[go: up one dir, main page]

JPH07120512B2 - Transmissive photocathode and manufacturing method thereof - Google Patents

Transmissive photocathode and manufacturing method thereof

Info

Publication number
JPH07120512B2
JPH07120512B2 JP9222991A JP9222991A JPH07120512B2 JP H07120512 B2 JPH07120512 B2 JP H07120512B2 JP 9222991 A JP9222991 A JP 9222991A JP 9222991 A JP9222991 A JP 9222991A JP H07120512 B2 JPH07120512 B2 JP H07120512B2
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
iii
window
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9222991A
Other languages
Japanese (ja)
Other versions
JPH04324227A (en
Inventor
得明 二橋
実 新垣
俊光 永井
淳 木舩
正志 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP9222991A priority Critical patent/JPH07120512B2/en
Publication of JPH04324227A publication Critical patent/JPH04324227A/en
Publication of JPH07120512B2 publication Critical patent/JPH07120512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はIII−V族化合物半導
体からなる透過型光電面と、その製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission type photocathode made of a III-V group compound semiconductor and a method for producing the same.

【0002】[0002]

【従来の技術】 低照度の条件下で使用されるイメージ
管に用い得る透過型光電面としては、GaAs透過型光
電面が知られており、これの製造方法として特開昭51
−73379が公知である。これを第3図に示す。ま
ず、GaAs基板1を用意し、この上に液相成長法を用
いてAlX Ga1-X As停止層2、GaAs活性層3お
よびAlX Ga1-X As窓層4を堆積し、次いでスパッ
タ法などにより反射防止SiO2 膜5を堆積する(図3
(a)参照)。しかる後、図示の積層構造体を反射防止
SiO2 膜5側でガラス窓材6に熱圧着し(同図(b)
参照)、GaAs基板1およびAlX Ga1-X As停止
層2を選択的にエッチングし、ガラス窓材6上に反射防
止SiO2 膜5およびAlX Ga1-X As窓層4を介し
てGaAs活性層3が積層されたGaAs透過型光電面
を得ることができる(同図(c)参照)。
2. Description of the Related Art A GaAs transmission type photocathode is known as a transmission type photocathode that can be used in an image tube used under a low illuminance condition.
-73379 is known. This is shown in FIG. First, a GaAs substrate 1 is prepared, and an Al X Ga 1-X As stop layer 2, a GaAs active layer 3 and an Al X Ga 1-X As window layer 4 are deposited on the GaAs substrate 1 by liquid phase epitaxy. An antireflection SiO 2 film 5 is deposited by a sputtering method or the like (see FIG. 3).
(See (a)). After that, the laminated structure shown in the figure is thermocompression-bonded to the glass window member 6 on the antireflection SiO 2 film 5 side (FIG.
), The GaAs substrate 1 and the Al x Ga 1 -x As stop layer 2 are selectively etched, and the antireflection SiO 2 film 5 and the Al x Ga 1 -x As window layer 4 are formed on the glass window material 6. It is possible to obtain a GaAs transmissive photocathode in which the GaAs active layer 3 is laminated (see FIG. 7C).

【0003】しかし、上記の透過型光電面をイメージ管
などに用いると、解像度の低下や局所的な像の歪み等の
問題が発生していた。これは、AlX Ga1-X As窓層
4と反射防止SiO2 膜5の界面にダストが存在してい
たり、AlX Ga1-X As窓層4の表面に傷があったり
することが原因として考えられる。また、上記従来技術
では、液相成長法により構成しているため、表面に波状
の模様が生じ、これが局所的な像の歪みを招いているこ
とも考えられる。
However, when the above-mentioned transmission type photocathode is used for an image tube or the like, problems such as a reduction in resolution and local image distortion occur. This means that dust may be present at the interface between the Al X Ga 1-X As window layer 4 and the antireflection SiO 2 film 5, or the surface of the Al X Ga 1-X As window layer 4 may be damaged. Probable cause. Further, in the above-mentioned conventional technique, since the liquid phase growth method is used, it is conceivable that a wavy pattern is generated on the surface, which causes local image distortion.

【0004】本発明は、かかる従来技術の問題点に鑑み
てなされたもので、イメージ管に応用したときに、高解
像度でかつ歪みのない画像を得ることのできる透過型光
電面と、これに好適な製造方法を提供することを目的と
している。
The present invention has been made in view of the above-mentioned problems of the prior art, and when applied to an image tube, a transmission type photocathode capable of obtaining a high resolution and distortion-free image, and It is intended to provide a suitable manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明に係るの第1の製
造方法は、基板上にエッチングの停止層、Alを含まな
いIII−V族化合物半導体からなる活性層、Alを含
むIII−V族化合物半導体からなる窓層およびIII
−V族化合物半導体の保護層を堆積して積層構造体を形
成する第1のステップと、窓層の表面に薄いAl酸化膜
が形成されるエッチング条件で保護層を選択的に除去す
る第2のステップと、Al酸化膜の表面に反射防止膜を
形成する第3のステップと、積層構造体を反射防止膜で
ガラス製の窓材に固着し、基板および停止層を選択的に
除去する第4のステップとを備える。
The first method according to the present invention
The manufacturing method is such that the etching stop layer and Al are not included on the substrate.
III-V compound semiconductor active layer, containing Al
III-V Group Compound Semiconductor Window Layer and III
Forming a laminated structure by depositing a protective layer of a group V compound semiconductor
First step of formation and thin Al oxide film on the surface of the window layer
The protective layer is selectively removed under the etching conditions for forming
The second step is to set the anti-reflection film on the surface of the Al oxide film.
The third step of forming and the laminated structure with an antireflection film
Adheres to the glass window material and selectively the substrate and stop layer
A fourth step of removing.

【0006】また、透過型光電面の第2の製造方法は、
基板上にエッチングの停止層、Alを含まないIII−
V族化合物半導体からなる活性層、Alを含むIII−
V族化合物半導体からなる窓層、Alを含まないIII
−V族化合物半導体からなり上記窓層に比べて十分に薄
い層、およびこの薄い層と選択エッチングが可能なII
I−V族化合物半導体の保護層を堆積して積層構造体を
形成する第1のステップと、保護層を選択的に除去する
第2のステップと、上記薄い層の表面に反射防止膜を形
成する第3のステップと、積層構造体を反射防止膜でガ
ラス製の窓材に固着し、基板および停止層を選択的に除
去する第4のステップとを備えることを特徴とする。
The second method of manufacturing a transmissive photocathode is as follows:
Etching stop layer on the substrate, Al-free III-
Active layer made of Group V compound semiconductor, Al-containing III-
Window layer made of Group V compound semiconductor, Al-free III
-Comprising a group V compound semiconductor and sufficiently thinner than the window layer
Layer, and this thin layer and selective etching II
A protective layer of a group IV compound semiconductor is deposited to form a laminated structure.
First step of forming and selectively removing the protective layer
The second step is to form an antireflection film on the surface of the thin layer.
The third step of forming and the laminated structure is protected by an antireflection film.
It adheres to the lath window material and selectively removes the substrate and stop layer.
And a fourth step of leaving.

【0007】本発明に係る透過型光電面は、Alを含ま
ないIII−V族化合物半導体からなる活性層、Alを
含むIII−V族化合物半導体からなる窓層および反射
防止膜を順次に堆積した積層構造体を、反射防止膜でガ
ラス製の窓材に固着した透過型光電面において、窓層と
反射防止膜の間には、窓層に比べて十分に薄く、Alを
含まないIII−V族化合物半導体からなる層が介在さ
れていることを特徴とする。
The transmission type photocathode according to the present invention contains Al.
No active layer made of III-V compound semiconductor, Al
Window layer made of III-V compound semiconductor containing and reflection
The anti-reflection film is used to cover the laminated structure in which the anti-reflection film is sequentially deposited.
In the transmissive photocathode fixed to the window material made of lath, with the window layer
Between the antireflection film, Al is sufficiently thin compared to the window layer
A layer made of a III-V group compound semiconductor not included is interposed.
It is characterized by being.

【0008】[0008]

【作用】本発明では、Alを含むIII−V族化合物半
導体の窓層と反射防止膜の間に、Alを含まないIII
−V族化合物半導体もしくはAl酸化膜の極めて薄い層
が介在しているため、窓層と反射防止膜の界面は極めて
良好な光学特性を有する。さらに、上記の製造工程にお
いて、気相成長法を用いることで、液相成長法に固有の
波状の模様をなくし得る。
In the present invention, III containing no Al between the window layer and the antireflection film of the III-V group compound semiconductor containing Al is used.
-V group compound semiconductor or extremely thin layer of Al oxide film
, The interface between the window layer and the antireflection film has very good optical characteristics. Further, by using the vapor phase growth method in the above manufacturing process, the wavy pattern peculiar to the liquid phase growth method can be eliminated.

【0009】[0009]

【実施例】以下、本発明の第1実施例に係る透過型光電
面の構造と製法を、図1の工程別断面図により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and manufacturing method of the transmission type photocathode according to the first embodiment of the present invention will be described below with reference to the sectional views for each step of FIG.

【0010】まず、GaAs基板1を用意し、この上に
気相成長法を用いて、AlX Ga1-X As停止層2、G
aAs活性層3およびAlX Ga1-X As窓層4および
GaAs保護層7をエピタキシャル成長する(図1
(a)参照)。ここで、AlX Ga1-X As停止層2に
ついてはNH4 OH+H2 2 によるGaAs基板1の
選択エッチングを考慮して、Alの組成比X=0.5、
膜厚は2μm程度とされる。また、GaAs活性層3の
厚さは電子の拡散長程度とされ、約2μmとされる。A
X Ga1-X As窓層4の組成比Xおよび膜厚は、透過
型光電面の短波長側しきい値を決定し、実施例ではX=
0.5、厚さは2μm程度とされる。GaAs保護層7
は本発明に特徴的なもので、後の工程により最終的には
除去され、表面保護および汚染防止が実現できればよ
い。したがって薄くてもよく、実施例では0.8μm程
度とする。
First, a GaAs substrate 1 is prepared, and an Al X Ga 1-X As stop layer 2, G is formed on the GaAs substrate 1 by vapor phase epitaxy.
The aAs active layer 3, the Al x Ga 1 -x As window layer 4 and the GaAs protective layer 7 are epitaxially grown (FIG. 1).
(See (a)). Here, regarding the Al X Ga 1 -X As stop layer 2, the Al composition ratio X = 0.5, considering the selective etching of the GaAs substrate 1 by NH 4 OH + H 2 O 2 .
The film thickness is about 2 μm. The thickness of the GaAs active layer 3 is set to about the diffusion length of electrons, which is about 2 μm. A
The composition ratio X and the film thickness of the l X Ga 1 -X As window layer 4 determine the threshold value on the short wavelength side of the transmission type photocathode, and in the example, X =
The thickness is 0.5 and the thickness is about 2 μm. GaAs protective layer 7
Is a feature of the present invention, and may be finally removed in a later step to realize surface protection and contamination prevention. Therefore, it may be thin, and is about 0.8 μm in the embodiment.

【0011】次に、上記の積層構造体をエピタキシャル
成長装置から取り出し、GaAs保護層7を選択的にエ
ッチングする。この場合、エッチャントとして例えばN
4 OH+H2 2 を用いると、GaAsに対するエッ
チング速度は約16μm/minであるのでGaAs保
護層7は数秒で除去され、AlX Ga1-X As窓層4の
表面に数オングストロームの均一な厚さのAl2 3
8が自動的に形成され、エッチングはストップする(図
1(b)参照)。そこで、水洗、乾燥によって洗浄な表
面を露出させ、直ちに反射防止SiO2 膜5を堆積する
(同図(c)参照)。そして、ガラス窓材に熱圧着する
(同図(d)参照)。ここで、反射防止SiO2 膜5は
接着の媒介と反射防止のために用いられるから、例えば
0.2μm程度のCVD膜でよい。また、ガラス窓材と
してはGaAsとの熱膨張率差の小さいものが望まし
い。
Next, the above laminated structure is taken out from the epitaxial growth apparatus and the GaAs protective layer 7 is selectively etched. In this case, as an etchant, for example, N
When H 4 OH + H 2 O 2 is used, the etching rate for GaAs is about 16 μm / min, so that the GaAs protective layer 7 is removed in a few seconds, and the surface of the Al X Ga 1 -X As window layer 4 has a uniform thickness of several angstroms. The Al 2 O 3 film 8 having a thickness is automatically formed, and the etching is stopped (see FIG. 1B). Therefore, the washed surface is exposed by washing with water and drying, and the antireflection SiO 2 film 5 is immediately deposited (see FIG. 7C). Then, it is thermocompression bonded to the glass window material (see FIG. 3D). Here, since the antireflection SiO 2 film 5 is used for mediating adhesion and for antireflection, for example, a CVD film of about 0.2 μm may be used. Further, it is desirable that the glass window material has a small difference in coefficient of thermal expansion from GaAs.

【0012】次に、NH4 OH+H2 2 エッチャント
などを用いてGaAs基板1を選択的に除去し、次いで
HF(弗酸)などを用いてAlX Ga1-X As停止層2
をエッチングすると、洗浄なGaAs活性層3が露出し
た透過型光電面がえられる。なお、AlX Ga1-X As
窓層4の表面に自動的にAl2 3 膜8を形成し、かつ
その上の保護層を選択的に除去可能とするためには、A
lを含まないIII−V族化合物半導体であればよい。
したがって、保護層7には、InGaAs、GaAs
P、GaAsSbなどを代用することができる。
Next, the GaAs substrate 1 is selectively removed using NH 4 OH + H 2 O 2 etchant, and then Al X Ga 1-X As stop layer 2 is formed using HF (hydrofluoric acid) or the like.
Is etched to obtain a transmission type photocathode in which the clean GaAs active layer 3 is exposed. In addition, Al X Ga 1-X As
In order to automatically form the Al 2 O 3 film 8 on the surface of the window layer 4 and selectively remove the protective layer thereon, A
Any III-V compound semiconductor that does not contain 1 may be used.
Therefore, the protective layer 7 is formed of InGaAs, GaAs
P, GaAsSb, etc. can be substituted.

【0013】実施例によれば、Al2 3 膜8が介在す
る界面は極めて清浄かつ平坦であり、欠陥密度も10個
/cm2 (従来は100個/cm2 )に抑えられる。従
って、欠陥に付着しやすいダストは、この極めて清浄か
つ平坦なAl 2 3 表面には付着しにくいため、AlX
Ga1-X As窓層4と反射防止SiO2 膜5の界面のダ
ストが低減されて、解像度の極めて高いイメージ管が実
現される。また、Al2 3 膜8においてはAl原子は
酸素原子と強く結びついているので、AlX Ga1-X
s窓層4中のAl原子が反射防止SiO2 膜5に拡散し
て劣化するようなこともなくなる。
According to the embodiment, the interface where the Al 2 O 3 film 8 intervenes is extremely clean and flat, and the defect density can be suppressed to 10 defects / cm 2 (conventionally 100 defects / cm 2 ) . Servant
Therefore, the dust that tends to adhere to defects is extremely clean.
Is difficult to adhere to the flat Al 2 O 3 surface, so Al X
The dust at the interface between the Ga 1 -X As window layer 4 and the antireflection SiO 2 film 5 is reduced, and an image tube with an extremely high resolution is realized. Further, in the Al 2 O 3 film 8, since Al atoms are strongly connected to oxygen atoms, Al X Ga 1 -X A
Al atoms in the s-window layer 4 will not diffuse into the antireflection SiO 2 film 5 and deteriorate.

【0014】次に、本発明の第2実施例に係わる透過型
光電面の構造とその製法を、図2の工程別断面図により
説明する。
Next, the structure of the transmission type photocathode according to the second embodiment of the present invention and the manufacturing method thereof will be described with reference to the sectional views of each step of FIG.

【0015】まず、GaAs基板1を用意し、第1実施
例と同様にして、AlX Ga1-X As停止層2、GaA
s活性層3およびAlX Ga1-X As窓層4をエピタキ
シャル成長する。そして、AlX Ga1-X As窓層4上
に、Alを含まないIII−V族化合物半導体、例えば
GaAs窓層41を数10オングストロームの厚さ形成
する。なお、このGaAs窓層41は入射光を吸収する
ので、できるだけ薄いことが望ましいが、あまり薄いと
この上のAlGaAs膜エッチングのストッパとなり得
ないので、例えば数10オングストロームの厚さが望ま
しい、そして、この上にAlGaAs保護層71を堆積
し、その上にGaAs保護層72を堆積する(図2
(a)参照)。
First, a GaAs substrate 1 is prepared, and Al x Ga 1 -x As stop layer 2 and GaA are formed in the same manner as in the first embodiment.
The s active layer 3 and the Al X Ga 1-X As window layer 4 are epitaxially grown. Then, an Al-free III-V group compound semiconductor, for example, a GaAs window layer 41 is formed on the Al X Ga 1-X As window layer 4 to a thickness of several tens of angstroms. Since the GaAs window layer 41 absorbs incident light, it is desirable that it be as thin as possible. However, if it is too thin, it cannot serve as a stopper for etching the AlGaAs film on it, so a thickness of, for example, several tens of angstroms is desirable. An AlGaAs protective layer 71 is deposited on this, and a GaAs protective layer 72 is deposited thereon (FIG. 2).
(See (a)).

【0016】上記の有機金属気相成長法などによる積層
構造体は、成長装置から取り出され、エッチング液とし
てNH4 OH+H2 2 が用いられてGaAs保護層7
2が除去され、次いでHFがエッチャントとして用いら
れ、AlGaAs保護層71が除去される。すると、極
薄のGaAs窓層41が露出し、エッチングは自動停止
する(同図(b)参照)。
The laminated structure formed by the above-mentioned metal organic chemical vapor deposition method is taken out from the growth apparatus, and NH 4 OH + H 2 O 2 is used as an etching solution to form the GaAs protective layer 7.
2 is removed, and then HF is used as an etchant to remove the AlGaAs protective layer 71. Then, the ultra-thin GaAs window layer 41 is exposed, and etching is automatically stopped (see FIG. 2B).

【0017】水洗、乾燥を行うと、GaAs窓層41の
表面は極めて清浄となり、AlGaAsなどを窓層とし
て用いた場合のように、酸化膜が自然形成されることも
ない、そこで、この積層構造体をCVD装置などにセッ
トし、約0.2μmの反射防止SiO2 膜5を形成する
(同図(c)参照)。ここで、反射防止膜の材料として
は、SiO2 のみならずSi3 4 などとしてもよい
し、SiO2 とSiNx の混合膜あるいは積層膜として
もよい。しかる後、第1実施例と同様にして積層構造体
を反射防止SiO2 膜5においてガラス窓材6と熱圧着
し(同図(d)参照)、GaAs基板1とAlX Ga
1-X As停止層2をエッチングしてGaAs活性層3を
露出させる(同図(e)参照)。これにより、目的とす
る透過型光電面が得られる。
After washing with water and drying, the surface of the GaAs window layer 41 becomes extremely clean, and the oxide film is not naturally formed as in the case of using AlGaAs as the window layer. The body is set in a CVD device or the like to form an antireflection SiO 2 film 5 having a thickness of about 0.2 μm (see FIG. 3C). Here, the material of the antireflection film may be not only SiO 2, but also Si 3 N 4, etc., or may be a mixed film or a laminated film of SiO 2 and SiN x . After that, the laminated structure is thermocompression bonded to the glass window material 6 in the antireflection SiO 2 film 5 in the same manner as in the first embodiment (see FIG. 3D), and the GaAs substrate 1 and Al X Ga are deposited.
The 1-X As stop layer 2 is etched to expose the GaAs active layer 3 (see FIG. 8E). As a result, the desired transmissive photocathode is obtained.

【0018】この第2実施例の透過型光電面について
も、AlX Ga1-X As窓層4と反射防止SiO2 膜5
の界面に、欠陥の発生しにくい極薄のGaAs窓層41
介在しているので、AlX Ga1-X As窓層4の表面
の光学特性を良好にできる。このため、イメージ管の解
像度の向上が可能になる。なお、上記実施例に用いられ
るIII−V族化合物半導体材料についても、各種の組
み合わせが可能であり、これをまとめると、次のように
なる。
Also in the transmission type photocathode of the second embodiment, the Al X Ga 1 -X As window layer 4 and the antireflection SiO 2 film 5 are formed.
Ultra-thin GaAs window layer 41 where defects are less likely to occur at the interface of
Are intervened, the optical characteristics of the surface of the Al x Ga 1 -x As window layer 4 can be improved. Therefore, the resolution of the image tube can be improved. The III-V group compound semiconductor materials used in the above-described examples can also be combined in various ways, and are summarized as follows.

【0019】(第1の組み合わせ) 基板…GaAs 停止層…Al(Ga)InAs 活性層…Ga1-x Inx As 窓層…AlGaInAs 極薄膜…GaAs 保護層…AlGa(In)As (第2の組み合わせ) 基板…GaAs 停止層…Al(Ga)AsSb 活性層…GaAsy Sb1-y 窓層…AlGaAsSb 極薄膜…GaAs 保護層…AlGaAs(Sb) (第3の組み合わせ) 基板…InP 停止層…Al(Ga)InAsP 活性層…Inx Ga1-x Asy 1−y 窓層…AlInAsP 極薄膜…InP 保護層…AlInP (第4の組み合わせ) 基板…GaAs 停止層…Al(Ga)AsP 活性層…GaAs1-y 窓層…AlGaAsP 極薄膜…GaAs 保護層…Al(Ga)AsP(First combination) Substrate: GaAs stop layer: Al (Ga) InAs active layer: Ga 1-x In x As window layer: AlGaInAs ultrathin film: GaAs protective layer: AlGa (In) As (second combination) Combination) Substrate ... GaAs Stop Layer ... Al (Ga) AsSb Active Layer ... GaAs y Sb 1-y Window Layer ... AlGaAsSb Ultrathin Film ... GaAs Protective Layer ... AlGaAs (Sb) (Third Combination) Substrate ... InP Stop Layer ... Al (Ga) InAsP active layer ... in x Ga 1-x As y P 1-y window layer ... AlInAsP very thin ... InP protective layer ... AlInP (fourth combination of) substrate ... GaAs stop layer ... Al (Ga) AsP active layer GaAs y P 1-y window layer AlGaAsP ultrathin film GaAs protective layer Al (Ga) AsP

【0020】[0020]

【発明の効果】以上、詳細に説明した通り本発明によれ
ば、Alを含むIII−V族化合物半導体の窓層と反射
防止膜の間に、Alを含まないIII−V族化合物半導
体もしくはAl酸化膜の極めて薄い層が介在しているの
で、窓層と反射防止膜の界面は極めて良好な光学特性を
有する。さらに、上記の製造工程において、気相成長法
を用いることで、液相成長法に固有の波状の模様をなく
し得る。このため、イメージ管に応用したときに、高解
像度でかつ歪みのない画像を得ることのできる透過型光
電面と、これに好適な製造方法を提供することができ
る。
As described above in detail, according to the present invention, a group III-V compound semiconductor containing no Al is present between the window layer and the antireflection film of the group III-V compound semiconductor containing Al.
Interposing an extremely thin layer of body or Al oxide film
Thus, the interface between the window layer and the antireflection film has extremely good optical characteristics. Further, by using the vapor phase growth method in the above manufacturing process, the wavy pattern peculiar to the liquid phase growth method can be eliminated. Therefore, when applied to an image tube, it is possible to provide a transmissive photocathode capable of obtaining a high-resolution and distortion-free image, and a manufacturing method suitable for this.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係わる透過型光電面の製造工程別
断面図である。
1A to 1C are cross-sectional views of a transmission type photocathode according to a first embodiment for each manufacturing process.

【図2】第2実施例に係わる透過型光電面の製造工程別
断面図である。
2A to 2D are cross-sectional views of manufacturing steps of a transmission type photocathode according to a second embodiment.

【図3】従来例に係わる透過型光電面の製造工程別断面
図である。
3A to 3D are cross-sectional views of manufacturing steps of a transmission type photocathode according to a conventional example.

【符号の説明】[Explanation of symbols]

1…GaAs基板 2…AlX Ga1-X As停止層 3…GaAs活性層 4…AlX Ga1-X As窓層 5…反射防止SiO2 膜 6…ガラス窓材 7,71,72,…保護層 8…Al2 3 膜 41…GaAs窓層1 ... GaAs substrate 2 ... Al X Ga 1-X As stop layer 3 ... GaAs active layer 4 ... Al X Ga 1-X As window layer 5 ... Antireflection SiO 2 film 6 ... Glass window material 7, 71, 72, ... Protective layer 8 ... Al 2 O 3 film 41 ... GaAs window layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木舩 淳 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 太田 正志 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Kifun 1 1126, Nomachi, Hamamatsu City, Shizuoka Prefecture 1126 Hamamatsu Photonics Co., Ltd. (72) Masashi Ota 1126, 1126 Nomachi, Hamamatsu City, Shizuoka Prefecture Tonics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上にエッチングの停止層、Alを含
まないIII−V族化合物半導体からなる活性層、Al
を含むIII−V族化合物半導体からなる窓層およびI
II−V族化合物半導体の保護層を堆積して積層構造体
を形成する第1のステップと、 前記窓層の表面に薄いAl酸化膜が形成されるエッチン
グ条件で前記保護層を選択的に除去する第2のステップ
と、 前記Al酸化膜の表面に反射防止膜を形成する第3のス
テップと、 前記積層構造体を前記反射防止膜でガラス製の窓材に固
着し、前記基板および停止層を選択的に除去する第4の
ステップとを備えることを特徴とする透過型光電面の製
造方法。
1. An etching stopper layer, an active layer made of a III-V group compound semiconductor not containing Al, and an Al layer on a substrate.
And a window layer made of a III-V compound semiconductor containing
A first step of depositing a protective layer of a II-V compound semiconductor to form a laminated structure, and selectively removing the protective layer under etching conditions in which a thin Al oxide film is formed on the surface of the window layer. And a third step of forming an antireflection film on the surface of the Al oxide film, and fixing the laminated structure to the window material made of glass by the antireflection film, the substrate and the stop layer. And a fourth step of selectively removing the photocathode.
【請求項2】 前記第1のステップは、気相成長法によ
り行うことを特徴とする請求項1記載の透過型光電面の
製造方法。
2. The method for manufacturing a transmissive photocathode according to claim 1, wherein the first step is performed by a vapor phase growth method.
【請求項3】 Alを含まないIII−V族化合物半導
体からなる活性層、Alを含むIII−V族化合物半導
体からなる窓層および反射防止膜を順次に堆積した積層
構造体を、前記反射防止膜でガラス製の窓材に固着した
透過型光電面において、 前記窓層と前記反射防止膜の間には、前記窓層に比べて
十分に薄く、Alを含まないIII−V族化合物半導体
からなる層が介在されていることを特徴とする透過型光
電面。
3. A layered structure in which an active layer made of a III-V group compound semiconductor containing no Al, a window layer made of a III-V group compound semiconductor containing Al, and an antireflection film are sequentially deposited, and the antireflection layer is formed. In a transmissive photoelectric surface fixed to a glass window material with a film, a III-V group compound semiconductor that is sufficiently thin and does not contain Al is provided between the window layer and the antireflection film as compared with the window layer. A transmissive photocathode, characterized in that an intervening layer is interposed.
【請求項4】 基板上にエッチングの停止層、Alを含
まないIII−V族化合物半導体からなる活性層、Al
を含むIII−V族化合物半導体からなる窓層、Alを
含まないIII−V族化合物半導体からなり前記窓層に
比べて十分に薄い層、および前記薄い層と選択エッチン
グが可能なIII−V族化合物半導体の保護層を堆積し
て積層構造体を形成する第1のステップと、 前記保護層を選択的に除去する第2のステップと、 前記薄い層の表面に反射防止膜を形成する第3のステッ
プと、 前記積層構造体を前記反射防止膜でガラス製の窓材に固
着し、前記基板および停止層を選択的に除去する第4の
ステップとを備えることを特徴とする透過型光電面の製
造方法。
4. An etching stopper layer, an active layer made of a III-V group compound semiconductor not containing Al, and an Al layer on a substrate.
Window layer made of a III-V group compound semiconductor containing Al, a layer made of a III-V group compound semiconductor not containing Al, which is sufficiently thinner than the window layer, and a III-V group capable of selective etching with the thin layer A first step of depositing a protective layer of a compound semiconductor to form a laminated structure, a second step of selectively removing the protective layer, and a third step of forming an antireflection film on the surface of the thin layer. And a fourth step of fixing the laminated structure to a window member made of glass with the antireflection film and selectively removing the substrate and the stop layer. Manufacturing method.
【請求項5】 前記第1のステップは、気相成長法によ
り行う請求項4記載の透過型光電面の製造方法。
5. The method of manufacturing a transmissive photocathode according to claim 4, wherein the first step is performed by a vapor phase growth method.
JP9222991A 1991-04-23 1991-04-23 Transmissive photocathode and manufacturing method thereof Expired - Fee Related JPH07120512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9222991A JPH07120512B2 (en) 1991-04-23 1991-04-23 Transmissive photocathode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9222991A JPH07120512B2 (en) 1991-04-23 1991-04-23 Transmissive photocathode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04324227A JPH04324227A (en) 1992-11-13
JPH07120512B2 true JPH07120512B2 (en) 1995-12-20

Family

ID=14048611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9222991A Expired - Fee Related JPH07120512B2 (en) 1991-04-23 1991-04-23 Transmissive photocathode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07120512B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939033B2 (en) * 2005-10-31 2012-05-23 浜松ホトニクス株式会社 Photocathode

Also Published As

Publication number Publication date
JPH04324227A (en) 1992-11-13

Similar Documents

Publication Publication Date Title
Cho et al. GaAs planar technology by molecular beam epitaxy (MBE)
US5966622A (en) Process for bonding crystalline substrates with different crystal lattices
JP2762939B2 (en) Superlattice avalanche photodiode
EP0553856B1 (en) Method of preparing a semiconductor substrate
US8022449B2 (en) Photodiode array, method of manufacturing the same, and detecting device
EP3465725B1 (en) Method of producing a nanowire photocathode
US4286373A (en) Method of making negative electron affinity photocathode
EP0317024A1 (en) Production method of an integrated infrared-photodetector
EP1132955A1 (en) Method of manufacturing a bipolar transistor with a self-aligned double polysilicon layer
US20100289063A1 (en) Epitaxial solid-state semiconducting heterostructures and method for making same
JPH07120512B2 (en) Transmissive photocathode and manufacturing method thereof
Lin et al. 100‐μm‐wide silicon‐on‐insulator structures by Si molecular beam epitaxy growth on porous silicon
FR2743197A1 (en) SEMICONDUCTOR DEVICE WITH MESA STRUCTURE AND METHOD OF MANUFACTURING SUCH A DEVICE
JP2730472B2 (en) Semiconductor light receiving element
JPH08162663A (en) Semiconductor photodetector
JPH05291605A (en) Semiconductor light receiving element
JP2776228B2 (en) Manufacturing method of semiconductor light receiving element
JP2002246695A (en) Method for manufacturing semiconductor device using porous substrate and semiconductor device
JPH09191123A (en) Compound semiconductor light receiving device
JP2001111094A (en) Infrared light receiving element and manufacturing method thereof
KR100290858B1 (en) quantum dot infrared detection device and method for fabricating the same
JPH06164057A (en) Emiconductor laser and its manufacture
JP2633921B2 (en) Manufacturing method of optical device with waveguide
JP3127562B2 (en) III-V compound semiconductor thin film selective growth forming method using mask for selective growth of III-V compound semiconductor thin film
JPH0690061A (en) Fabrication of semiconductor light emitting element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees