[go: up one dir, main page]

JPH07144371A - High damping carbon fiber reinforced resin composite material - Google Patents

High damping carbon fiber reinforced resin composite material

Info

Publication number
JPH07144371A
JPH07144371A JP5293701A JP29370193A JPH07144371A JP H07144371 A JPH07144371 A JP H07144371A JP 5293701 A JP5293701 A JP 5293701A JP 29370193 A JP29370193 A JP 29370193A JP H07144371 A JPH07144371 A JP H07144371A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
reinforced resin
resin composite
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5293701A
Other languages
Japanese (ja)
Inventor
Takashi Nishimoto
堯史 西本
Tomohiro Nakanishi
朋宏 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP5293701A priority Critical patent/JPH07144371A/en
Publication of JPH07144371A publication Critical patent/JPH07144371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】 【目的】 本発明は炭素繊維強化樹脂複合材料(CFR
P)の耐熱性や対薬品性、諸弾性率、比剛性を損なうこ
と無く、すなわち炭素繊維以外の成分を更に付加や置換
することによる弾性率や比剛性の低下を来すことなく、
その振動減衰性を向上させたCFRPを提供することを
目的とする。 【構成】 本発明は、一方向に引き揃えられた弾性率が
異なる複数のグレードの炭素繊維束の多数本を略均一
に、相互に隣接するように分散配設した炭素繊維束から
なる集合と、これらの空間に含浸、固化された、これら
を力学的に結合するマトリックス樹脂相からなる炭素繊
維強化樹脂複合材料である。
(57) [Abstract] [Objective] The present invention is directed to a carbon fiber reinforced resin composite material (CFR).
P) without impairing the heat resistance, chemical resistance, various elastic moduli, and specific rigidity, that is, without lowering the elastic modulus and specific rigidity by further adding or substituting components other than carbon fiber,
It is an object of the present invention to provide a CFRP having improved vibration damping properties. According to the present invention, a set of carbon fiber bundles in which a plurality of carbon fiber bundles of a plurality of grades having different elastic moduli that are aligned in one direction are distributed substantially uniformly and adjacent to each other is provided. The carbon fiber reinforced resin composite material is composed of a matrix resin phase, which is impregnated into these spaces and solidified to mechanically bond them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、釣竿、ゴルフクラブ、
ラケット類、自転車フレーム等のスポーツ・レジャー用
具およびロールやシャフト、作動アーム、機械フレーム
等の一般産業機器、車両の車体や駆動・伝動部材、船舶
の船体や駆動・伝動部材、更には航空宇宙構造物等に使
用することの出来るCFRPに関するものであり、特に
その軽量性と共に機械的振動減衰性が要求される用途に
適する。
BACKGROUND OF THE INVENTION The present invention relates to a fishing rod, a golf club,
Sports and leisure equipment such as rackets and bicycle frames, general industrial equipment such as rolls and shafts, actuating arms, machine frames, vehicle bodies and drive / transmission members, ship hulls and drive / transmission members, and aerospace structures. The present invention relates to CFRP that can be used for objects and the like, and is particularly suitable for applications that require mechanical vibration damping properties as well as its light weight.

【0002】[0002]

【従来の技術】炭素繊維強化樹脂複合材料(以下CFR
Pと略す)は、軽量で且つ高強度、高弾性の炭素繊維を
強化繊維として用いることによって、比強度、比剛性が
高いとともに振動減衰能が比較的高いことから、軽量で
変形が少なく且つ衝撃や振動によるエネルギーを軽減し
人体や製品を保護する構造部材や、高速に動き且つ高度
の位置決め精度の要求される構造部材に適用が行われて
いる。
2. Description of the Related Art Carbon fiber reinforced resin composite materials (hereinafter CFR
(Abbreviated as P) is a lightweight, high-strength, high-elasticity carbon fiber as a reinforcing fiber, which has a high specific strength and a high specific rigidity and a relatively high vibration damping ability. It has been applied to structural members that reduce energy due to vibration and vibration to protect human bodies and products, and structural members that move at high speed and require a high degree of positioning accuracy.

【0003】現在高性能のCFRPに使用されている炭
素繊維としては、ポリアクリロニトリル(PAN)繊維
を原料として製造されるPAN系炭素繊維と、炭素質ピ
ッチを原料とするピッチ系炭素繊維が主流である。いず
れもその製造の都合等により500本〜24000本程
度の繊維束の形態を持ち、種々の弾性率が異なるグレー
ドが品揃え、提供されている。弾性率のグレードによる
違いは15〜80t/mm2 にわたり、部材に要求される
剛性に応じた適切なグレードが選定される。一方、振動
減衰性についてはグレードによる違いは小さく、また弾
性率に依存するので選択の幅が限られる。
Currently, the mainstream carbon fibers used in high-performance CFRP are PAN-based carbon fibers produced from polyacrylonitrile (PAN) fibers and pitch-based carbon fibers produced from carbonaceous pitch. is there. Each of them has a form of a fiber bundle of about 500 to 24,000 due to the manufacturing convenience and the like, and various grades having different elastic moduli are available in a lineup. The difference in elastic modulus depending on the grade ranges from 15 to 80 t / mm 2 , and an appropriate grade is selected according to the rigidity required for the member. On the other hand, with respect to the vibration damping property, there is little difference between grades, and the range of selection is limited because it depends on the elastic modulus.

【0004】CFRPは工業的な材料の中では比強度、
比剛性においては抜き出て優れており、振動減衰性にお
いてもスチールやアルミ等の金属材料より優れてはいる
ものの樹脂やアラミド繊維強化樹脂複合材料より劣る。
この振動減衰性を向上させる方法として複合材料の樹
脂に粘弾性材若しくは可撓性付与剤を添加する方法(例
えば特開昭60−190351号公報、特開平2−17
224号公報参照)、複合材料内部に粘弾性材料層を
付加する方法(例えば、特開平2−84329号公報、
特開平2−169634号公報参照)、更には炭素繊
維より振動減衰性に優れるアラミド繊維やポリエチレン
繊維等の異種の強化繊維を一部置換し併用する方法(例
えば、特開昭62−173730号公報、特開昭63−
78734号公報、特開平3−247223号公報参
照)が提案されている。
CFRP is a specific strength among industrial materials,
It is excellent in specific rigidity and superior in vibration damping property to metallic materials such as steel and aluminum, but inferior to resins and aramid fiber reinforced resin composite materials.
As a method of improving this vibration damping property, a method of adding a viscoelastic material or a flexibility-imparting agent to the resin of the composite material (for example, JP-A-60-190351 and JP-A-2-17).
224), a method of adding a viscoelastic material layer inside the composite material (for example, Japanese Patent Application Laid-Open No. 2-84329,
Japanese Patent Laid-Open No. 2-169634), and a method of partially substituting different types of reinforcing fibers such as aramid fiber and polyethylene fiber, which are more excellent in vibration damping than carbon fiber, and used together (for example, Japanese Patent Laid-Open No. 62-173730). , JP-A-63-
Japanese Patent No. 78734 and Japanese Patent Laid-Open No. 3-247223) have been proposed.

【0005】しかしの方法では樹脂に添加された成分
により樹脂本来の耐熱性や耐薬品性が低下し、の方法
では付加された粘弾性材料層の分だけ肉厚や重量が増加
する。また、いずれの方法でも繊維間や層間の粘弾
性材料の為に層間の剪断弾性率が低下し、ひいては曲げ
弾性率も低下する。の方法では複合材料全体の弾性率
や比剛性がCFRPのそれよりも低下すると共に振動減
衰能もこれを構成する各繊維種単独からなる複合材料の
それの相加平均に近い値を持つに過ぎない。
However, in the method, the heat resistance and chemical resistance inherent in the resin are lowered by the components added to the resin, and in the method, the thickness and weight are increased by the amount of the added viscoelastic material layer. Further, in any of the methods, the shear elastic modulus between the layers decreases due to the viscoelastic material between the fibers or between the layers, and thus the bending elastic modulus also decreases. In this method, the elastic modulus and specific rigidity of the composite material as a whole are lower than those of CFRP, and the vibration damping capacity has a value close to the arithmetic mean of that of the composite material consisting of each fiber type constituting the composite material. Absent.

【0006】CFRP中の炭素繊維の形態としては数ミ
リ以下に切断したものを樹脂中に均一に分散したものも
あるが、炭素繊維本来の強度や弾性率を十分に活用した
高性能のCFRPを得るために繊維束を切断せず(いわ
ゆる長繊維のままで)所定の方向のみに配設したものが
多い。
As a form of the carbon fiber in the CFRP, there is one in which the carbon fiber is cut into several millimeters or less and is evenly dispersed in the resin. However, a high-performance CFRP that fully utilizes the original strength and elastic modulus of the carbon fiber is used. In many cases, the fiber bundles are not cut (so-called long fibers as they are) and arranged only in a predetermined direction in order to obtain them.

【0007】繊維束を所定の方向に配設する方法として
は、多数の繊維束を束ねダイスを通して一方向に引き抜
く方法(いわゆるプルトルージョン法)、繊維束を芯金
の周囲を逐次覆うように巻き重ねてゆく方法(いわゆる
フィラメントワインディング法)、繊維束を多数一方向
に引き揃えた状態や織布、編組み状態に樹脂を含浸し
た、いわゆるプリプレグシートを芯金に巻き重ねてゆく
方法(いわゆるシートワインディング法)、プリプレグ
シートや織布等を型の表面に積み上げてゆく方法(いわ
ゆるレイアップ法)等が用いられている。プルトルージ
ョン法は断面形状が一様で、専ら一方向に繊維強化する
用途に適する。フィラメントワインディング法やシート
ワインディング法は断面が閉曲面の積層構造を持ち、複
数の応力にそれぞれ対応した層を形成できる。レイアッ
プ法は断面が平面又は開曲面の積層構造を持ち、複数の
応力にそれぞれ対応した層を形成できる。
As a method for arranging the fiber bundle in a predetermined direction, a method in which a large number of fiber bundles are bundled and pulled out in one direction through a die (so-called pull-through method), or a fiber bundle is wound so as to sequentially cover the periphery of a cored bar. A method of stacking (so-called filament winding method), a method of winding a so-called prepreg sheet impregnated with resin in a state in which a large number of fiber bundles are aligned in one direction, a woven fabric, or a braided state (so-called Sheet winding method), a method of stacking prepreg sheets, woven fabric, etc. on the surface of the mold (so-called lay-up method) and the like are used. The plutotrusion method has a uniform cross-sectional shape and is suitable for fiber-reinforced applications in one direction. The filament winding method and the sheet winding method have a laminated structure with a closed curved surface in cross section, and can form layers corresponding to a plurality of stresses. The layup method has a laminated structure having a flat cross section or an open curved surface, and can form layers corresponding to a plurality of stresses.

【0008】[0008]

【発明が解決しようとする課題】本発明はCFRPの耐
熱性や対薬品性、諸弾性率、比剛性を損なうこと無く、
すなわち炭素繊維以外の成分を更に付加や置換すること
による弾性率や比剛性の低下を来すことなく、その振動
減衰性を向上させたCFRPを提供することを目的とす
るものである。
DISCLOSURE OF THE INVENTION The present invention provides a CFRP without impairing heat resistance, chemical resistance, various elastic moduli, and specific rigidity.
That is, it is an object of the present invention to provide a CFRP having improved vibration damping properties without causing a decrease in elastic modulus or specific rigidity due to further addition or substitution of components other than carbon fiber.

【0009】[0009]

【課題を解決するための手段】本発明は、一方向に引き
揃えられた弾性率が異なる複数のグレードの炭素繊維束
の多数本を略均一に、相互に隣接するように分散配設し
た炭素繊維束からなる集合と、これらの空間に含浸、固
化された、これらを力学的に結合するマトリックス樹脂
相からなる炭素繊維強化樹脂複合材料である。
According to the present invention, a large number of carbon fiber bundles of a plurality of grades having different elastic moduli that are aligned in one direction are distributed substantially uniformly and adjacently to each other. It is a carbon fiber reinforced resin composite material composed of an aggregate composed of fiber bundles and a matrix resin phase impregnated in these spaces and solidified to mechanically bond them.

【0010】すなわち、(1)本発明の炭素繊維強化樹
脂複合材料は、一方向に引き揃えられた多数の炭素繊維
束の集合と、これらの空間に充填されたマトリックス樹
脂からなる炭素繊維強化樹脂複合材料に於いて、この炭
素繊維束の集合を弾性率が異なる複数のグレードの炭素
繊維束を略均一に分散配設して構成してなり、その振動
減衰率が、これと同じ樹脂とこれを構成する中の単一の
グレードの炭素繊維束とからなり且つ、樹脂と繊維の体
積割合がこれに等しい、いずれの炭素繊維強化樹脂複合
材料の振動減衰率より高い値を持つことを特徴とする炭
素繊維強化樹脂複合材料である。
That is, (1) the carbon fiber reinforced resin composite material of the present invention is a carbon fiber reinforced resin comprising a set of a large number of carbon fiber bundles aligned in one direction and a matrix resin filled in these spaces. In a composite material, this set of carbon fiber bundles is composed by arranging carbon fiber bundles of a plurality of grades having different elastic moduli substantially evenly, and the vibration damping ratio of this is the same as that of this resin. Which is composed of a single-grade carbon fiber bundle, and has a value higher than the vibration damping rate of any carbon fiber-reinforced resin composite material in which the volume ratio of the resin and the fiber is equal to this. It is a carbon fiber reinforced resin composite material.

【0011】この場合、炭素繊維強化樹脂複合材料の外
周および/もしくは内周に、上記一方向に引き揃えられ
た炭素繊維束方向と交差する方向に引き揃えられた炭素
繊維束からなる強化層を1層以上積層して成る炭素繊維
強化樹脂複合材料であってもよい。
In this case, a reinforcing layer composed of carbon fiber bundles aligned in a direction intersecting with the carbon fiber bundle direction aligned in the above-mentioned one direction is provided on the outer periphery and / or the inner periphery of the carbon fiber reinforced resin composite material. It may be a carbon fiber reinforced resin composite material formed by laminating one or more layers.

【0012】また、(2)本発明の炭素繊維強化樹脂複
合材料は、特定の方向に引き揃えられた炭素繊維束と、
これらの空間に充填されたマトリックス樹脂からなる層
を1層以上積層して成る炭素繊維強化樹脂複合材料にお
いて、その積層の少なくとも1層が、弾性率が異なる複
数のグレードの炭素繊維束が各層内において同一方向
に、略相互に隣接して配設してなり、その振動減衰率
が、これを構成する複数のグレードの炭素繊維束をその
中の単一のグレードの炭素繊維束に置き換え、樹脂と繊
維の体積割合がこれに等しい、いずれの炭素繊維強化樹
脂複合材料の振動減衰率より高い値を持つことを特徴と
する炭素繊維強化樹脂複合材料である。
(2) The carbon fiber-reinforced resin composite material of the present invention comprises a carbon fiber bundle aligned in a specific direction,
In a carbon fiber reinforced resin composite material formed by laminating one or more layers of matrix resin filled in these spaces, at least one layer of the lamination is a plurality of grades of carbon fiber bundles having different elastic moduli within each layer. In the same direction, the vibration damping factors are such that the carbon fiber bundles of the plurality of grades constituting this are replaced by the carbon fiber bundles of a single grade, The carbon fiber reinforced resin composite material is characterized in that it has a value higher than the vibration damping ratio of any carbon fiber reinforced resin composite material in which the volume ratio of the fibers is equal to this.

【0013】この場合、各層毎の繊維束の方向が、積層
の総体として特定の軸線に対称に引き揃えられて成る炭
素繊維強化樹脂複合材料において、その積層の少なくと
も2層が、上記(2)のように構成してなり、且つこれ
らの繊維束の方向が互いに交差してなる炭素繊維強化樹
脂複合材料であることが好ましい。各層毎の繊維束の方
向が、積層の総体として特定の軸線に対称に引き揃えら
れて成る炭素繊維強化樹脂複合材料において、その軸線
に略平行な繊維束の方向を持つ層の少なくとも1層が、
上記(2)のように構成してなる炭素繊維強化樹脂複合
材料であってもよい。
In this case, in the carbon fiber reinforced resin composite material in which the direction of the fiber bundle of each layer is aligned symmetrically with respect to a specific axis as the whole of the layered structure, at least two layers of the layered structure are the above (2). It is preferable that the carbon fiber reinforced resin composite material is configured as described above and the directions of the fiber bundles intersect each other. In the carbon fiber reinforced resin composite material in which the direction of the fiber bundle of each layer is aligned symmetrically to a specific axis as a whole of the lamination, at least one layer having a direction of the fiber bundle substantially parallel to the axis is ,
A carbon fiber reinforced resin composite material configured as described in (2) above may be used.

【0014】さらに、(3)本発明の炭素繊維強化樹脂
複合材料は、特定の方向に引き揃えられた炭素繊維束
と、これらの空間に充填されたマトリックス樹脂からな
る強化層を2層以上積層して成る炭素繊維強化樹脂複合
材料において、隣接して対を成す層の炭素繊維束が配設
方向が同一で且つ、各層内は単一の弾性率グレードから
なり、隣接する層間では異なる弾性率のグレードからな
ることにより、その振動減衰率が、これを構成する複数
のグレードの炭素繊維束をその中の単一のグレードの炭
素繊維束に置き換え、樹脂と繊維の体積割合がこれに等
しい、いずれの炭素繊維強化樹脂複合材料の振動減衰率
より高い値を持つことを特徴とする炭素繊維強化樹脂複
合材料である。
Further, (3) the carbon fiber reinforced resin composite material of the present invention is a laminate of two or more layers of carbon fiber bundles aligned in a specific direction and a matrix resin filled in these spaces. In the carbon fiber reinforced resin composite material formed by the above, the carbon fiber bundles of the layers that are adjacent to each other have the same arranging direction, and each layer consists of a single elastic modulus grade, and the elastic modulus that is different between the adjacent layers. By virtue of being made of a grade of, the vibration damping rate thereof replaces the carbon fiber bundles of the plurality of grades constituting this with a single grade carbon fiber bundle, and the volume ratio of the resin and the fiber is equal to this. It is a carbon fiber reinforced resin composite material having a value higher than the vibration damping rate of any carbon fiber reinforced resin composite material.

【0015】この場合、各層毎の繊維束の方向が積層の
総体として特定の軸線に対称に引き揃えられた積層から
成る炭素繊維強化樹脂複合材料において、その積層の少
なくとも2対が、上記(3)のように構成してなり、且
つその対の繊維束の方向が前記の特定の軸線に対称に互
いに交差してなる炭素繊維強化樹脂複合材料であること
が好ましい。各層毎の繊維束の方向が積層の総体として
特定の軸線に対称に引き揃えられた積層から成る炭素繊
維強化樹脂複合材料において、その軸線に略平行な繊維
束の方向を持つ層の少なくとも2層が、上記(3)のよ
うに構成してなる炭素繊維強化樹脂複合材料であっても
よい。
In this case, in the carbon fiber reinforced resin composite material comprising a laminate in which the directions of the fiber bundles of the respective layers are aligned symmetrically with respect to a specific axis as a whole of the laminate, at least two pairs of the laminates have the above (3). It is preferable that the carbon fiber reinforced resin composite material is configured as described in (1) above, and the direction of the pair of fiber bundles symmetrically intersects with the specific axis. In a carbon fiber reinforced resin composite material composed of laminated layers in which the direction of the fiber bundle of each layer is aligned symmetrically with respect to a specific axis as a whole of the lamination, at least two layers having a direction of the fiber bundle substantially parallel to the axis. However, a carbon fiber reinforced resin composite material configured as described in (3) above may be used.

【0016】本発明に使用される炭素繊維束は、ピッチ
系又はPAN系の炭素繊維からなり、一般的には直径が
4μm以上15μm以下の単繊維の200本から240
00本からなる束で構成される。複数のグレードの炭素
繊維束は、好ましくは、引張弾性率が150GPa 以上8
00GPa 以下であり、単位長さ当たりの質量である繊度
が20mg/m以上3500mg/m以下である繊維束
(A)と、引張弾性率が170GPa 以上820GPa 以下
であり、繊度が20mg/m以上3500mg/m以下であ
る繊維束(B)からなり、繊維束(A)と繊維束(B)
の引張弾性率の差が20GPa 以上であり、繊度の比が
1:5から5:1の範囲にある2グレード以上の組み合
わせである。最適には、引張弾性率が150GPa 以上7
50GPa 以下であり、繊度が200mg/m以上800mg
/m以下である繊維束(A)と、引張弾性率が200GP
a 以上820GPa 以下であり、繊度が200mg/m以上
800mg/m以下である繊維束(B)からなり、繊維束
(A)と繊維束(B)の引張弾性率の差が100GPa 以
上であり、繊度の比が1:2から2:1の範囲にある2
グレードの組み合わせである。なお、本発明において繊
維の引張弾性率は、JIS R7601 で規定される樹脂含浸ス
トランド法により得られた値であり、繊維束の引張弾性
率と同義である。また、樹脂と繊維の体積割合は、繊維
体積含有率(%)で、好ましくは30〜80%、より好
ましくは50〜70%である。
The carbon fiber bundle used in the present invention is composed of pitch-based or PAN-based carbon fibers, and generally 200 to 240 single fibers having a diameter of 4 μm or more and 15 μm or less.
It consists of a bundle of 00 pieces. The carbon fiber bundles of a plurality of grades preferably have a tensile elastic modulus of 150 GPa or more 8
A fiber bundle (A) having a fineness of 20 GPa or less and a mass per unit length of 20 mg / m or more and 3500 mg / m or less, and a tensile modulus of 170 GPa or more and 820 GPa or less and a fineness of 20 mg / m or more and 3500 mg. / M or less fiber bundle (B), fiber bundle (A) and fiber bundle (B)
Is a combination of two grades or more in which the difference in tensile elastic modulus is 20 GPa or more and the fineness ratio is in the range of 1: 5 to 5: 1. Optimally, the tensile modulus should be 150 GPa or more 7
50 GPa or less and fineness of 200 mg / m or more and 800 mg
/ M or less fiber bundle (A) and tensile modulus of 200 GP
a or more and 820 GPa or less and a fiber bundle (B) having a fineness of 200 mg / m or more and 800 mg / m or less, and a difference in tensile elastic modulus between the fiber bundle (A) and the fiber bundle (B) is 100 GPa or more, Fineness ratio in the range of 1: 2 to 2: 1 2
It is a combination of grades. In the present invention, the tensile elastic modulus of the fiber is a value obtained by the resin-impregnated strand method defined in JIS R7601 and has the same meaning as the tensile elastic modulus of the fiber bundle. The volume ratio of the resin to the fiber is a fiber volume content (%), preferably 30 to 80%, more preferably 50 to 70%.

【0017】本発明に使用されるマトリックス樹脂は、
エポキシ、ポリエステル等の熱硬化性樹脂、ポリアミ
ド、ポリフェニレンサルファイド等の熱可塑性樹脂のい
ずれでもよい。また、繊維強化複合材料の振動減衰性は
用いるマトリックス樹脂により大幅に異なるので絶対値
は繊維グレードのみで決まらないが、同一樹脂を用いた
一方向強化複合材料の機械的振動の損失係数の繊維グレ
ード間の差は0.2ポイント以下が好ましい。
The matrix resin used in the present invention is
It may be any of thermosetting resins such as epoxy and polyester, and thermoplastic resins such as polyamide and polyphenylene sulfide. Also, since the vibration damping properties of fiber-reinforced composite materials differ greatly depending on the matrix resin used, the absolute value cannot be determined by the fiber grade alone, but the fiber vibration coefficient of the mechanical vibration of the unidirectionally reinforced composite material using the same resin The difference is preferably 0.2 points or less.

【0018】複数グレード、特に両グレードの弾性率は
その差が大きい程より高い振動減衰性が得られるが、C
FRP部材に必要な弾性率や他の、例えば強度特性を考
慮して最適のグレードの組合せと配合比を決めるのが好
ましい。繊維束中の繊維の本数即ち繊維束の太さは前記
配合比に合わせ選択するが、それより細い繊維束を複数
本抱き合わせ即ち合糸して前記配合比に合わせてもよ
い。
The greater the difference between the elastic moduli of a plurality of grades, especially of both grades, the higher the vibration damping property is obtained.
It is preferable to determine the optimum combination of grades and compounding ratio in consideration of the elastic modulus required for the FRP member and other factors such as strength characteristics. The number of fibers in the fiber bundle, that is, the thickness of the fiber bundle is selected in accordance with the above-mentioned blending ratio, but a plurality of fiber bundles thinner than that may be tied together or combined to meet the above-mentioned blending ratio.

【0019】尚、本発明で述べる機械的振動の損失係数
は、自由振動における減衰曲線の包絡線より次式により
求めた値ηである。 δ=(1/N)ln(A0 /AN ) η=(δ/π)×100(%) ここに δ:対数減衰率、A0 :初期振幅、AN :N周
期後の振幅、N:周期、π:円周率 ただしA0 /AN は約2 本発明のCFRPは製造上特別な装置を必要とせず、在
来の長繊維FRPの成形手法を用いることができる。
The loss factor of mechanical vibration described in the present invention is a value η obtained by the following equation from the envelope of the damping curve in free vibration. δ = (1 / N) ln (A 0 / A N ) η = (δ / π) × 100 (%) where δ: logarithmic decay rate, A 0 : initial amplitude, A N : amplitude after N cycles, N: Period, π: Circumferential ratio However, A 0 / A N is about 2 The CFRP of the present invention does not require a special device for manufacturing, and a conventional method for molding long fiber FRP can be used.

【0020】以下、本発明のCFRPに於ける繊維束の
配設構造および製造方法を図面を用いて詳細に説明す
る。図1は層構造を持たない本発明のCFRPの繊維束
と直角方向の断面の概念図である。繊維束1と2はマト
リックス樹脂3中に略均一に分散し、実質的に隣接する
ように配設されている。本構造はプルトルージョン法等
を用いて製造する事が出来る。1方向にのみ引き揃えら
れたCFRPは、繊維束方向に比べその横方向が格段に
弱いので、丸パイプや角パイプの様な中空形状の部材は
その外周および内周またはこのいずれかを、その繊維束
方向と交わる方向の繊維束を持ったFRPで補強するこ
とができる。補強は比剛性、比強度の点からCFRPが
好ましい。
The arrangement structure and manufacturing method of the fiber bundle in the CFRP of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a conceptual diagram of a cross section in a direction perpendicular to the fiber bundle of the CFRP of the present invention having no layer structure. The fiber bundles 1 and 2 are substantially uniformly dispersed in the matrix resin 3 and are arranged so as to be substantially adjacent to each other. This structure can be manufactured by using the pultrusion method or the like. Since the lateral direction of CFRP aligned only in one direction is significantly weaker than the fiber bundle direction, hollow shaped members such as round pipes and square pipes have their outer and / or inner circumferences It can be reinforced with an FRP having a fiber bundle in a direction intersecting with the fiber bundle direction. CFRP is preferable for reinforcement in terms of specific rigidity and specific strength.

【0021】図2は、弾性率の低いグレードの炭素繊維
束1と弾性率の高いグレードの炭繊維束2が同一層内で
同一方向に引き揃えられ、且つ相互に隣接するように分
散配設された、層構造を持つ本発明のCFRPの構造の
概念図である。図5に例示する一方向プリプレグシート
および/もしくは図6に例示する織物や編み組みを用い
シートワインディング法、レイアップ法により製造する
事が出来る。異なる層の繊維束の方向は部材の応力に合
わせ選定され、交差していてもよい。
FIG. 2 shows that a carbon fiber bundle 1 having a low elastic modulus grade and a carbon fiber bundle 2 having a high elastic modulus grade are aligned in the same layer in the same direction and are dispersedly arranged so as to be adjacent to each other. FIG. 6 is a conceptual diagram of the structure of the CFRP of the present invention having a layered structure. The unidirectional prepreg sheet illustrated in FIG. 5 and / or the woven fabric or braid illustrated in FIG. 6 can be used for the sheet winding method and the layup method. The directions of the fiber bundles of different layers are selected according to the stress of the member and may intersect.

【0022】図3は、弾性率の低いグレードの炭素繊維
束1が同一層内で同一方向に引き揃えられ、この層に隣
接する他の層において弾性率の高いグレードの炭繊維束
2が同様に同一層内で同一方向に引き揃えられて配設さ
れて対を成す層構造を持つ本発明のCFRPの構造の概
念図である。異なる対を成す層の繊維束の方向は部材の
応力に合わせ選定され、交差していてもよい。即ち通
常、層構造を持つ、長繊維からなるCFRPは繊維束方
向に比べ横方向の強度や弾性率が格段に低い為、部材に
生じる応力の方向に合わせて複数の方向に繊維束を配設
する。更に、この複数の方向は、成形時の熱応力等に起
因する部材のゆがみを抑制するため、特定の軸線に対し
成形厚み総体のなかで線対称になるよう配設される。繊
維束間強度を高めたり、プリプレグの取扱性を高める等
の目的でガラス繊維などを少量併用してもよい。本構造
はフィラメントワインディング法やシートワインディン
グ法、レイアップ法を用いて製造する事が出来る。
In FIG. 3, a carbon fiber bundle 1 of a low elastic modulus grade is aligned in the same direction in the same layer, and a carbon fiber bundle 2 of a high elastic modulus grade is the same in other layers adjacent to this layer. FIG. 3 is a conceptual diagram of the structure of the CFRP of the present invention having a layered structure in which a pair of layers are arranged in the same layer so as to be aligned in the same direction. The directions of the fiber bundles of different pairs of layers are selected according to the stress of the member and may intersect. That is, since CFRP, which has a layered structure and is composed of long fibers, has a significantly lower strength and elastic modulus in the lateral direction than the fiber bundle direction, the fiber bundles are arranged in a plurality of directions according to the direction of stress generated in the member. To do. Further, the plurality of directions are arranged so as to be line-symmetric in the total molding thickness with respect to a specific axis in order to suppress the distortion of the member due to the thermal stress at the time of molding. A small amount of glass fiber or the like may be used in combination for the purpose of increasing the strength between fiber bundles and improving the handleability of the prepreg. This structure can be manufactured using a filament winding method, a sheet winding method, or a layup method.

【0023】図4はプルトルージョン法による製造法の
概念を示す側面図である。9は略等数の、弾性率の低い
グレードの炭素繊維束1と弾性率の高いグレードの炭繊
維束2からなるボビン群である。これより炭素繊維束1
と炭素繊維束2を引出し、引き揃え筬4を通して2次元
的に交互に配設した後、含浸槽3′に導き樹脂3を含浸
せしめ、引き続いて加熱されたダイス5中を引き抜き所
定の断面形状を与え、更に加熱炉6で後加熱して成形す
る。7は繊維束を一定速度で引き取る駆動装置であり、
8は成形されたCFRPを所定長さに切断する装置であ
る。
FIG. 4 is a side view showing the concept of the manufacturing method by the pultrusion method. Reference numeral 9 is a bobbin group consisting of carbon fiber bundles 1 having a low elastic modulus grade and carbon fiber bundles 2 having a high elastic modulus grade, which are substantially equal in number. From this, carbon fiber bundle 1
The carbon fiber bundle 2 and the carbon fiber bundle 2 are drawn out and arranged two-dimensionally alternately through the aligning reeds 4, and then introduced into the impregnation tank 3'to impregnate the resin 3 therein, and then the heated die 5 is drawn out to have a predetermined cross-sectional shape. And further heated in the heating furnace 6 to mold. 7 is a drive device for pulling the fiber bundle at a constant speed,
Reference numeral 8 is a device for cutting the molded CFRP into a predetermined length.

【0024】図5は図2に例示した構造の製造に用いら
れる一方向プリプレグシートの一例の概念図であり、図
7に例示する装置により、弾性率の低いグレードの炭素
繊維束1と弾性率の高いグレードの炭素繊維束2を交互
に1方向に引き揃え配設し、これに樹脂を含浸してシー
ト状に成したものである。
FIG. 5 is a conceptual diagram of an example of the unidirectional prepreg sheet used for manufacturing the structure illustrated in FIG. 2, and the apparatus illustrated in FIG. The high-grade carbon fiber bundles 2 are alternately aligned and arranged in one direction and impregnated with resin to form a sheet.

【0025】図6は、縦糸および/もしくは横糸を弾性
率の低いグレードの炭素繊維束1と弾性率の高いグレー
ドの炭素繊維束2を交互に配設した織物や編み組みの構
造の概念図でありこれに樹脂を含浸し、クロスプリプレ
グとすることも出来る。
FIG. 6 is a conceptual view of a structure of a woven fabric or a braid in which warp yarns and / or weft yarns are alternately arranged with a carbon fiber bundle 1 of a low elastic modulus grade and a carbon fiber bundle 2 of a high elastic modulus grade. It is also possible to impregnate this with a resin to make a cross prepreg.

【0026】図7は図5に例示する一方向プリプレグシ
ートの製造法の概念を示す側面図である。9は略等数
の、弾性率の低いグレードの炭素繊維束1と弾性率の高
いグレードの炭繊維束2からなるボビン群である。これ
より炭素繊維束1と炭素繊維束2を引出し、引き揃え筬
4を通して1次元的に交互に配設した後、樹脂コート紙
10を両面より導き加熱加圧ローラ11により樹脂を含
浸せしめ、ボビン12に巻き取る。
FIG. 7 is a side view showing the concept of the method for manufacturing the unidirectional prepreg sheet illustrated in FIG. Reference numeral 9 is a bobbin group consisting of carbon fiber bundles 1 having a low elastic modulus grade and carbon fiber bundles 2 having a high elastic modulus grade, which are substantially equal in number. From this, the carbon fiber bundle 1 and the carbon fiber bundle 2 are drawn out and arranged one-dimensionally through the aligning reeds 4, and then the resin coated paper 10 is introduced from both sides and impregnated with the resin by the heating and pressing roller 11, and the bobbin Take up to 12.

【0027】図8は図2に例示した構造のCFRPのフ
ィラメントワインディング法による製造法の概念図であ
る。等数の、弾性率の低いグレードの炭素繊維束1と弾
性率の高いグレードの炭繊維束2を複数本、引き揃え筬
4を通して交互に配設した後これに樹脂3を含浸せし
め、フィードアイを介して芯金(マンドレル)13に巻
き付け、しかる後、樹脂を加熱形成せしめ図3に例示す
る積層構造を得る。
FIG. 8 is a conceptual diagram of a manufacturing method of the CFRP having the structure illustrated in FIG. 2 by the filament winding method. A plurality of equal number carbon fiber bundles 1 of low elastic modulus grade and carbon fiber bundles 2 of high elastic modulus grade are alternately arranged through the aligned reeds 4 and then impregnated with resin 3 to form a feed eye. It is wound around the cored bar (mandrel) 13 via the, and then the resin is heated to form the laminated structure illustrated in FIG.

【0028】[0028]

【作用】本発明のCFRPでは繊維束の長さ方向の引張
または圧縮、剪断負荷および繊維束の長さ方向に垂直な
曲げ負荷による振動の減衰を高めることが出来る。本発
明のCFRP構成によれば、特開昭60−190351
号公報や特開平2−169634号公報に示されている
如くCFRPに粘弾性材料を付加したり、特開平3−2
47223号公報に示されている如く高振動減衰性繊維
複合材料を付加することなく高振動減衰性の効果を発揮
させることが出来る。
According to the CFRP of the present invention, it is possible to enhance the vibration damping due to the tensile or compression in the lengthwise direction of the fiber bundle, the shearing load and the bending load perpendicular to the lengthwise direction of the fiber bundle. According to the CFRP structure of the present invention, there is disclosed in JP-A-60-190351.
As described in JP-A-2-169634 and JP-A-2-169634, a viscoelastic material is added to CFRP, or JP-A-3-2-3.
As shown in Japanese Patent No. 47223, the effect of high vibration damping can be exhibited without adding the high vibration damping fiber composite material.

【0029】その詳細な理由は明らかではないが、以下
のように考えられる。すなわち、部材の振動減衰は部材
に加えられた外力エネルギーが、部材が変形するときに
部材の弾性歪みエネルギーに変わるとともに、一部熱エ
ネルギーとして発散されることに起因する。繊維強化樹
脂複合材料の振動減衰性はそのマトリックス樹脂の非可
逆性によるものが支配的であり、一部、複合材料を構成
する微小な要素、すなわち繊維と樹脂間の摩擦に因るも
のと考えられる。繊維自体の比重や弾性率が小さく非可
逆性が大きければ当然、振動減衰性はそれだけ高くなる
ものと考えられる。
Although the detailed reason is not clear, it is considered as follows. That is, the vibration damping of the member is caused by the fact that the external force energy applied to the member is changed into elastic strain energy of the member when the member is deformed and is partially radiated as heat energy. The vibration damping properties of fiber-reinforced resin composite materials are dominated by the irreversibility of the matrix resin, and it is considered that this is due in part to the minute elements that make up the composite material, that is, the friction between the fibers and the resin. To be If the specific gravity and elastic modulus of the fiber itself are small and the irreversibility is large, it is considered that the vibration damping property is naturally increased accordingly.

【0030】本発明の場合は粘弾性材料や非可逆性が大
きい繊維を付加せずに、表2に示す如き比重や振動減衰
性がほゞ等しく弾性率が異なるグレードの炭素繊維を隣
接配置することにより振動減衰性を高める。弾性率が異
なる繊維を隣接配置した部材に繊維束の長さ方向の軸力
や曲げ力の負荷が加わった場合、部材の平均的な変形に
対し弾性率の高いものは伸びが小さく弾性率の低いもの
は伸びが大きい偏位をとると考えられる。すなわち、隣
合って変形量が偏位した繊維を結合している樹脂には、
部材の平均的な変形のほかに弾性率の異なった繊維間の
偏位量の差分だけ剪断変形が加わるものと考えられる。
つまり、本発明の複合材料構成ではマトリックス樹脂が
見掛け以上に変形し振動減衰性が高まるものと考えられ
る。
In the case of the present invention, carbon fibers of a grade having substantially the same specific gravity and vibration damping property but different elastic moduli as shown in Table 2 are arranged adjacent to each other without adding a viscoelastic material or a fiber having large irreversibility. This enhances vibration damping. When a load of axial force or bending force in the length direction of a fiber bundle is applied to a member in which fibers with different elastic moduli are arranged adjacent to each other, those with a high elastic modulus against the average deformation of the member have a small elongation and a small elastic modulus. It is considered that the lower ones take the deviation with larger elongation. That is, for the resin that binds the fibers whose deformation amounts are deviated next to each other,
In addition to the average deformation of the member, it is considered that shear deformation is applied by the difference in the deviation amount between fibers having different elastic moduli.
In other words, in the composite material structure of the present invention, it is considered that the matrix resin is deformed more than it seems and the vibration damping property is enhanced.

【0031】[0031]

【実施例】振動減衰性能の測定は、CFRP試料に箔抵
抗線歪みゲージを貼り計測した。 (実施例1)表1に示すように、ピッチ系のいわゆる2
0ton グレードの炭素繊維束A、および50ton グレー
ドの炭素繊維束Bを用い、不飽和ポリエステル樹脂をマ
トリックスとして含浸硬化せしめ直径6mm長さ500m
m、繊維体積含有率55%の表2に示す中実CFRP棒
を得た(図1参照)。これを試料として、衝撃曲げ荷重
に対する自由振動の自己減衰特性を計測した。本測定に
おいては、試料を水平状態で、1次振動モードの節部を
ゴム糸で宙づりした。比較例として、炭素繊維A単味、
またはB単味を使用する以外は同様にして、表2に示す
CFRP棒を成形し、同様の自己減衰特性を測定した。
これらの結果を表2に示す。複合材物性について本実施
例は、明らかにA単味又はB単味のもの(比較例)のい
ずれよりも振動損失係数が大きく、振動減衰性が著しく
向上していることがわかる。
[Examples] Vibration damping performance was measured by attaching a foil resistance wire strain gauge to a CFRP sample. (Example 1) As shown in Table 1, pitch-based so-called 2
A carbon fiber bundle A of 0 ton grade and a carbon fiber bundle B of 50 ton grade were used and impregnated and cured with an unsaturated polyester resin as a matrix. Diameter 6 mm and length 500 m
A solid CFRP rod shown in Table 2 having m and a fiber volume content of 55% was obtained (see FIG. 1). Using this as a sample, the self-damping characteristics of free vibration against impact bending load were measured. In this measurement, the sample was kept horizontal and the nodes in the primary vibration mode were suspended with a rubber thread. As a comparative example, carbon fiber A alone,
Alternatively, the CFRP rods shown in Table 2 were molded in the same manner except that B was used alone, and the same self-damping characteristics were measured.
The results are shown in Table 2. Regarding the physical properties of the composite material In this example, it is apparent that the vibration loss coefficient is larger than that of either the plain A or the plain B (comparative example), and the vibration damping property is remarkably improved.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例2)表3に示すように、PAN系
のいわゆる30ton グレードの炭素繊維束Aおよび50
ton グレードの炭素繊維束Bを交互に配設してなるUD
プリプレグシートを芯金軸方向に対し±45°方向に各
3層、この外側に炭素繊維束AのみからなるUDプリプ
レグシートを芯金軸方向に対し0°方向に4層シートワ
インディング法により外径12.5mm〜5mm、長さ12
00mmのテーパーを持った芯金に巻き付け、これに対応
する内径で肉厚約1.5mm、長さ1140mmの図11に
示す構成のCFRPパイプを得た(図2参照)。比較例
として、±45°方向が炭素繊維束Aのみ、または炭素
繊維束BのみのUDプリプレグシート各3層とする以外
は同様にして、CFRPパイプを成形した。
(Example 2) As shown in Table 3, PAN-based so-called 30 ton grade carbon fiber bundles A and 50 were used.
UD in which ton grade carbon fiber bundles B are alternately arranged
Three layers of prepreg sheets are arranged in a direction of ± 45 ° with respect to the axis direction of the core metal, and a UD prepreg sheet consisting only of the carbon fiber bundle A is provided outside the prepreg sheet by a four-layer sheet winding method in a direction of 0 degrees with respect to the axis direction of the core metal. 12.5mm-5mm, length 12
It was wound around a cored bar having a taper of 00 mm, and a CFRP pipe having a structure shown in FIG. 11 having an inner diameter corresponding to this and a wall thickness of about 1.5 mm and a length of 1140 mm was obtained (see FIG. 2). As a comparative example, a CFRP pipe was molded in the same manner except that the UD prepreg sheets each having only the carbon fiber bundle A or only the carbon fiber bundle B in the ± 45 ° direction had three layers.

【0035】振動減衰性能は、剪断負荷の振動減衰を計
測するために試料を鉛直に置き太端側をバイスで確実に
固定し、細端側に慣性モーメント600g/mm2 の腕を
取り付け、回転振り子とし、捩じり負荷を急激に除荷し
たときの衝撃負荷に対する自由振動の自己減衰特性を計
測した。これらの結果を表4および図9(a),(b)
に示す。本実施例についても明らかに、A単味、または
B単味のもの(比較例)のいずれよりも振動損失係数が
大きく、振動減衰性が著しく向上していることがわか
る。
For the vibration damping performance, the sample was placed vertically to measure the vibration damping of the shear load, the thick end side was securely fixed with a vise, and the arm with an inertia moment of 600 g / mm 2 was attached to the thin end side for rotation. As a pendulum, the self-damping characteristic of free vibration with respect to impact load when the torsional load was rapidly removed was measured. These results are shown in Table 4 and FIGS. 9 (a) and 9 (b).
Shown in. Also in this example, it is clear that the vibration loss coefficient is larger than that of either the plain A or the plain B (comparative example), and the vibration damping property is remarkably improved.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】(実施例3)表5に示すように、PAN系
のいわゆる24ton グレードの炭素繊維束にエポキシ樹
脂をマトリックスとするUDプリプレグシートAおよび
ピッチ系のいわゆる50ton グレードの炭素繊維束にエ
ポキシ樹脂をマトリックスとするUDプリプレグシート
Bを交互に芯金軸方向に対し0°方向に各2層、この内
側に炭素繊維束BのみからなるUDプリプレグシートを
芯金軸方向に対し±45°方向に各2層シートワインデ
ィング法により外径25mmの芯金に巻き付け、内径25
mm、外径約28mm、長さ1200mmの図12に示す構成
のパイプを得た(図3)。比較例として、0°方向につ
いて炭素繊維束Aのみ、または、炭素繊維束BのみのU
Dプリプレグシート4層とする以外、同様にしてCFR
Pパイプを成形した。
(Example 3) As shown in Table 5, a UD prepreg sheet A in which a PAN-based so-called 24 ton grade carbon fiber bundle has an epoxy resin as a matrix and a pitch-based so-called 50 ton grade carbon fiber bundle into an epoxy resin are used. Alternating UD prepreg sheets B having a matrix of 2 layers in the direction of 0 ° with respect to the axial direction of the core metal, and UD prepreg sheets consisting of only the carbon fiber bundles B inside this in the direction of ± 45 ° with respect to the axial direction of the core metal. Each two-layer sheet winding method wraps around a core metal with an outer diameter of 25 mm and an inner diameter of 25
mm, an outer diameter of about 28 mm, and a length of 1200 mm were obtained (FIG. 3). As a comparative example, U of only the carbon fiber bundle A or only the carbon fiber bundle B in the 0 ° direction is used.
CFR is used in the same manner except that 4 layers of D prepreg sheet are used.
A P pipe was molded.

【0039】これらを水平に、1次振動モードの節部を
ゴム糸で宙吊りし曲げの衝撃負荷に対する自由振動の自
己減衰特性を計測した。これらの結果を表6および図1
0(a),(b)に示す。本実施例についても明らかに
A単味、またはB単味のもの(比較例)のいずれよりも
振動損失係数が大きく、振動減衰性が著しく向上してい
ることがわかる。
These were horizontally suspended at the nodes of the primary vibration mode with a rubber thread, and the self-damping characteristic of free vibration against the impact load of bending was measured. These results are shown in Table 6 and FIG.
0 (a) and (b). Also in this example, it is apparent that the vibration loss coefficient is larger than that of either the plain A or the plain B (comparative example), and the vibration damping property is remarkably improved.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【発明の効果】本発明は、異種材料の付加によってCF
RPが本来持つ諸々の性能を低下させること無く、CF
RPの振動減衰性を高めることが出来る。本発明からな
るアームを用いた産業用ロボットは従来の曲げ剛性の低
下や重量の増加を来すこと無く高速で且つ高い位置決め
精度が得られ、本発明からなるフレームを用いたテニス
ラケットは剛性の低下や重量の増加を来すこと無く打球
時の衝撃によるプレーヤーの腕の障害を軽減する等、本
発明はスポーツ用具、産業機械、交通機器、航空宇宙機
器等の性能向上に寄与する。
INDUSTRIAL APPLICABILITY According to the present invention, CF is added by adding different materials.
CF without degrading various performance that RP originally has
The vibration damping property of RP can be improved. The industrial robot using the arm according to the present invention can achieve high speed and high positioning accuracy without lowering the bending rigidity and increasing the weight in the related art, and the tennis racket using the frame according to the present invention has a high rigidity. The present invention contributes to improving the performance of sports equipment, industrial machinery, transportation equipment, aerospace equipment, etc. by reducing the obstacles of the player's arm due to the impact at the time of hitting the ball without reducing the weight or increasing the weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1のCFRP構造を示す概略断
面図である。
FIG. 1 is a schematic cross-sectional view showing a first CFRP structure according to the present invention.

【図2】本発明に係る第2のCFRP構造(各層内に束
A層と束B層が存在)を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing a second CFRP structure (a bundle A layer and a bundle B layer are present in each layer) according to the present invention.

【図3】本発明に係る第3のCFRP構造(隣接する対
層が束A層と束B層)を示す概略斜視図である。
FIG. 3 is a schematic perspective view showing a third CFRP structure (adjacent pair layers are a bundle A layer and a bundle B layer) according to the present invention.

【図4】本発明に係るCFRPを製造するためのプルト
ルージョン法を示す概略側面図である。
FIG. 4 is a schematic side view showing a pultrusion method for producing a CFRP according to the present invention.

【図5】本発明に係る第2のCFRP構造(各層内に束
A層と束B層が存在)をプリプレグシートについて示す
概略斜視図である。
FIG. 5 is a schematic perspective view showing a second CFRP structure (a bundle A layer and a bundle B layer are present in each layer) according to the present invention with respect to a prepreg sheet.

【図6】本発明において、縦糸ないしは横糸に異なるグ
レードの炭素繊維束を交互に配設した織物を示す概略平
面図(a)、正面図(b)および側面図(c)である。
FIG. 6 is a schematic plan view (a), a front view (b) and a side view (c) showing a woven fabric in which carbon fiber bundles of different grades are alternately arranged in warp yarns or weft yarns in the present invention.

【図7】本発明に係るCFRP(一方向プリプレグシー
ト)を製造するためのフィラメントワインディング法を
示す概略側面図である。
FIG. 7 is a schematic side view showing a filament winding method for producing a CFRP (unidirectional prepreg sheet) according to the present invention.

【図8】本発明に係る第2のCFRP構造(図2)を製
造するためのフィラメントワインディング法を示す概略
側面図である。
FIG. 8 is a schematic side view showing a filament winding method for manufacturing a second CFRP structure (FIG. 2) according to the present invention.

【図9】実施例2における本発明例(a)およびB単味
の対応比較例(b)の振動減衰曲線図である。
FIG. 9 is a vibration damping curve diagram of the present invention example (a) and a B-only corresponding comparative example (b) in Example 2.

【図10】実施例3における本発明例(a)およびB単
味の対応比較例(b)の振動減衰曲線図である。
FIG. 10 is a vibration damping curve diagram of the present invention example (a) and a B-only corresponding comparative example (b) in Example 3.

【図11】本発明に係るCFRPパイプの一例(実施例
2)を示す展開斜視図である。
FIG. 11 is a developed perspective view showing an example (Example 2) of a CFRP pipe according to the present invention.

【図12】本発明に係るCFRPパイプの一例(実施例
3)を示す展開斜視図である。
FIG. 12 is a developed perspective view showing an example (Example 3) of a CFRP pipe according to the present invention.

【符号の説明】[Explanation of symbols]

1:繊維束(弾性率の低いグレード) 2:繊維束(弾性率の高いグレード) 3:樹脂 3′:含浸槽 4:引き揃え筬 5:ダイス 6:加熱炉 7:駆動装置 8:切断装置 9:ボビン群 10:樹脂コート紙 11:加熱加圧ローラ 12:ボビン 13:芯型(マンドレル) 1: Fiber bundle (grade with low elastic modulus) 2: Fiber bundle (grade with high elastic modulus) 3: Resin 3 ': Impregnation tank 4: Aligning reed 5: Die 6: Heating furnace 7: Driving device 8: Cutting device 9: Bobbin group 10: Resin coated paper 11: Heating / pressurizing roller 12: Bobbin 13: Core type (mandrel)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一方向に引き揃えられた多数の炭素繊維
束の集合と、これらの空間に充填されたマトリックス樹
脂からなる炭素繊維強化樹脂複合材料に於いて、この炭
素繊維束の集合を弾性率が異なる複数のグレードの炭素
繊維束を略均一に分散配設して構成してなり、その振動
減衰率が、これと同じ樹脂とこれを構成する中の単一の
グレードの炭素繊維束とからなり且つ、樹脂と繊維の体
積割合がこれに等しい、いずれの炭素繊維強化樹脂複合
材料の振動減衰率より高い値を持つことを特徴とする炭
素繊維強化樹脂複合材料。
1. In a carbon fiber reinforced resin composite material comprising a set of a large number of carbon fiber bundles aligned in one direction and a matrix resin filled in these spaces, the set of carbon fiber bundles is elastic. It consists of carbon fiber bundles of different grades that are distributed almost uniformly, and its vibration damping ratio is the same as that of the resin and the carbon fiber bundle of the single grade in which it is composed. A carbon fiber reinforced resin composite material, which is made of and has a value higher than the vibration damping rate of any carbon fiber reinforced resin composite material in which the volume ratio of the resin and the fiber is equal to this.
【請求項2】 請求項1からなる炭素繊維強化樹脂複合
材料の外周および内周のいずれか一以上に、上記一方向
に引き揃えられた炭素繊維束方向と交差する方向に引き
揃えられた炭素繊維束からなる強化層を1層以上積層し
て成る炭素繊維強化樹脂複合材料。
2. Carbon aligned in a direction intersecting with the carbon fiber bundle direction aligned in the one direction on at least one of the outer periphery and the inner periphery of the carbon fiber reinforced resin composite material according to claim 1. A carbon fiber reinforced resin composite material formed by laminating one or more reinforcing layers made of fiber bundles.
【請求項3】 特定の方向に引き揃えられた炭素繊維束
と、これらの空間に充填されたマトリックス樹脂からな
る層を1層以上積層して成る炭素繊維強化樹脂複合材料
において、その積層の少なくとも1層が、弾性率が異な
る複数のグレードの炭素繊維束が各層内において同一方
向に、略相互に隣接して配設してなり、その振動減衰率
が、これを構成する複数のグレードの炭素繊維束をその
中の単一のグレードの炭素繊維束に置き換え、樹脂と繊
維の体積割合がこれに等しい、いずれの炭素繊維強化樹
脂複合材料の振動減衰率より高い値を持つことを特徴と
する炭素繊維強化樹脂複合材料。
3. A carbon fiber reinforced resin composite material comprising a stack of one or more layers of carbon fiber bundles aligned in a specific direction and a matrix resin filled in these spaces, and at least the stacking thereof. One layer is composed of a plurality of grades of carbon fiber bundles having different elastic moduli disposed in the same direction in each layer and adjacent to each other, and the vibration damping ratio of the plurality of grades of carbon constituting the layers. Characterized in that it replaces the fiber bundle with a single grade carbon fiber bundle in it, which has a value higher than the vibration damping rate of any carbon fiber reinforced resin composite material, in which the volume ratio of resin and fiber is equal Carbon fiber reinforced resin composite material.
【請求項4】 各層毎の繊維束の方向が、積層の総体と
して特定の軸線に対称に引き揃えられて成る炭素繊維強
化樹脂複合材料において、少なくとも2層が請求項3か
らなり且つこれらの繊維束の方向が互いに交差してなる
炭素繊維強化樹脂複合材料。
4. A carbon fiber reinforced resin composite material in which the directions of the fiber bundles in each layer are aligned symmetrically with respect to a specific axis as a whole of the lamination, and at least two layers are comprised of claim 3 and these fibers A carbon fiber reinforced resin composite material in which the directions of the bundles intersect each other.
【請求項5】 各層毎の繊維束の方向が、積層の総体と
して特定の軸線に対称に引き揃えられて成る炭素繊維強
化樹脂複合材料において、その軸線に略平行な繊維束の
方向を持つ層の少なくとも1層が請求項3からなる炭素
繊維強化樹脂複合材料。
5. A carbon fiber reinforced resin composite material in which the direction of the fiber bundle for each layer is aligned symmetrically with respect to a specific axis as a whole of the lamination, and the layer has a direction of the fiber bundle substantially parallel to the axis. 4. A carbon fiber reinforced resin composite material, wherein at least one layer thereof is composed of claim 3.
【請求項6】 特定の方向に引き揃えられた炭素繊維束
と、これらの空間に充填されたマトリックス樹脂からな
る強化層を2層以上積層して成る炭素繊維強化樹脂複合
材料において、隣接して対を成す層の炭素繊維束が配設
方向が同一で且つ、各層内は単一の弾性率グレードから
なり、隣接する層間では異なる弾性率のグレードからな
ることにより、その振動減衰率が、これを構成する複数
のグレードの炭素繊維束をその中の単一のグレードの炭
素繊維束に置き換え、樹脂と繊維の体積割合がこれに等
しい、いずれの炭素繊維強化樹脂複合材料の振動減衰率
より高い値を持つことを特徴とする炭素繊維強化樹脂複
合材料。
6. A carbon fiber reinforced resin composite material comprising a carbon fiber bundle aligned in a specific direction and two or more reinforcing layers composed of a matrix resin filled in these spaces, which are adjacent to each other. The carbon fiber bundles of the layers forming a pair have the same arranging direction, and each layer is composed of a single elastic modulus grade, and adjacent layers are composed of different elastic modulus grades. The carbon fiber bundles of multiple grades that compose the above are replaced with the carbon fiber bundles of a single grade, and the volume ratio of resin and fiber is equal to this, higher than the vibration damping rate of any carbon fiber reinforced resin composite material. A carbon fiber reinforced resin composite material characterized by having a value.
【請求項7】 各層毎の繊維束の方向が積層の総体とし
て特定の軸線に対称に引き揃えられた積層から成る炭素
繊維強化樹脂複合材料において、その積層の少なくとも
2対が請求項6からなり且つその対の繊維束の方向が前
記の特定の軸線に対称に互いに交差してなる炭素繊維強
化樹脂複合材料炭素繊維強化樹脂複合材料。
7. A carbon fiber reinforced resin composite material comprising a laminate in which the directions of the fiber bundles in each layer are aligned symmetrically with respect to a specific axis as a whole of the laminate, and at least two pairs of the laminate consist of claim 6. A carbon fiber reinforced resin composite material in which the directions of the pair of fiber bundles intersect each other symmetrically with respect to the specific axis.
【請求項8】 各層毎の繊維束の方向が積層の総体とし
て特定の軸線に対称に引き揃えられた積層から成る炭素
繊維強化樹脂複合材料において、その軸線に略平行な繊
維束の方向を持つ層の少なくとも2層が請求項6からな
る炭素繊維強化樹脂複合材料。
8. A carbon fiber reinforced resin composite material comprising a laminate in which the direction of the fiber bundle of each layer is aligned symmetrically to a specific axis as a whole of the laminate, and the direction of the fiber bundle is substantially parallel to the axis. A carbon fiber reinforced resin composite material comprising at least two layers according to claim 6.
JP5293701A 1993-11-24 1993-11-24 High damping carbon fiber reinforced resin composite material Pending JPH07144371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5293701A JPH07144371A (en) 1993-11-24 1993-11-24 High damping carbon fiber reinforced resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5293701A JPH07144371A (en) 1993-11-24 1993-11-24 High damping carbon fiber reinforced resin composite material

Publications (1)

Publication Number Publication Date
JPH07144371A true JPH07144371A (en) 1995-06-06

Family

ID=17798124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5293701A Pending JPH07144371A (en) 1993-11-24 1993-11-24 High damping carbon fiber reinforced resin composite material

Country Status (1)

Country Link
JP (1) JPH07144371A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021890A (en) * 1997-07-31 2000-01-21 Toshiba Ceramics Co Ltd Carbon heater
JP2002151237A (en) * 1997-07-31 2002-05-24 Toshiba Ceramics Co Ltd Carbon heater
WO2005068284A1 (en) * 2004-01-13 2005-07-28 Toray Industries, Inc. Crank for bicycle and method of producing the same
JP2008243820A (en) * 1997-07-31 2008-10-09 Covalent Materials Corp Carbon heater
WO2009006163A3 (en) * 2007-06-29 2009-03-12 Itt Mfg Enterprises Inc Thermally conductive structural composite material and method
JP2009096859A (en) * 2007-10-16 2009-05-07 National Institute For Materials Science Hybrid carbon fiber reinforced composite material
JP2011056816A (en) * 2009-09-10 2011-03-24 Nippon Steel Materials Co Ltd Molding method of structure made of fiber-reinforced plastic, and structure made of fiber-reinforced plastic
WO2014136876A1 (en) * 2013-03-07 2014-09-12 三菱レイヨン株式会社 Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using same
JP2020138405A (en) * 2019-02-28 2020-09-03 宇部エクシモ株式会社 Unidirectional fiber reinforced composite material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151237A (en) * 1997-07-31 2002-05-24 Toshiba Ceramics Co Ltd Carbon heater
JP2008243820A (en) * 1997-07-31 2008-10-09 Covalent Materials Corp Carbon heater
JP2000021890A (en) * 1997-07-31 2000-01-21 Toshiba Ceramics Co Ltd Carbon heater
WO2005068284A1 (en) * 2004-01-13 2005-07-28 Toray Industries, Inc. Crank for bicycle and method of producing the same
JPWO2005068284A1 (en) * 2004-01-13 2007-12-27 東レ株式会社 Bicycle crank and method for manufacturing the same
US8309225B2 (en) 2007-06-29 2012-11-13 Itt Manufacturing Enterprises, Inc. Thermally conductive structural composite material and method
WO2009006163A3 (en) * 2007-06-29 2009-03-12 Itt Mfg Enterprises Inc Thermally conductive structural composite material and method
JP2009096859A (en) * 2007-10-16 2009-05-07 National Institute For Materials Science Hybrid carbon fiber reinforced composite material
JP2011056816A (en) * 2009-09-10 2011-03-24 Nippon Steel Materials Co Ltd Molding method of structure made of fiber-reinforced plastic, and structure made of fiber-reinforced plastic
WO2014136876A1 (en) * 2013-03-07 2014-09-12 三菱レイヨン株式会社 Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using same
JP5679089B1 (en) * 2013-03-07 2015-03-04 三菱レイヨン株式会社 Carbon fiber reinforced thermoplastic resin composite material and molded body using the same
CN105073848A (en) * 2013-03-07 2015-11-18 三菱丽阳株式会社 Carbon fiber reinforced thermoplastic resin composite material and molded body using same
US10843437B2 (en) 2013-03-07 2020-11-24 Mitsubishi Chemical Corporation Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using the same
JP2020138405A (en) * 2019-02-28 2020-09-03 宇部エクシモ株式会社 Unidirectional fiber reinforced composite material

Similar Documents

Publication Publication Date Title
US6273830B1 (en) Tapered hollow shaft
US5685525A (en) Carbon fiber reinforced resin coil spring
US5279879A (en) Hybrid prepreg containing carbon fibers and at least one other reinforcing fiber in specific positions within the prepreg
US20020061374A1 (en) Composite tubular member having impact resistant member
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
JPH07144371A (en) High damping carbon fiber reinforced resin composite material
JP3529009B2 (en) Carbon fiber reinforced composite
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JPH04363215A (en) Carbon fiber prepreg and carbon fiber reinforced resin
JP2005270515A (en) Tubular body made of fiber reinforced composite material
US6572490B2 (en) FRP golf club shaft
US6666778B2 (en) FRP golf club shaft
JP4402477B2 (en) Tubular laminate comprising non-woven fabric and method for producing the same
EP0686482B1 (en) Fiber reinforced composite article having cylindrical form
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP2002355818A (en) Prepreg and golf shaft composed of them
JP4157357B2 (en) Golf club shaft
JP4249998B2 (en) Golf club shaft
JP2021160263A (en) FRP cylinder and power transmission shaft
JPH0427028B2 (en)
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof
JP3841219B2 (en) Carbon fiber reinforced composite plate-like molded product
JPH05138796A (en) Laminated pipe
JP4366113B2 (en) Golf club shaft
JP4794657B2 (en) Golf club shaft

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330