JPH07130227A - DC power cable - Google Patents
DC power cableInfo
- Publication number
- JPH07130227A JPH07130227A JP29420593A JP29420593A JPH07130227A JP H07130227 A JPH07130227 A JP H07130227A JP 29420593 A JP29420593 A JP 29420593A JP 29420593 A JP29420593 A JP 29420593A JP H07130227 A JPH07130227 A JP H07130227A
- Authority
- JP
- Japan
- Prior art keywords
- power cable
- insulator
- carbon monoxide
- space charge
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012212 insulator Substances 0.000 claims abstract description 24
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 15
- 238000007334 copolymerization reaction Methods 0.000 claims abstract description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229920001577 copolymer Polymers 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- -1 polyethylene Polymers 0.000 claims description 19
- 239000004698 Polyethylene Substances 0.000 claims description 14
- 229920000573 polyethylene Polymers 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims description 10
- 229920000098 polyolefin Polymers 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 229910000077 silane Inorganic materials 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 4
- 239000011342 resin composition Substances 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 claims 1
- 238000009825 accumulation Methods 0.000 abstract description 13
- 238000009413 insulation Methods 0.000 abstract description 8
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 239000007787 solid Substances 0.000 abstract description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 4
- 229920003020 cross-linked polyethylene Polymers 0.000 description 4
- 239000004703 cross-linked polyethylene Substances 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QAWFDVPDPRDJDF-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethenylsilane Chemical compound COCCOC=C[SiH3] QAWFDVPDPRDJDF-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Organic Insulating Materials (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
(57)【要約】
【目的】 固体絶縁体中の空間電荷の蓄積を低減させる
ことにより、直流高電圧に対する絶縁特性を改善し、直
流特性に優れた直流電力ケーブルを得ることを目的とす
る。
【構成】 一酸化炭素共重合比率が5wt%以下なるエ
チレン−一酸化炭素共重合体を絶縁体とし、均一に材料
中に分布するエチレン−一酸化炭素のカルボニル基が極
性基として空間電荷の局部的なトラップを防止して、空
間電荷蓄積を低減させることにより直流破壊強度が改善
された直流電力ケーブル。(57) [Abstract] [Purpose] An object of the present invention is to obtain a DC power cable having excellent DC characteristics by improving the insulation characteristics against DC high voltage by reducing the accumulation of space charge in the solid insulator. [Structure] An ethylene-carbon monoxide copolymer having a carbon monoxide copolymerization ratio of 5 wt% or less is used as an insulator, and the carbonyl group of ethylene-carbon monoxide uniformly distributed in the material serves as a polar group to cause local space charge. DC power cable with improved DC breakdown strength by preventing electrical traps and reducing space charge accumulation.
Description
【0001】[0001]
【産業上の利用分野】この発明は、絶縁特性の向上を図
った直流電力ケーブルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power cable with improved insulation characteristics.
【0002】[0002]
【従来の技術】長距離、大容量送電を目的とする場合、
直流送電は交流送電に比べ、絶縁体の誘電損失がなく、
充電電流に対する無効分を補償するための設備が不要で
ある。また、絶縁体の絶縁耐圧が高く安定である等の種
々の特徴から有利と考えられる。2. Description of the Related Art For the purpose of long-distance, large-capacity power transmission,
Compared to AC power transmission, DC power transmission has no dielectric loss of the insulator,
No equipment is required to compensate the reactive component for the charging current. Further, it is considered to be advantageous due to various characteristics such as high insulation withstand voltage and stability of the insulator.
【0003】現在、直流送電のための高電圧ケーブル
は、主に、低粘度の絶縁油と紙からなるOFケーブルが
用いられているが、給油設備等が必要であり、メンテナ
ンスが面倒である。Currently, as high-voltage cables for DC power transmission, OF cables mainly composed of low-viscosity insulating oil and paper are mainly used, but oil supply equipment and the like are required and maintenance is troublesome.
【0004】一方、メンテナンスフリーであるプラスチ
ック絶縁ケーブルは、交流電力ケーブルとして架橋ポリ
エチレン(XLPE)ケーブルが広く用いられており、
OFケーブルに匹敵する超高圧ケーブルまで開発されつ
つある。On the other hand, cross-linked polyethylene (XLPE) cables are widely used as AC power cables for maintenance-free plastic insulated cables.
Ultra high voltage cables comparable to OF cables are being developed.
【0005】しかし、直流電圧に対する空間電荷特性等
の問題から、高電圧直流ケーブルとしては用途が限定さ
れている。すなわち、XLPEケーブルでは、直流高電
圧印加によって、絶縁体中に逆極性の空間電荷が蓄積さ
れ、逆極性インパルスや極性反転がなされた場合に、そ
の絶縁特性の低下が著しいという理由からである。以上
のような理由から、高電圧用の直流電力ケーブルとし
て、従来のXLPEケーブルに代わる固体絶縁ケーブル
の開発が望まれている。However, due to problems such as space charge characteristics with respect to DC voltage, its application is limited as a high voltage DC cable. That is, in the XLPE cable, when a high DC voltage is applied, space charges of opposite polarity are accumulated in the insulator, and when the opposite polarity impulse or polarity inversion occurs, the insulation characteristic is significantly deteriorated. For the above reasons, it has been desired to develop a solid insulated cable as a high-voltage DC power cable that replaces the conventional XLPE cable.
【0006】[0006]
【発明が解決しようとする課題】一般に、ポリエチレン
の絶縁耐圧強度は、結晶化度が高い程高いとされている
が、直流電圧を印加した場合、電極から電荷が注入され
て形成される空間電荷は、ポリエチレンの結晶と非結晶
の界面等にトラップされ易いと推定される。Generally, the higher the degree of crystallinity, the higher the dielectric strength of polyethylene is, the higher the dielectric strength is. However, when a direct current voltage is applied, space charges formed by injecting charges from electrodes are formed. Is presumed to be easily trapped in a polyethylene crystal-noncrystal interface or the like.
【0007】また、過電流が流れた場合等の加熱による
変形等に耐えれるために、対策として架橋処理がとられ
るが、架橋剤として用いられる有機過酸化物の分解残渣
は、空間電荷を増大させることが知られている。Further, in order to withstand deformation due to heating when overcurrent flows, a crosslinking treatment is taken as a countermeasure, but the decomposition residue of the organic peroxide used as a crosslinking agent increases the space charge. It is known to cause.
【0008】以上のような観点から、この発明は、固体
絶縁体中の空間電荷の蓄積を低減させることにより、直
流高電圧に対する絶縁特性を改善し、直流特性に優れた
直流電力ケーブルを得ることを目的とするものである。From the above viewpoint, the present invention improves the insulation characteristics against high DC voltage by reducing the accumulation of space charge in the solid insulator, and obtains a DC power cable having excellent DC characteristics. The purpose is.
【0009】[0009]
【課題を解決するための手段】上記の課題を解決するた
め、まず、発明者らは、極性基により空間電荷特性が変
えられることから、無極性のポリエチレンに特定の極性
基を共重合することにより、直流特性の改善が可能であ
ると考え、検討を進めた。In order to solve the above problems, first of all, the inventors of the present invention copolymerize a non-polar polyethylene with a specific polar group because the space charge characteristics can be changed by the polar group. Therefore, we considered that it is possible to improve the DC characteristics, and proceeded with the study.
【0010】第1の発明は、上記の研究の結果なされた
ものであり、ポリエチレンに導入する極性基を特定し
て、また共重合比率を限定し、絶縁体中の空間電荷の蓄
積を抑制することにより、高い絶縁特性を有した材料を
得て、これを絶縁体として使用し、高性能直流電力ケー
ブルを得た。即ち、一酸化炭素共重合比率が5wt%以
下なるエチレン−一酸化炭素共重合体を絶縁体とした直
流電力ケーブルが、空間電荷蓄積も含めた直流特性に優
れていることが分かった。The first invention has been made as a result of the above research, and specifies the polar group to be introduced into polyethylene and limits the copolymerization ratio to suppress the accumulation of space charge in the insulator. As a result, a material having high insulation properties was obtained, and this was used as an insulator to obtain a high-performance DC power cable. That is, it was found that the DC power cable using the ethylene-carbon monoxide copolymer having the carbon monoxide copolymerization ratio of 5 wt% or less as the insulator was excellent in the DC characteristics including the space charge accumulation.
【0011】一酸化炭素の共重合比率が多すぎると結晶
性等の特性が低下する恐れがあり、それに伴い、高温で
の電気耐圧性能が低下する恐れがあることから、この発
明では、エチレンに対する一酸化炭素共重合比率を5w
t%以下とした。If the copolymerization ratio of carbon monoxide is too large, the properties such as crystallinity may be deteriorated, and accordingly, the electric withstand voltage performance at high temperature may be deteriorated. Carbon monoxide copolymerization ratio 5w
It was set to t% or less.
【0012】次に、発明者らは、無極性のポリエチレン
に特定の充填剤を添加することによる局所電荷トラップ
の抑制、有機過酸化物の分解残渣の吸着効果により、空
間電荷電荷特性が変えられることが可能であると考え、
検討を進めた。Next, the inventors of the present invention can change the space charge characteristics by suppressing local charge traps by adding a specific filler to nonpolar polyethylene and adsorbing decomposition residues of organic peroxide. Think it is possible,
We proceeded with the examination.
【0013】第2の発明は、上記の研究の結果なされた
ものであり、ポリエチレンに充填する充填剤を特定し
て、また、その充填量を限定し、絶縁体中の空間電荷の
蓄積を抑制することにより、高い絶縁特性を有したポリ
エチレンを得て、これを絶縁体として使用し、高性能直
流電力ケーブルを得た。即ち、ポリエチレン100重量
部に対して、二酸化ケイ素を5重量部以下充填した樹脂
組成物を絶縁体とした直流電力ケーブルが、空間電荷蓄
積も含めた直流特性に優れていることが分かった。The second invention is made as a result of the above research, and specifies the filler to be filled in polyethylene and limits the filling amount to suppress the accumulation of space charge in the insulator. By doing so, polyethylene having high insulation properties was obtained, and this was used as an insulator to obtain a high-performance DC power cable. That is, it was found that the DC power cable using the resin composition in which 5 parts by weight or less of silicon dioxide was filled as an insulator with respect to 100 parts by weight of polyethylene was excellent in DC characteristics including space charge accumulation.
【0014】二酸化ケイ素の充填量が多すぎると、固有
絶縁抵抗値の低下が認められ、また、引張伸び等の加工
性の問題も生じることから、この発明では、ポリエチレ
ン100重量部に対する二酸化ケイ素の充填量を5重量
部以下とした。If the filling amount of silicon dioxide is too large, the specific insulation resistance value is lowered, and there is a problem of workability such as tensile elongation. Therefore, in the present invention, the content of silicon dioxide is 100 parts by weight of polyethylene. The filling amount was 5 parts by weight or less.
【0015】また、イオン源となり空間電荷特性に悪影
響を及ぼす恐れのある不純物は極力少ないことが望まし
く、二酸化ケイ素の純度は98%以上のものが適してお
り、さらに、粒子径が大きすぎると材料中への均一分散
の不良が発生する恐れがあることから、粒子径として
は、10μm以下が適している。In addition, it is desirable that the amount of impurities that may serve as an ion source and adversely affect the space charge characteristics be as small as possible, and a silicon dioxide having a purity of 98% or more is suitable. Since the particles may not be uniformly dispersed therein, a particle size of 10 μm or less is suitable.
【0016】さらに、発明者らは、極性基により空間電
荷特性が変えられることから、ポリオレフィンに特定の
極性基を導入することにより、直流特性の改善が可能で
あると考え、検討を進めた。Further, the present inventors considered that it is possible to improve the direct current characteristics by introducing a specific polar group into the polyolefin because the space charge characteristics can be changed by the polar group, and proceeded with the study.
【0017】第3の発明は、上記の研究の結果なされた
ものであり、シラン化合物にグラフト処理を施し、ポリ
オレフィンに導入したシラン変性ポリオレフィンを得
て、これを絶縁材料とした直流電力ケーブルが、空間電
荷蓄積も含めた直流特性に優れていることが分かった。A third invention is made as a result of the above research, and a silane compound is graft-treated to obtain a silane-modified polyolefin introduced into a polyolefin. It was found that the DC characteristics including space charge accumulation were excellent.
【0018】また、この絶縁体をシラノール緒合触媒及
び、水分の存在下で融点以下の温度で架橋処理を施し、
ケーブルの機械的、熱的物性を改善させることもでき
る。Further, this insulator is subjected to a crosslinking treatment at a temperature below its melting point in the presence of a silanol-attached catalyst and water,
It is also possible to improve the mechanical and thermal properties of the cable.
【0019】ここで用いられるシラン変性ポリオレフィ
ンとしては、メトキシエトキシビニルシラン,トリメト
キシビニルシランなどのグラフトポリオレフィンなどで
あれば良い。The silane-modified polyolefin used here may be a graft polyolefin such as methoxyethoxyvinylsilane or trimethoxyvinylsilane.
【0020】なお、上記の各発明において、通常絶縁材
料に添加される架橋剤,安定剤等、あるいは通常樹脂に
添加される老化防止剤,加工助剤等の添加剤を添加して
も良く、これらを添加することにより本発明の効果が失
われることはない。In each of the above inventions, a cross-linking agent, a stabilizer or the like usually added to an insulating material, or an additive such as an anti-aging agent or a processing aid usually added to a resin may be added. The effects of the present invention are not lost by adding these.
【0021】[0021]
【作用】一酸化炭素共重合比率が5wt%以下なるエチ
レン−一酸化炭素共重合体を絶縁体とした第1の発明の
直流電力ケーブルは、エチレン−一酸化炭素のカルボニ
ル基が、極性基として働き、かつ均一に材料中に分布す
るために、空間電荷の局部的なトラップを防止すること
ができると考えられ、このような空間電荷蓄積の低減に
より、直流破壊強度が改善されると考えられる。The direct-current power cable of the first invention using the ethylene-carbon monoxide copolymer as an insulator having a carbon monoxide copolymerization ratio of 5 wt% or less has a carbonyl group of ethylene-carbon monoxide as a polar group. It is considered that it is possible to prevent the local trapping of space charge because it works and is uniformly distributed in the material. It is considered that the reduction of such space charge accumulation improves the DC breakdown strength. .
【0022】ポリエチレン100重量部に対して、二酸
化ケイ素を5重量部以下充填した樹脂組成物を絶縁体と
した第2の発明の直流電力ケーブルは、二酸化ケイ素
が、電荷トラップサイトとして材料中に均一に分布する
ために、空間電荷の局部的なトラップを防止でき、か
つ、架橋剤分解残渣をその粒子表面に吸着させる効果に
より、空間電荷の発生要因となり得るイオンキャリアの
移動を防止することができると考えられ、このような空
間電荷蓄積の低減により、直流破壊強度が改善されると
考えられる。The DC power cable of the second invention, which uses as an insulator a resin composition in which 5 parts by weight or less of silicon dioxide is filled with 100 parts by weight of polyethylene, silicon dioxide is uniformly dispersed in the material as charge trap sites. Since the particles are distributed in the space, local trapping of space charges can be prevented, and migration of ion carriers, which can be a factor of generation of space charges, can be prevented by the effect of adsorbing the crosslinking agent decomposition residue on the particle surface. Therefore, it is considered that the DC breakdown strength is improved by reducing the space charge accumulation.
【0023】シラン化合物をグラフト処理したシラン変
性ポリオレフィンを絶縁体とした第3の発明の直流電力
ケーブルは、シラン化合物が、極性基として働き、材料
中に均一に分布するために、空間電荷の局部的なトラッ
プを防止することができると考えられ、このような空間
電荷蓄積の低減により直流破壊強度が改善されると考え
られる。In the direct-current power cable of the third invention using a silane-modified polyolefin graft-treated with a silane compound as an insulator, the silane compound acts as a polar group and is uniformly distributed in the material. It is considered that the transient trap can be prevented, and the DC breakdown strength is improved by reducing the space charge accumulation.
【0024】[0024]
(実施例1)表1に、第1の発明の実施例1として、本
発明例1,2および比較例1,2を記した。以下、実施
例1の詳細を述べる。(Example 1) Table 1 shows Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 as Example 1 of the first invention. The details of the first embodiment will be described below.
【0025】実験サンプルは、エチレン−一酸化炭素共
重合体を160℃,30分の条件で熱プレスにより作成
したシートを用いた。空間電荷の評価は、2mm厚のシ
ートにDC40kV課電後、パルス静電応力法により測
定した。蓄積電荷量は「+」の数で示した。DC破壊値
は0.2mm厚のシートを用いて90℃で測定した。As an experimental sample, a sheet prepared by hot pressing an ethylene-carbon monoxide copolymer at 160 ° C. for 30 minutes was used. The space charge was measured by applying a pulse electrostatic stress method after applying 40 kV DC to a 2 mm thick sheet. The accumulated charge amount is shown by the number of "+". The DC breakdown value was measured at 90 ° C. using a 0.2 mm thick sheet.
【0026】[0026]
【表1】 [Table 1]
【0027】(実施例2)表2に、第2の発明の実施例
2として、本発明例1〜3および比較例1〜3を記し
た。以下、実施例2の詳細を述べる。Example 2 Table 2 shows Examples 1 to 3 of the present invention and Comparative Examples 1 to 3 as Example 2 of the second invention. The details of the second embodiment will be described below.
【0028】実験サンプルは、二酸化ケイ素を充填した
ポリエチレンを160℃,30分の条件で熱プレスによ
り作成したシートを用いた。空間電荷の評価は、2mm
厚のシートにDC40kV課電後、パルス静電応力法に
より測定した。蓄積電荷量は「+」の数で示した。DC
破壊値は0.2mm厚のシートを用いて90℃で測定し
た。As an experimental sample, a sheet made of polyethylene filled with silicon dioxide by hot pressing at 160 ° C. for 30 minutes was used. Evaluation of space charge is 2 mm
After applying 40 kV DC to a thick sheet, measurement was performed by the pulse electrostatic stress method. The accumulated charge amount is shown by the number of "+". DC
The breaking value was measured at 90 ° C. using a 0.2 mm thick sheet.
【0029】[0029]
【表2】 [Table 2]
【0030】(実施例3)表3に、第3の発明の実施例
3として、本発明例1,2および比較例1,2を記し
た。以下、実施例3の詳細を述べる。(Example 3) Table 3 shows Examples 3 and 4 of the present invention as Examples 3 of the third invention. Hereinafter, details of the third embodiment will be described.
【0031】実験サンプルは、シラン変性ポリエチレン
を160℃,30分の条件で熱プレスにより作成したシ
ートを用いた。また、シラン架橋処理は、シラノール緒
合触媒及び水の存在下で80℃において施した。空間電
荷蓄積の評価は、2mm厚シートにDC40kV課電
後、パルス静電応力法により測定した。蓄積電荷量は
「+」の数で示した。DC破壊値は0.2mm厚のシー
トを用いて90℃で測定した。As an experimental sample, a sheet prepared by hot pressing silane-modified polyethylene at 160 ° C. for 30 minutes was used. The silane crosslinking treatment was performed at 80 ° C. in the presence of a silanol-attached catalyst and water. The space charge accumulation was evaluated by applying a pulse electrostatic stress method to a 2 mm thick sheet after applying 40 kV DC. The accumulated charge amount is shown by the number of "+". The DC breakdown value was measured at 90 ° C. using a 0.2 mm thick sheet.
【0032】[0032]
【表3】 [Table 3]
【0033】[0033]
【発明の効果】以上説明したように、この発明によれ
ば、一酸化炭素共重合比率が5wt%以下なるエチレン
−一酸化炭素共重合体を絶縁体に用いるか、または、ポ
リエチレン100重量部に対して二酸化ケイ素を5重量
部以下充填した樹脂組成物を絶縁体に用いるか、また
は、シラン化合物をグラフト処理したシラン変性ポリオ
レフィンを絶縁体に用いることにより、直流高電圧印加
による空間電荷の蓄積を防止でき、性能の優れた直流高
電圧用電力ケーブルを得ることができる。As described above, according to the present invention, an ethylene-carbon monoxide copolymer having a carbon monoxide copolymerization ratio of 5 wt% or less is used as an insulator or 100 parts by weight of polyethylene is used. On the other hand, by using a resin composition filled with 5 parts by weight or less of silicon dioxide as an insulator or using a silane-modified polyolefin graft-treated with a silane compound as an insulator, accumulation of space charge due to application of a high DC voltage can be achieved. A DC high-voltage power cable that can be prevented and has excellent performance can be obtained.
Claims (5)
るエチレン−一酸化炭素共重合体を絶縁体としたことを
特徴とする直流電力ケーブル。1. A DC power cable characterized by using an ethylene-carbon monoxide copolymer having a carbon monoxide copolymerization ratio of 5 wt% or less as an insulator.
酸化ケイ素を5重量部以下充填した樹脂組成物を絶縁体
としたことを特徴とする直流電力ケーブル。2. A direct current power cable comprising a resin composition in which 5 parts by weight or less of silicon dioxide is filled as an insulator with respect to 100 parts by weight of polyethylene.
純度98%以上、その平均粒子径10μm以下である粒
子からなることを特徴とする請求項2記載の直流電力ケ
ーブル。3. The silicon dioxide according to claim 2,
The DC power cable according to claim 2, wherein the DC power cable comprises particles having a purity of 98% or more and an average particle diameter of 10 µm or less.
変性ポリオレフィンを絶縁体としたことを特徴とする直
流電力ケーブル。4. A DC power cable comprising a silane-modified polyolefin graft-treated with a silane compound as an insulator.
緒合触媒及び、水分の存在下で融点以下の温度で架橋さ
せた絶縁体を有する請求項4記載の直流電力ケーブル。5. A DC power cable according to claim 4, which comprises an insulator obtained by crosslinking the insulator according to claim 4 at a temperature below a melting point in the presence of a silanol coupling catalyst and moisture.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29420593A JP3616881B2 (en) | 1993-10-28 | 1993-10-28 | DC power cable |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29420593A JP3616881B2 (en) | 1993-10-28 | 1993-10-28 | DC power cable |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07130227A true JPH07130227A (en) | 1995-05-19 |
| JP3616881B2 JP3616881B2 (en) | 2005-02-02 |
Family
ID=17804686
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP29420593A Expired - Fee Related JP3616881B2 (en) | 1993-10-28 | 1993-10-28 | DC power cable |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3616881B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999044206A1 (en) * | 1998-02-25 | 1999-09-02 | Abb Ab | Insulated electric cable |
-
1993
- 1993-10-28 JP JP29420593A patent/JP3616881B2/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999044206A1 (en) * | 1998-02-25 | 1999-09-02 | Abb Ab | Insulated electric cable |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3616881B2 (en) | 2005-02-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4363842A (en) | Elastomeric pre-stretched tubes for providing electrical stress control | |
| JPS64767B2 (en) | ||
| JP3275358B2 (en) | DC power cable | |
| JPH07130227A (en) | DC power cable | |
| JP3475436B2 (en) | DC power cable | |
| KR100286531B1 (en) | High pressure heat resistant power distribution line | |
| KR20180131339A (en) | High voltage DC power cable joint system | |
| JP3575030B2 (en) | DC power cable | |
| JP4347920B2 (en) | DC power cable | |
| JP3901790B2 (en) | DC cross-linked polyethylene insulated power cable | |
| JPH0616366B2 (en) | DC power cable | |
| JP3275359B2 (en) | DC power cable | |
| JPH11224543A (en) | DC power cable | |
| JP3275342B2 (en) | DC power cable | |
| JPH11224545A (en) | DC power cable | |
| Nazar et al. | Electrical tree propagation in XLPE containing untreated and treated silica nanofiller | |
| JP2792671B2 (en) | High-density electrical insulating material for coating insulating structures | |
| JPH09129039A (en) | Dc cable | |
| JPH09231839A (en) | Direct current cable | |
| JPH11224544A (en) | DC power cable | |
| JPH0677412B2 (en) | Power cable for high voltage DC transmission | |
| JPS63150811A (en) | Power cable | |
| JPH05198218A (en) | Dc power cable | |
| JP2001266650A (en) | Electrical insulating composition and electric cable | |
| JPS5998403A (en) | semiconductive composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040727 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041013 |
|
| A61 | First payment of annual fees (during grant procedure) |
Effective date: 20041026 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20071119 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20091119 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20111119 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20111119 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121119 Year of fee payment: 8 |
|
| LAPS | Cancellation because of no payment of annual fees |