optical system shown in FIG. 1, where (a) is a low magnification end, (b) is an intermediate magnification,
(C) is a figure showing the state at the high magnification end, respectively. or,
FIG. 3 is an aberration curve diagram of the optical system of the present embodiment, (a)
FIG. 4A is a diagram showing a state at a low magnification end, FIG. 7B is a state at an intermediate magnification, and FIG. The optical system of this embodiment is shown in FIG.
, The objective lens system 1 having a positive refracting power as a whole and the first prism 2 provided as an image erecting system
And the second prism 3 and the eyepiece system 4. Further, the first prism 2 and the second prism 3 have very long optical path lengths and greatly differ in the ratio of the length and width, and further, when they are formed by using a low hygroscopic organic material, they are transiently generated. It is possible to reduce changes in optical characteristics. Further, the lenses other than the first and second prisms are configured to have a relatively medium thickness and different length / width ratios, and are formed by using a low hygroscopic organic material. It is possible to further reduce transient changes in optical characteristics.

【0011】以下、本実施例のデータを示す。 ファインダー倍率 0.40〜0.75〜1.43倍 視度(ディオプトリー) −0.5(diop) 視野角(2ω) 55.8〜29.6〜15.2° r1 =8.5460 d1 =1.200 n1 =1.58423 ν1 =30.49 r2 =5.3511 (非球面) d2 =2.623 r3 =-15.9103 d3 =1.200 n3 =1.58423 ν3 =30.49 r4 =-292.1150(非球面) d4 =17.1657(低倍率端),6.5974 (中間倍率) ,0.80
07 (高倍率端) r5 =15.5858(非球面) d5 =5.000 n5 =1.52540 ν5 =56.25
The data of this embodiment are shown below. Finder magnification 0.40 to 0.75 to 1.43 times Diopter (diopter) -0.5 (diop) Viewing angle (2ω) 55.8 to 29.6 to 15.2 ° r 1 = 8.5460 d 1 = 1.200 n 1 = 1.58423 ν 1 = 30.49 r 2 = 5.3511 (aspherical surface) d 2 = 2.623 r 3 = -15.9103 d 3 = 1.200 n 3 = 1.58423 ν 3 = 30.49 r 4 = -292.1150 (aspherical surface) d 4 = 17.1657 (Lower magnification end), 6.5974 (Middle magnification), 0.80
07 (High magnification end) r 5 = 15.5858 (aspherical surface) d 5 = 5.000 n 5 = 1.52540 ν 5 = 56.25

【0012】r6 =-9.4527 d6 =0.7959 (低倍率端) ,6.3260 (中間倍率) ,17.1
588(高倍率端) r7 =-74.3095 (非球面) d7 =28.000 n7 =1.52540 ν7 =56.25 r8 =∞ d8 =1.000 r9 =19.5732 d9 =26.500 n9 =1.52540 ν9 =56.25 r10=∞ d10=2.241 r11=18.6988 d11=2.800 n11=1.49241 ν11=57.66 r12=-23.6975 (非球面) d12=20.205 r13 (アイポイント)
R 6 = -9.4527 d 6 = 0.7959 (low magnification end), 6.3260 (intermediate magnification), 17.1
588 (high magnification end) r 7 = -74.3095 (aspherical) d 7 = 28.000 n 7 = 1.52540 ν 7 = 56.25 r 8 = ∞ d 8 = 1.000 r 9 = 19.5732 d 9 = 26.500 n 9 = 1.52540 ν 9 = 56.25 r 10 = ∞ d 10 = 2.241 r 11 = 18.6988 d 11 = 2.800 n 11 = 1.49241 ν 11 = 57.66 r 12 = -23.6975 (aspheric) d 12 = 20.205 r 13 (eye point)

【0013】非球面係数 第2面 P=1.0000 , E= 0.23427×10-3, F= 0.97945×10-5, G= 0.10076×10-6 第4面 P=1.0000 , E=-0.49994×10-3, F=-0.10933×10-4, G= 0.10319×10-5 第5面 P=1.0000 , E=-0.45282×10-3, F= 0.31163×10-5, G= 0.49309×10-6 第7面 P=1.0000 , E=-0.38875×10-4, F= 0.22624×10-5, G=-0.30842×10-6 第12面 P=1.0000 , E= 0.71235×10-4, F=-0.41488×10-6, G= 0.64323×10-8 [0013] aspherical coefficients second surface P = 1.0000, E = 0.23427 × 10 -3, F = 0.97945 × 10 -5, G = 0.10076 × 10 -6 fourth surface P = 1.0000, E = -0.49994 × 10 - 3 , F = -0.109 33 x 10 -4 , G = 0.10319 x 10 -5 5th surface P = 1.0000, E = -0.45282 x 10 -3 , F = 0.31163 x 10 -5 , G = 0.49309 x 10 -6 number 7th surface P = 1.0000, E = -0.38875 × 10 -4 , F = 0.22624 × 10 -5 , G = -0.30842 × 10 -6 12th surface P = 1.0000, E = 0.71235 × 10 -4 , F = -0.41488 × 10 -6 , G = 0.64323 × 10 -8

【0014】図4乃至6は、本発明の第二実施例を示し
ている。図4は、本実施例の光学系のレンズ構成図であ
る。図5は、図4に示した光学系の光軸に沿った断面図
であり、(a)は低倍率端,(b)は中間倍率,(c)
は高倍率端での状態を夫々示した図である。又、図6
は、本実施例の光学系の収差曲線図であり、(a)は低
倍率端,(b)は中間倍率,(c)は高倍率端での状態
を夫々示した図である。本実施例の光学系は、図4に示
したように、正の対物レンズ系1と、像反転のためのダ
ハミラー5及び第一プリズム2と、接眼レンズ系4とか
ら構成されている。又、第一プリズム2は、光路長が非
常に長く縦横の長さの比が大きく異なっている。更に、
第一プリズム2を低吸湿材料によって形成することによ
り、吸湿のため発生する過渡的な光学特性の変化を軽減
することができる。
4 to 6 show a second embodiment of the present invention. FIG. 4 is a lens configuration diagram of the optical system of the present embodiment. 5 is a sectional view taken along the optical axis of the optical system shown in FIG. 4, where (a) is a low magnification end, (b) is an intermediate magnification, and (c).
[Fig. 3] is a diagram showing states at a high magnification end, respectively. Also, FIG.
[Fig. 4] is an aberration curve diagram of the optical system of the present embodiment, where (a) is a low magnification end, (b) is an intermediate magnification, and (c) is a diagram at a high magnification end. As shown in FIG. 4, the optical system of the present embodiment is composed of a positive objective lens system 1, a roof mirror 5 and a first prism 2 for image inversion, and an eyepiece lens system 4. In addition, the first prism 2 has a very long optical path length, and the ratio of the length to the length is greatly different. Furthermore,
By forming the first prism 2 with a low hygroscopic material, it is possible to reduce a transitional change in optical characteristics caused by moisture absorption.

【0015】以下、本実施例のデータを示す。 ファインダー倍率 0.35〜0.46〜0.64倍 視度(ディオプトリー) −0.5(diop) 視野角(2ω) 55.5〜41.6〜29.6° r1 =-23.4731 d1 =1.000 n1 =1.58423 ν1 =30.49 r2 =4.8006 (非球面) d2 =8.0275 (低倍率端) ,5.8273 (中間倍率) ,3.85
81 (高倍率端) r3 =6.0446 (非球面) d3 =2.965 n3 =1.49241 ν3 =57.66 r4 =-6.1606 (非球面) d4 =0.9954 (低倍率端),2.5452 (中間倍率) ,5.08
19 (高倍率端) r5 =16.3537 d5 =1.000 n5 =1.58423 ν5 =30.49
The data of this embodiment are shown below. Finder magnification 0.35 to 0.46 to 0.64 times Diopter (diopter) -0.5 (diop) Viewing angle (2ω) 55.5 to 41.6 to 29.6 ° r 1 = -23.4731 d 1 = 1.000 n 1 = 1.58423 ν 1 = 30.49 r 2 = 4.8006 (aspherical surface) d 2 = 8.0275 (low magnification end), 5.8273 (intermediate magnification), 3.85
81 (high magnification end) r 3 = 6.0446 (aspheric surface) d 3 = 2.965 n 3 = 1.49241 ν 3 = 57.66 r 4 = -6.1606 ( aspherical) d 4 = 0.9954 (low magnification end), 2.5452 (intermediate magnification) , 5.08
19 (High magnification end) r 5 = 16.3537 d 5 = 1.000 n 5 = 1.58423 ν 5 = 30.49

【0016】r6 =6.0935 (非球面) d6 =14.000 r7 =11.8939 d7 =2.806 n7 =1.49241 ν7 =57.66 r8 =-22.1551 d8 =1.000 r9 =∞ d9 =32.500 n9 =1.52540 ν9 =56.25 r10=∞ d10=1.971 r11=17.2118(非球面) d11=2.004 n11=1.49241 ν11=57.66 r12=-36.2612 d12=15.000r13 (アイポイント)R 6 = 6.0935 (aspherical surface) d 6 = 14.000 r 7 = 11.8939 d 7 = 2.806 n 7 = 1.49241 ν 7 = 57.66 r 8 = -22.1551 d 8 = 1.000 r 9 = ∞ d 9 = 32.500 n 9 = 1.52540 ν 9 = 56.25 r 10 = ∞ d 10 = 1.971 r 11 = 17.2118 (aspherical surface) d 11 = 2.004 n 11 = 1.49241 ν 11 = 57.66 r 12 = -36.2612 d 12 = 15.000 r 13 (eye point)

【0017】非球面係数 第2面 P=1.0000 , E=-0.14081×10-2, F= 0.16586×10-3, G=-0.11584×10-4 第3面 P=1.0000 , E=-0.20058×10-2, F= 0.11270×10-4, G=-0.21081×10-5 第6面 P=1.0000 , E= 0.91304×10-3, F= 0.25504×10-4, G=-0.34333×10-5 第11面 P=1.0000 , E=-0.90149×10-4, F= 0.33791×10-5, G=-0.76166×10-7 Aspheric surface coefficient Second surface P = 1.0000, E = -0.14081 × 10 -2 , F = 0.16586 × 10 -3 , G = -0.11584 × 10 -4 Third surface P = 1.0000, E = -0.20058 × 10 -2, F = 0.11270 × 10 -4, G = -0.21081 × 10 -5 sixth surface P = 1.0000, E = 0.91304 × 10 -3, F = 0.25504 × 10 -4, G = -0.34333 × 10 - 5 11th surface P = 1.0000, E = -0.90149 × 10 -4 , F = 0.37991 × 10 -5 , G = -0.76166 × 10 -7

【0018】図7乃至11は、本発明の第三実施例を示
している。図7は、本実施例の光学系のレンズ構成図で
あり、(a)は通常状態時の構成図,(b)はパノラマ
状態時の構成図である。図8は、図7(a)に示した光
学系の光軸に沿った断面図である。図9は、図7(b)
に示した光学系の光軸に沿った断面図である。図10
は、本実施例における光学系の通常状態時の収差曲線図
であり、(a)は低倍率端,(b)は中間倍率,(c)
は高倍率端での状態を夫々示した図である。図11は、
本実施例における光学系のパノラマ状態時の収差曲線図
であり、(a)は低倍率端,(b)は中間倍率,(c)
は高倍率端での状態を夫々示した図である。
7 to 11 show a third embodiment of the present invention. 7A and 7B are lens configuration diagrams of the optical system of the present embodiment, FIG. 7A is a configuration diagram in a normal state, and FIG. 7B is a configuration diagram in a panoramic state. FIG. 8 is a sectional view taken along the optical axis of the optical system shown in FIG. FIG. 9 shows FIG. 7 (b).
2 is a cross-sectional view of the optical system shown in FIG. Figure 10
FIG. 4A is an aberration curve diagram of an optical system in a normal state in the present embodiment, where (a) is a low magnification end, (b) is an intermediate magnification, and (c).
[Fig. 3] is a diagram showing states at a high magnification end, respectively. FIG. 11 shows
FIG. 6 is an aberration curve diagram of the optical system in a panoramic state in the present embodiment, where (a) is a low magnification end, (b) is an intermediate magnification, and (c).
[Fig. 3] is a diagram showing states at a high magnification end, respectively.

【0019】本実施例の光学系は、まず通常状態では、
図7(a)に示したように、正の対物レンズ系1と、像
反転のための第一プリズム2及び第二プリズム3と、接
眼レンズ系4とから構成されている。又、パノラマ状態
では、同図(b)に示したように、第二プリズム3と接
眼レンズ系4との間に倍率変換用レンズ6を配置して倍
率を高くしている他は、同図(a)に示した光学系と同
様に構成されている。又、第一プリズム2及び第二プリ
ズム3は光路長が長く縦横の長さの比が異なるように構
成され、倍率変換用レンズ6は、中肉が厚く縦横の長さ
の比が異なるように構成されている。更に、第一プリズ
ム2,第二プリズム3及び倍率変換用レンズ6を夫々低
吸湿有機材料によって形成することにより、吸湿のため
発生する過渡的な光学特性の変化を軽減することができ
る。
In the optical system of this embodiment, first, in a normal state,
As shown in FIG. 7A, it is composed of a positive objective lens system 1, a first prism 2 and a second prism 3 for image inversion, and an eyepiece lens system 4. Further, in the panoramic state, as shown in FIG. 2B, a magnification conversion lens 6 is arranged between the second prism 3 and the eyepiece lens system 4 to increase the magnification. It has the same configuration as the optical system shown in FIG. Further, the first prism 2 and the second prism 3 are configured such that the optical path length is long and the length-width ratio is different, and the magnification conversion lens 6 is made thicker and the length-width ratio is different. It is configured. Further, by forming each of the first prism 2, the second prism 3 and the magnification conversion lens 6 with a low hygroscopic organic material, it is possible to reduce a transitional change in optical characteristics caused by moisture absorption.

【0020】以下、本実施例のデータを示す。 (通常状態) ファインダー倍率 0.33〜0.54〜0.87倍 視度(ディオプトリー) −0.5(diop) 視野角(2ω) 34.22〜21.23〜13.10
5° 視野比 36:24 r1 =20.4672 d1 =1.000 n1 =1.58423 ν1 =30.49 r2 =4.3097 (非球面) d2 =10.4731(低倍率端) ,2.6498 (中間倍率) ,2.52
93 (高倍率端) r3 =6.8967 (非球面) d3 =1.838 n3 =1.49241 ν3 =57.66 r4 =10.1910 d4 =2.5589 (低倍率端),5.8290 (中間倍率) ,0.98
66 (高倍率端) r5 =9.2564 (非球面) d5 =3.160 n5 =1.49241 ν5 =57.66
The data of this embodiment are shown below. (Normal state) Finder magnification 0.33 to 0.54 to 0.87 times Diopter (diopter) -0.5 (diop) Viewing angle (2ω) 34.22 to 21.23 to 13.10
5 ° Field ratio 36:24 r 1 = 20.4672 d 1 = 1.000 n 1 = 1.58423 ν 1 = 30.49 r 2 = 4.3097 (aspherical surface) d 2 = 10.4731 (low magnification end), 2.6498 (intermediate magnification), 2.52
93 (high magnification end) r 3 = 6.8967 (aspherical surface) d 3 = 1.838 n 3 = 1.49241 ν 3 = 57.66 r 4 = 10.1910 d 4 = 2.5589 (low magnification end), 5.8290 (intermediate magnification), 0.98
66 (High magnification end) r 5 = 9.2564 (aspherical surface) d 5 = 3.160 n 5 = 1.49241 ν 5 = 57.66

【0021】r6 =-9.9812 d6 =0.8000 (低倍率端) ,5.3531 (中間倍率) ,10.3
162(高倍率端) r7 =-43.0721 (非球面) d7 =19.470 n7 =1.52540 ν7 =56.25 r8 =-11.8630 d8 =1.000 r9 =∞ d9 =0.0000 r10=∞ d10=16.047 n10=1.52540 ν10=56.25 r11=∞ d11=9.500 r12=15.9091(非球面) d12=3.039 n12=1.49241 ν12=57.66 r13=-27.6806 d13=18.786 r14 (アイポイント)
R 6 = -9.9812 d 6 = 0.8000 (low magnification end), 5.3531 (intermediate magnification), 10.3
162 (high magnification end) r 7 = -43.0721 (aspherical surface) d 7 = 19.470 n 7 = 1.52540 ν 7 = 56.25 r 8 = -11.8630 d 8 = 1.000 r 9 = ∞ d 9 = 0.0000 r 10 = ∞ d 10 = 16.047 n 10 = 1.52540 ν 10 = 56.25 r 11 = ∞ d 11 = 9.500 r 12 = 15.9091 (aspherical surface) d 12 = 3.039 n 12 = 1.49241 ν 12 = 57.66 r 13 = -27.6806 d 13 = 18.786 r 14 ( (Eye point)

【0022】非球面係数 第2面 P=1.0000 E=-0.10844×10-2, F= 0.50237×10-4, G=-0.93916×10-5, H= 0.21804×10-6 第3面 P=1.0000 E= 0.73203×10-4, F=-0.45235×10-4, G= 0.38861×10-5, H=-0.14219×10-6 第5面 P=1.0000 E=-0.50796×10-3, F= 0.37689×10-4, G=-0.35484×10-5, H= 0.12772×10-6 第7面 P=1.0000 E=-0.79767×10-3, F= 0.10149×10-3, G=-0.34151×10-5, H= 0.19633×10-6 第12面 P=1.0000 E=-0.11430×10-3, F= 0.13197×10-5, G=-0.33726×10-7, H=-0.43895×10-9 Aspheric surface coefficient Second surface P = 1.0000 E = -0.10844 × 10 -2 , F = 0.50237 × 10 -4 , G = -0.93916 × 10 -5 , H = 0.21804 × 10 -6 Third surface P = 1.0000 E = 0.73203 x 10 -4 , F = -0.45235 x 10 -4 , G = 0.38861 x 10 -5 , H = -0.14219 x 10 -6 5th surface P = 1.0000 E = -0.50796 x 10 -3 , F = 0.37689 x 10 -4 , G = -0.35484 x 10 -5 , H = 0.12772 x 10 -6 7th surface P = 1.0000 E = -0.79767 x 10 -3 , F = 0.10149 x 10 -3 , G = -0.34151 × 10 -5 , H = 0.19633 × 10 -6 12th surface P = 1.0000 E = -0.11430 × 10 -3 , F = 0.13197 × 10 -5 , G = -0.33726 × 10 -7 , H = -0.43895 × 10 -9

【0023】(パノラマ状態) ファインダー倍率 0.40〜0.65〜1.04倍 視度(ディオプトリー) −0.5(diop) 視野角(2ω) 29.85〜18.58〜11.53
° 視野比 36:13 r1 =20.4672 d1 =1.000 n1 =1.58423 ν1 =30.49 r2 =4.3097 (非球面) d2 =10.4731(低倍率端) ,2.6498 (中間倍率) ,2.52
93 (高倍率端) r3 =6.8967 (非球面) d3 =1.838 n3 =1.49241 ν3 =57.66 r4 =10.1910 d4 =2.5589 (低倍率端),5.8290 (中間倍率) ,0.98
66 (高倍率端) r5 =9.2564 (非球面) d5 =3.160 n5 =1.49241 ν5 =57.66 r6 =-9.9812 d6 =0.8000 (低倍率端) ,5.3531 (中間倍率) ,10.3
162(高倍率端) r7 =-43.0721 (非球面) d7 =19.470 n7 =1.52540 ν7 =56.25
(Panorama state) Finder magnification 0.40 to 0.65 to 1.04 times Diopter (diopter) -0.5 (diop) Viewing angle (2ω) 29.85 to 18.58 to 11.53
° Field ratio 36:13 r 1 = 20.4672 d 1 = 1.000 n 1 = 1.58423 ν 1 = 30.49 r 2 = 4.3097 (aspherical surface) d 2 = 10.4731 (low magnification end), 2.6498 (intermediate magnification), 2.52
93 (high magnification end) r 3 = 6.8967 (aspherical surface) d 3 = 1.838 n 3 = 1.49241 ν 3 = 57.66 r 4 = 10.1910 d 4 = 2.5589 (low magnification end), 5.8290 (intermediate magnification), 0.98
66 (high magnification end) r 5 = 9.2564 (aspherical surface) d 5 = 3.160 n 5 = 1.49 241 ν 5 = 57.66 r 6 = -9.9812 d 6 = 0.8000 (low magnification end), 5.3531 (intermediate magnification), 10.3
162 (High magnification end) r 7 = -43.0721 (Aspherical surface) d 7 = 19.470 n 7 = 1.52540 ν 7 = 56.25

【0024】r8 =-11.8630 d8 =1.000 r9 =∞ d9 =0.000 r10=∞ d10=16.047 n10=1.52540 ν10=56.25 r11=∞ d11=1.000 r12=46.2290 d12=7.200 n12=1.52540 ν12=56.25 r13=-244.7050 d13=1.300 r14=15.9091(非球面) d14=3.039 n14=1.49241 ν14=57.66 r15=-27.6806 d15=17.286 r16 (アイポイント)R 8 = -11.8630 d 8 = 1.000 r 9 = ∞ d 9 = 0.000 r 10 = ∞ d 10 = 16.047 n 10 = 1.52540 ν 10 = 56.25 r 11 = ∞ d 11 = 1.000 r 12 = 46.2290 d 12 = 7.200 n 12 = 1.52540 ν 12 = 56.25 r 13 = -244.7050 d 13 = 1.300 r 14 = 15.9091 ( aspherical) d 14 = 3.039 n 14 = 1.49241 ν 14 = 57.66 r 15 = -27.6806 d 15 = 17.286 r 16 (Eye point)

【0025】非球面係数 第2面 P=1.0000 E=-0.10844×10-2, F= 0.50237×10-4, G=-0.93916×10-5, H= 0.21804×10-6 第3面 P=1.0000 E= 0.73203×10-4, F=-0.45235×10-4, G= 0.38861×10-5, H=-0.14219×10-6 第5面 P=1.0000 E=-0.50796×10-3, F= 0.37689×10-4, G=-0.35484×10-5, H= 0.12772×10-6 第7面 P=1.0000 E=-0.79767×10-3, F= 0.10149×10-3, G=-0.34151×10-5, H= 0.19633×10-6 第14面 P=1.0000 E=-0.11430×10-3, F= 0.13197×10-5, G=-0.33726×10-7, H=-0.43895×10-9 Aspheric coefficient 2nd surface P = 1.0000 E = -0.10844 × 10 -2 , F = 0.50237 × 10 -4 , G = -0.93916 × 10 -5 , H = 0.21804 × 10 -6 3rd surface P = 1.0000 E = 0.73203 x 10 -4 , F = -0.45235 x 10 -4 , G = 0.38861 x 10 -5 , H = -0.14219 x 10 -6 5th surface P = 1.0000 E = -0.50796 x 10 -3 , F = 0.37689 x 10 -4 , G = -0.35484 x 10 -5 , H = 0.12772 x 10 -6 7th surface P = 1.0000 E = -0.79767 x 10 -3 , F = 0.10149 x 10 -3 , G = -0.34151 × 10 -5 , H = 0.19633 × 10 -6 14th surface P = 1.0000 E = -0.11430 × 10 -3 , F = 0.13197 × 10 -5 , G = -0.33726 × 10 -7 , H = -0.43895 × 10 -9

【0026】図12乃至14は、本発明の第四実施例を
示している。図12は、本実施例の光学系のレンズ構成
図である。図13は、図12に示した光学系の光軸に沿
った断面図である。図14は、本実施例の光学系の収差
曲線図である。本実施例の光学系は、図12に示したよ
うに、正の対物レンズ系1と、像反転のための第一プリ
ズム2及び第二プリズム3と、接眼レンズ系4とから構
成されている。又、第一プリズム2及び第二プリズム3
は、夫々光路長が長く縦横の長さの比が異なるように構
成されている。更に、第一プリズム2及び第二プリズム
3を低吸湿有機材料を用いて形成することにより、吸湿
のため発生する過渡的な光学特性の変化を軽減すること
ができる。尚、本実施例の光学系は、双眼鏡を構成する
ものである。
12 to 14 show a fourth embodiment of the present invention. FIG. 12 is a lens configuration diagram of the optical system of the present embodiment. FIG. 13 is a sectional view taken along the optical axis of the optical system shown in FIG. FIG. 14 is an aberration curve diagram of the optical system of this example. As shown in FIG. 12, the optical system of the present embodiment is composed of a positive objective lens system 1, a first prism 2 and a second prism 3 for image reversal, and an eyepiece lens system 4. . Also, the first prism 2 and the second prism 3
Have long optical path lengths and different vertical-horizontal length ratios. Furthermore, by forming the first prism 2 and the second prism 3 using a low hygroscopic organic material, it is possible to reduce a transitional change in optical characteristics caused by moisture absorption. The optical system of this embodiment constitutes binoculars.

【0027】以下、本実施例のデータを示す。 視野角(2ω) 26.3° r1 =43.6800 d1 =5.000 n1 =1.51633 ν1 =64.15 r2 =-39.7600 d2 =2.2000 n2 =1.62004 ν2 =36.25 r3 =-287.7600 d3 =37.5886 r4 =∞ d4 =36.6200 n4 =1.52540 ν4 =56.25 r5 =∞ d5 =1.000The data of this embodiment are shown below. Viewing angle (2ω) 26.3 ° r 1 = 43.6800 d 1 = 5.000 n 1 = 1.51633 ν 1 = 64.15 r 2 = -39.7600 d 2 = 2.2000 n 2 = 1.62004 ν 2 = 36.25 r 3 = -287.7600 d 3 = 37.5886 r 4 = ∞ d 4 = 36.6200 n 4 = 1.52540 ν 4 = 56.25 r 5 = ∞ d 5 = 1.000

【0028】r6 =∞ d6 =26.0000 n6 =1.52540 ν6 =56.25 r7 =∞ d7 =12.7600 r8 =66.8500 d8 =1.2000 n8 =1.80518 ν8 =25.43 r9 =9.3700 d9 =8.1000 n9 =1.58913 ν9 =61.18 r10=-13.1800 d10=0.2300 r11=10.4500 d11=5.0000 n11=1.51633 ν11=64.15 r12=-471.5600 d12=11.0000 r13 (アイポイント)R 6 = ∞ d 6 = 26.0000 n 6 = 1.52540 ν 6 = 56.25 r 7 = ∞ d 7 = 12.7600 r 8 = 66.8 500 d 8 = 1.2000 n 8 = 1.80518 ν 8 = 25.43 r 9 = 9.3700 d 9 = 8.1000 n 9 = 1.58913 ν 9 = 61.18 r 10 = -13.1800 d 10 = 0.2300 r 11 = 10.4500 d 11 = 5.0000 n 11 = 1.51633 ν 11 = 64.15 r 12 = -471.5600 d 12 = 11.0000 r 13 (eye point)

【0029】但し、上記各実施例において、r1
2 ,・・・・は各レンズ面の曲率半径、d1 ,d2
・・・・は各レンズの肉厚又は間隔、n1 ,n2 ,・・
・・は各レンズの屈折率、ν1 ,ν2 ・・・・は各レン
ズのアッベ数である。尚、上記各実施例における非球面
形状は、光軸方向の座標をX,光軸に直交する方向の座
標をYとしたとき、次式によって示される。 X=(Y2 /r)/〔1+{1−P(Y/r)2 1/2 〕 +EY4 +FY6 +GY8 +HY10 但し、rは光軸曲率半径、Pは円錐係数、E,F,G,
Hは夫々非球面係数である。
However, in each of the above embodiments, r 1 ,
r 2 , ..., Radius of curvature of each lens surface, d 1 , d 2 ,
.... wall thickness or spacing of each lens, n 1, n 2, ··
··· is the refractive index of each lens, ν 1 , ν 2 ··· is the Abbe number of each lens. The aspherical shape in each of the above-described embodiments is represented by the following equation, where X is the coordinate in the optical axis direction and Y is the coordinate in the direction orthogonal to the optical axis. X = (Y 2 / r) / [1+ {1-P (Y / r) 2} 1/2 ] + EY 4 + FY 6 + GY 8 + HY 10 where, r is the optical axis of curvature radius, P is a conical coefficient, E, F, G,
H is an aspherical coefficient, respectively.

【0030】[0030]

【発明の効果】上述のように、本発明の低吸湿有機材料
を用いたファインダー光学系は、当該光学系の各構成部
品が低吸湿有機材料によって形成されているため、前記
光学部品の吸湿による過渡的な光学特性の変化を防止で
きるという実用上優れた利点を有する。
As described above, in the finder optical system using the low hygroscopic organic material of the present invention, since each component of the optical system is formed of the low hygroscopic organic material, it is possible that the optical parts absorb moisture. It has an advantage in practical use that it can prevent a transitional change in optical characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第一実施例の光学系のレンズ構成
図である。
FIG. 1 is a lens configuration diagram of an optical system of a first embodiment according to the present invention.

【図2】図1に示した光学系の光軸方向に沿った断面図
である。
2 is a sectional view taken along the optical axis direction of the optical system shown in FIG.

【図3】本発明による第一実施例の光学系の収差曲線図
であり、(a)は低倍率端,(b)は中間倍率,(c)
は高倍率端での状態を夫々示した図である。
FIG. 3 is an aberration curve diagram of the optical system of the first example according to the present invention, where (a) is a low magnification end, (b) is an intermediate magnification, and (c).
[Fig. 3] is a diagram showing states at a high magnification end, respectively.

【図4】本発明による第二実施例の光学系のレンズ構成
図である。
FIG. 4 is a lens configuration diagram of an optical system of a second embodiment according to the present invention.

【図5】図4に示した光学系の光軸方向に沿った断面図
である。
5 is a sectional view taken along the optical axis direction of the optical system shown in FIG.

【図6】本発明による第二実施例の光学系収差曲線図で
あり、(a)は低倍率端,(b)は中間倍率,(c)は
高倍率端での状態を夫々示した図である。
6A and 6B are optical system aberration curve diagrams of the second embodiment according to the present invention, in which FIG. 6A shows a state at a low magnification end, FIG. 6B shows an intermediate magnification, and FIG. 6C shows a state at a high magnification end. Is.

【図7】本発明による第三実施例の光学系のレンズ構成
図であり、(a)は通常状態時の構成図,(b)はパノ
ラマ状態時の構成図である。
7A and 7B are lens configuration diagrams of an optical system of a third embodiment according to the present invention, FIG. 7A is a configuration diagram in a normal state, and FIG. 7B is a configuration diagram in a panoramic state.

【図8】図7(a)に示した光学系の光軸方向に沿った
断面図である。
8 is a sectional view taken along the optical axis direction of the optical system shown in FIG.

【図9】図7(b)に示した光学系の光軸方向に沿った
断面図である。
9 is a sectional view taken along the optical axis direction of the optical system shown in FIG. 7 (b).

【図10】本発明による第三実施例の光学系(通常状態
時)の収差曲線図であり、(a)は低倍率端,(b)は
中間倍率,(c)は高倍率端での状態を夫々示した図で
ある。
FIG. 10 is an aberration curve diagram of an optical system (in a normal state) of the third example according to the present invention, in which (a) is a low magnification end, (b) is an intermediate magnification, and (c) is a high magnification end. It is the figure which showed each state.

【図11】本発明による第三実施例の光学系(パノラマ
状態時)の収差曲線図であり、(a)は低倍率端,
(b)は中間倍率,(c)は高倍率端での状態を夫々示
した図である。
FIG. 11 is an aberration curve diagram of an optical system (in a panoramic state) according to the third embodiment of the present invention, in which (a) is a low magnification end,
(B) is a diagram showing an intermediate magnification, and (c) is a diagram showing a state at a high magnification end, respectively.

【図12】本発明による第四実施例の光学系のレンズ構
成図である。
FIG. 12 is a lens configuration diagram of an optical system of a fourth example according to the present invention.

【図13】図12に示した光学系の光軸方向に沿った断
面図である。
13 is a cross-sectional view taken along the optical axis direction of the optical system shown in FIG.

【図14】本発明による第三実施例の光学系の収差曲線
図である。
FIG. 14 is an aberration curve diagram for an optical system according to Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 対物レンズ系 2 第一プリズム 3 第二プリズム 4 接眼レンズ系 5 ダハミラー 6 倍率変換用レンズ L 光軸 1 Objective Lens System 2 First Prism 3 Second Prism 4 Eyepiece System 5 Roof Mirror 6 Magnification Conversion Lens L Optical Axis

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年11月15日[Submission date] November 15, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】ところで、屈折率分布が光学部品のパワー
に与える影響は以下の通りである。 (1) 光軸方向の屈折率勾配は殆どパワーに影響を与
えない。 (2) 光軸と垂直な方向へ向かって屈折率の勾配が大
きい程、パワーも大きくなる。 (3) 光軸と傾いた方向へ向かって屈折率勾配は、上
記(1)と(2)との間の状態の下でパワーへの影響度
が変化する。 (4) 光線の通過する媒質の厚みが大きい程、パワー
も大きくなる。 (5) 光軸に垂直で互いに直交する方向の屈折率勾配
が異なると、アジマスによりパワーが異なり、光軸上に
非点隔差が発生する。 更に、屈折率勾配が形成される状態においては、 (6) 光軸から外気と接する面までの距離が異なると
屈折率勾配が異なるということが云える。
The influence of the refractive index distribution on the power of optical components is as follows. (1) The refractive index gradient in the optical axis direction hardly affects the power. (2) The power increases as the gradient of the refractive index increases in the direction perpendicular to the optical axis. (3) The degree of influence on the power of the refractive index gradient in the direction inclined with respect to the optical axis changes under the condition between the above (1) and (2). (4) The power increases as the thickness of the medium through which the light ray passes increases. (5) If the refractive index gradients in the directions perpendicular to the optical axis and orthogonal to each other are different, the power is different due to azimuth, and astigmatic difference occurs on the optical axis. Further, in the state where the refractive index gradient is formed, (6) It can be said that the refractive index gradient is different if the distance from the optical axis to the surface in contact with the outside air is different.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】従って、上記性質から推定して以下の形態
を有する光学部品について、屈折率分布に基づくパワー
の発生や中心でのアスの発生が顕著になると考えられ
る。 (イ) 上記(4)を根拠として、光軸に沿った距離の
長い光学部品。 (ロ) 上記(1)に従う入射出面や(3)に従う反射
面といった光学面に対し、(2)に示したような外側面
の面積が無視できない光学系。 (ハ) 上記(6)に従う光軸に垂直な断面の形状が等
方的なものから著しく外れる、例えば縦横の長さの比が
大きく異なる光学部品。 (ニ) 境界面の一部がコーティングや塗装で覆われて
いて吸湿に関与できる面積や方向に偏りが生じる部品。
Therefore, it is considered that the generation of power based on the refractive index distribution and the generation of astigmatism at the center become conspicuous in the optical component having the following form estimated from the above properties. (A) An optical component having a long distance along the optical axis based on the above (4). (B) An optical system in which the area of the outer side surface as shown in (2) is not negligible with respect to the optical surface such as the entrance / exit surface according to (1) and the reflection surface according to (3). (C) An optical component in which the shape of the cross section perpendicular to the optical axis according to (6) above is significantly deviated from isotropic, for example, the ratio of the length to the length is greatly different. (D) A part of the boundary surface is covered with coating or paint, and there is a deviation in the area or direction in which it can participate in moisture absorption.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】r6 =-9.9812 d6 =0.8000 (低倍率端) ,5.3531 (中間倍率) ,10.3
162(高倍率端) r7 =-43.0721 (非球面) d7 =19.470 n7 =1.52540 ν7 =56.25 r8 =-11.8630 d8 =1.000 r9 =∞(視野枠) d9 =0.0000 r10=∞ d10=16.047 n10=1.52540 ν10=56.25 r11=∞ d11=9.500 r12=15.9091(非球面) d12=3.039 n12=1.49241 ν12=57.66 r13=-27.6806 d13=18.786 r14 (アイポイント)
R 6 = -9.9812 d 6 = 0.8000 (low magnification end), 5.3531 (intermediate magnification), 10.3
162 (high magnification end) r 7 = -43.0721 (aspherical surface) d 7 = 19.470 n 7 = 1.52540 v 7 = 56.25 r 8 = -11.8630 d 8 = 1.000 r 9 = ∞ (field frame) d 9 = 0.0000 r 10 = ∞ d 10 = 16.047 n 10 = 1.52540 ν 10 = 56.25 r 11 = ∞ d 11 = 9.500 r 12 = 15.9091 (aspherical surface) d 12 = 3.039 n 12 = 1.49241 ν 12 = 57.66 r 13 = -27.6806 d 13 = 18.786 r 14 (eyepoint)

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】r8 =-11.8630 d8 =1.000 r9 =∞(視野枠) d9 =0.000 r10=∞ d10=16.047 n10=1.52540 ν10=56.25 r11=∞ d11=1.000 r12=46.2290 d12=7.200 n12=1.52540 ν12=56.25 r13=-244.7050 d13=1.300 r14=15.9091(非球面) d14=3.039 n14=1.49241 ν14=57.66 r15=-27.6806 d15=17.286 r16 (アイポイント) ─────────────────────────────────────────────────────
R 8 = -11.8630 d 8 = 1.000 r 9 = ∞ (field frame) d 9 = 0.000 r 10 = ∞ d 10 = 16.047 n 10 = 1.52540 ν 10 = 56.25 r 11 = ∞ d 11 = 1.000 r 12 = 46.2290 d 12 = 7.200 n 12 = 1.52540 ν 12 = 56.25 r 13 = -244.7050 d 13 = 1.300 r 14 = 15.9091 ( aspherical) d 14 = 3.039 n 14 = 1.49241 ν 14 = 57.66 r 15 = -27.6806 d 15 = 17.286 r 16 (eyepoint) ─────────────────────────────────────────── ───────────

【手続補正書】[Procedure amendment]

【提出日】平成6年11月15日[Submission date] November 15, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諸岡 優 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yu Morooka 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被写体側より、対物レンズ系と、前記対
物レンズ系によって形成された被写体像を正立させる像
正立系と、前記像を観察者の眼球により観察できるよう
にアイポイントへ導く接眼レンズ系から成る光学系にお
いて、 前記光学系が低吸湿有機材料を用いた部材により構成さ
れていることを特徴とする低吸湿有機材料を用いたファ
インダー光学系。
1. From an object side, an objective lens system, an image erecting system for erecting an object image formed by the objective lens system, and an image erecting system for guiding the image to an eye point so that an observer's eye can observe the image. An optical system comprising an eyepiece lens system, wherein the optical system is composed of a member using a low hygroscopic organic material, and a finder optical system using a low hygroscopic organic material.
【請求項2】 比較的中肉が厚く光軸に垂直な断面形状
の縦横の長さの比が相違し且つ低吸湿有機材料により形
成されたレンズが設けられていることを特徴とする請求
項1に記載の低吸湿有機材料を用いたファインダー光学
系。
2. A lens, which is relatively thick and has a different ratio of length and width of a cross-sectional shape perpendicular to the optical axis and which is formed of a low hygroscopic organic material, is provided. A finder optical system using the low hygroscopic organic material described in 1.
【請求項3】 比較的光路長が長く光軸に垂直な断面形
状の縦横の長さの比が異なり且つ低吸湿有機材料により
形成されたプリズムが設けられていることを特徴とする
請求項1に記載の低吸湿有機材料を用いたファインダー
光学系。
3. A prism having a relatively long optical path length and having a different ratio of vertical and horizontal lengths of a cross-sectional shape perpendicular to the optical axis and provided with a low hygroscopic organic material is provided. A finder optical system using the low hygroscopic organic material described in.
【請求項4】 境界面の一部がコーティング若しくは塗
料等により被膜され且つ低吸湿有機材料により形成され
た光学部品が設けられていることを特徴とする請求項1
に記載の低吸湿有機材料を用いたファインダー光学系。
4. An optical component, wherein a part of the boundary surface is coated with a coating, a paint or the like, and an optical component formed of a low hygroscopic organic material is provided.
A finder optical system using the low hygroscopic organic material described in.
JP5277032A 1993-11-05 1993-11-05 Finder optical system using low moisture absorption organic material Pending JPH07128707A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5277032A JPH07128707A (en) 1993-11-05 1993-11-05 Finder optical system using low moisture absorption organic material
US08/335,352 US5581400A (en) 1993-11-05 1994-11-03 Finder optical system with low-hygroscopic organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5277032A JPH07128707A (en) 1993-11-05 1993-11-05 Finder optical system using low moisture absorption organic material

Publications (1)

Publication Number Publication Date
JPH07128707A true JPH07128707A (en) 1995-05-19

Family

ID=17577829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5277032A Pending JPH07128707A (en) 1993-11-05 1993-11-05 Finder optical system using low moisture absorption organic material

Country Status (2)

Country Link
US (1) US5581400A (en)
JP (1) JPH07128707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084720A (en) * 1997-10-28 2000-07-04 Olympus Optical Co., Ltd. Small-sized real image mode zoom finder
US6278554B1 (en) 1998-10-30 2001-08-21 Canon Kabushiki Kaisha Image pickup optical system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011648A (en) * 1997-05-15 2000-01-04 Minolta Co., Ltd. Optical system having an optical element made of resin
JPH10333033A (en) 1997-06-02 1998-12-18 Olympus Optical Co Ltd Real image type variable power finder
US6154314A (en) * 1997-12-26 2000-11-28 Olympus Optical Co., Ltd. Real image mode variable magnification finder
JPH11344679A (en) * 1998-06-03 1999-12-14 Olympus Optical Co Ltd Real-image type variable power finder
JP2000089104A (en) * 1998-09-10 2000-03-31 Asahi Optical Co Ltd Anti-vibration optical system for observation optical equipment
JP3455444B2 (en) * 1998-11-17 2003-10-14 ペンタックス株式会社 Real image finder optical system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535026A (en) * 1983-06-29 1985-08-13 The United States Of America As Represented By The United States Department Of Energy Antireflective graded index silica coating, method for making
JPH0658454B2 (en) * 1985-07-03 1994-08-03 キヤノン株式会社 Variable magnification finder
JPH0814661B2 (en) * 1986-02-17 1996-02-14 オリンパス光学工業株式会社 View conversion optical system
JPH03181908A (en) * 1989-12-12 1991-08-07 Konica Corp Small-sized zoom lens compensated for influence of environmental change
US5251069A (en) * 1989-12-28 1993-10-05 Asahi Kogaku Kogyo K.K. Imaging lens system
JP3064337B2 (en) * 1990-06-21 2000-07-12 オリンパス光学工業株式会社 Real image type variable magnification finder optical system
JPH04349418A (en) * 1991-05-27 1992-12-03 Nisshin Koki Kk Wide-angle lens
JPH06324260A (en) * 1993-05-14 1994-11-25 Olympus Optical Co Ltd Focus detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084720A (en) * 1997-10-28 2000-07-04 Olympus Optical Co., Ltd. Small-sized real image mode zoom finder
US6278554B1 (en) 1998-10-30 2001-08-21 Canon Kabushiki Kaisha Image pickup optical system

Also Published As

Publication number Publication date
US5581400A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
US6618197B1 (en) Image stabilizing system
US6078411A (en) Real-image finder optical system and apparatus using the same
JP3035830B2 (en) Zoom lens
JP3486532B2 (en) Zoom lens having vibration compensation function and camera having the same
JP2647504B2 (en) Real image type zoom finder
JPH10161018A (en) Optical system
JPH1138473A (en) Real image type finder
JPH0658454B2 (en) Variable magnification finder
JPH07225411A (en) Daylighting bright frame finder
JP3860231B2 (en) Anti-vibration optical system
JPH07128707A (en) Finder optical system using low moisture absorption organic material
JPH1031155A (en) Zoom lens
JP3506796B2 (en) Real image type zoom finder
JP3434619B2 (en) Real image type zoom finder optical system
US6335827B2 (en) Real image mode variable magnification finder
JP3454992B2 (en) Viewfinder optical system
US5557458A (en) Real image finder optical system
JP3684070B2 (en) Zoom lens
JPH0651201A (en) Real-image variable-power viewfinder
US6493142B1 (en) Zoom lens and photographing apparatus having it
JP2958124B2 (en) Real image type variable magnification finder optical system
JP2706789B2 (en) Large aperture ratio lens for close-up photography
JP4217306B2 (en) Variable magnification finder
JP2000347101A (en) Real image type variable power finder
JP2984503B2 (en) Zoom finder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020903