JPH07155167A - Culture device for fine alga - Google Patents
Culture device for fine algaInfo
- Publication number
- JPH07155167A JPH07155167A JP34507793A JP34507793A JPH07155167A JP H07155167 A JPH07155167 A JP H07155167A JP 34507793 A JP34507793 A JP 34507793A JP 34507793 A JP34507793 A JP 34507793A JP H07155167 A JPH07155167 A JP H07155167A
- Authority
- JP
- Japan
- Prior art keywords
- light
- amount
- culture
- microalgae
- cell density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012258 culturing Methods 0.000 claims description 11
- 239000011521 glass Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 5
- 241000195493 Cryptophyta Species 0.000 abstract description 2
- 238000005286 illumination Methods 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 15
- 230000003698 anagen phase Effects 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000002207 metabolite Substances 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 230000005526 G1 to G0 transition Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000016425 Arthrospira platensis Nutrition 0.000 description 1
- 240000002900 Arthrospira platensis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 1
- 241000206759 Haptophyceae Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000722208 Pleurochrysis Species 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/02—Stirrer or mobile mixing elements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/06—Nozzles; Sprayers; Spargers; Diffusers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/10—Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/06—Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、微細藻類培養液中の細
胞密度に関係なく、必要最小限の光供給により効率よく
微細藻類の細胞の生産量を増大させる微細藻類の培養装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a culture apparatus for microalgae which efficiently increases the production amount of microalgae cells by supplying a minimum amount of light regardless of the cell density in a microalgae culture solution.
【0002】[0002]
【従来の技術】現在、クロレラやスピルリナなどに代表
される微細藻類の工業的な培養は、池(プール)を使っ
て行われている。この培養方法では、光供給源が太陽光
に限定されるため、池の深さが50cm以下と非常に浅
いものとなり、細胞または代謝産物の生産量を増大させ
るためには広大な敷地が必要となる。また、この培養方
法では開放系であるために、バクテリアまたは他の藻類
の混入が起こる危険が高いという欠点があった。2. Description of the Related Art Currently, industrial culture of microalgae represented by Chlorella and Spirulina is carried out using a pond. In this culturing method, since the light source is limited to sunlight, the depth of the pond is as shallow as 50 cm or less, and a vast site is required to increase the production of cells or metabolites. Become. In addition, since this culture method is an open system, it has a drawback that there is a high risk of contamination with bacteria or other algae.
【0003】これらの欠点を改善するため、様々な人工
光源を用いた閉鎖系での光合成バイオリアクターである
微細藻類の培養装置の開発が行われている。一般的に、
微細藻類を効率的に培養生産するためには、微細藻類を
高密度で生育させる必要がある。従って、用いる光合成
バイオリアクターにおいては細胞の生育に必要な光量
が、リアクター内の細胞に対してできるだけ均一に供給
されることが必要である。しかし、多くの微細藻類は供
給される光の量と波長に極めて敏感であり、過度の光量
と生育を阻害する波長により細胞が損傷を受けたり死滅
したりすることがある。In order to improve these drawbacks, a microalgae culturing device, which is a photosynthetic bioreactor in a closed system using various artificial light sources, has been developed. Typically,
In order to efficiently culture and produce microalgae, it is necessary to grow the microalgae at a high density. Therefore, in the photosynthetic bioreactor used, it is necessary that the amount of light necessary for cell growth be supplied to the cells in the reactor as uniformly as possible. However, many microalgae are extremely sensitive to the amount and wavelength of light provided, and excessive light and wavelengths that inhibit growth can cause cell damage or death.
【0004】そこで、光源から細胞までの光路長および
細胞密度を考慮して、細胞に対し一定で、かつ、どの細
胞に対しても光量と生育に必要な波長の光を均一にする
ことが重要な要因となる。微細藻類の培養生産において
も在来の発酵生産と同様に、到達細胞密度は可能な限り
高いことが望ましい。しかし、細胞密度が高まるにつれ
て光路長は短くなるので、細胞に、より近接した位置か
ら光を照射する必要がある。これらの要求を満たすもの
として、光源から細胞までの光路長を短くし、同時に培
養液容量当たりの光照射面を多くした光供給方法が用い
られている。Therefore, in consideration of the optical path length from the light source to the cells and the cell density, it is important to make uniform the amount of light and the wavelength of light required for growth, which is constant for all cells. It becomes a factor. In culture production of microalgae as well as in conventional fermentation production, it is desirable that the ultimate cell density be as high as possible. However, since the optical path length becomes shorter as the cell density increases, it is necessary to irradiate the cells with light from a position closer thereto. To meet these requirements, a light supply method is used in which the optical path length from the light source to the cells is shortened, and at the same time, the light irradiation surface per volume of the culture solution is increased.
【0005】[0005]
【発明が解決しようとする課題】微細藻類培養時の光供
給量の調節を考える場合、例えば、リアクター内に発光
体を挿入したタイプの光合成バイオリアクターにおいて
は、発光体の灯数を制御することがある。しかし、この
場合、たとえ発光体の取付位量が均一であり、発光体灯
数を均一にしても、光源から細胞までの光路長にばらつ
きが生じ、また、光供給量の切り替えも発光体1本単位
での作業になるためばらつきが生じ、細かい制御が難し
い。When considering the regulation of the amount of light supplied during the culture of microalgae, for example, in a photosynthetic bioreactor of the type in which a light emitter is inserted in the reactor, it is necessary to control the number of lights of the light emitter. There is. However, in this case, even if the mounting amount of the light emitters is uniform, even if the number of light emitter lamps is uniform, the optical path length from the light source to the cell varies, and switching of the light supply amount is performed by the light emitter 1. Since the work is done in units of this unit, variations occur and it is difficult to perform fine control.
【0006】また、微細藻類の培養生産においてその培
養形式は、在来の発酵生産と同様に、通常回分培養であ
る。回分培養においては、培養開始から終了までの間に
培養液中の細胞密度は10倍以上変化するが、細胞密度
の上昇とともに細胞が受け取る平均光量は減少し、培養
液中の全ての細胞に供給される平均光量は減少する。そ
の影響は細胞密度0.5g/1以上の高密度培養でより
顕著となり、光量の設定をどの細胞密度で行うかが大き
な問題である。[0006] In culture production of microalgae, the culture format is usually batch culture as in conventional fermentation production. In batch culture, the cell density in the culture solution changes 10 times or more from the start to the end of the culture, but the average light intensity received by the cells decreases with increasing cell density and is supplied to all cells in the culture solution. The average amount of light emitted is reduced. The effect becomes more remarkable in high-density culture with a cell density of 0.5 g / 1 or more, and there is a big problem in which cell density the light amount is set.
【0007】例えば、培養開始段階の細胞密度(C1)
において光量を設定した場合、細胞密度の上昇とともに
細胞が受け取る平均光量は減少してしまい生育速度が低
下して、その結果、藻体生産量が低下する。一方、培養
終了段階の細胞密度(C2)において光量を設定した場
合、培養開始段階で光が過供給となり細胞が損傷を受
け、藻体生産量が低下する。さらに、培養液中の任意の
段階の細胞密度(Cn)において光量を設定した場合
も、Cnより低い細胞密度では光過供給、高い密度では
光量が不足することになる。For example, cell density (C1) at the initiation stage of culture
When the amount of light is set in, the average amount of light received by cells decreases as the cell density increases, and the growth rate decreases, resulting in a decrease in algal cell production. On the other hand, when the amount of light is set at the cell density (C2) at the stage of culturing, light is excessively supplied at the stage of culturing, the cells are damaged, and the amount of algal cells produced decreases. Further, even when the amount of light is set at the cell density (Cn) at an arbitrary stage in the culture solution, the amount of light is oversupplied at a cell density lower than Cn, and the amount of light becomes insufficient at a high density.
【0008】従って、本発明の目的は、培養液中の細胞
密度に合わせて供給光量を調節することにより、細胞の
活性を最大限に維持し、藻体生産性を増大させる微細藻
類の培養装置を提供するものである。[0008] Therefore, an object of the present invention is to cultivate a microalgae in which the activity of cells is maximally maintained and the productivity of algal cells is increased by adjusting the amount of light supplied according to the cell density in the culture solution. Is provided.
【0009】[0009]
【課題を解決するための手段】本発明者らは、細胞密度
に関係なく細胞に適度な光を供給する方法について研究
した結果、光源から細胞までの光路長を短くし、同時に
培養液容量当たりの光照射面を多くした光供給方法と光
量可変型の光源を組み合わせることによって、細胞の増
殖能力、代謝産物生成能力を維持できること、その結
果、藻体の生産量、代謝産物生産量が増大することを見
いだし、本発明を完成した。[Means for Solving the Problems] As a result of research on a method of supplying appropriate light to cells regardless of cell density, the present inventors have shortened the optical path length from the light source to the cells and, at the same time, per volume of culture solution. It is possible to maintain the cell growth ability and metabolite production ability by combining the light supply method with more light irradiation surface and the variable light source, and as a result, increase the algal cell production and metabolite production. Then, they have completed the present invention.
【0010】すなわち、本発明は、微細藻類の細胞密度
の変化を測定する装置とその変化に応じて光量を可変す
る装置とを設けたことを特徴とする微細藻類の培養装置
である。That is, the present invention is an apparatus for culturing microalgae, which is provided with a device for measuring a change in cell density of microalgae and a device for varying a light amount according to the change.
【0011】本発明において、細胞密度の変化を測定す
る装置としては照度計または濁度計を用い、これにより
光供給量を随時計測し、その計測値により光量を調節す
る。微細藻類の培養時、細胞密度の上昇にともない照度
計または濁度計により計測される計測値は低下してい
く。すなわち、照度計または濁度計により計測される計
測値が一定になるように供給光量を増加させていくよう
にする。例えば、培養液中に照度計または濁度計を設置
し、その計測値から光量を調節する。In the present invention, an illuminometer or a turbidimeter is used as a device for measuring changes in cell density, and the light supply amount is measured at any time by this, and the light amount is adjusted by the measured value. When culturing microalgae, the measurement value measured by a luminometer or a turbidimeter decreases as the cell density increases. That is, the supplied light amount is increased so that the measurement value measured by the illuminance meter or the turbidity meter becomes constant. For example, an illuminometer or a turbidimeter is installed in the culture solution, and the amount of light is adjusted from the measured value.
【0012】また、本発明において、細胞に光を供給す
る光源としては、光量可変型の光源を用い、光源から細
胞までの光路長が短く、同時に培養液容量当たりの光照
射面を多くするのが好ましい。例えば、筒状の発光体を
培養液内に均一な間隔で挿入し、細胞密度の上昇に従っ
て発光体から照射される光量を調節するものが挙げられ
る。In the present invention, a light source of variable light amount is used as a light source for supplying light to cells, and the optical path length from the light source to the cells is short, and at the same time, the light irradiation surface per volume of the culture solution is increased. Is preferred. For example, a cylindrical luminous body is inserted into a culture solution at uniform intervals, and the amount of light emitted from the luminous body is adjusted as the cell density increases.
【0013】通常、微細藻類の生育曲線は図1に示され
るようなカーブを描く。培養開始後数時間はタイムラグ
(a)を生じ、その後数時間は対数増殖期(b)を示
し、培養液中の細胞密度が高くなるにつれて直線増殖期
(c)になり、供給光量の不足または培地中の栄養塩の
不足等により定常期(d)になる。直線増殖期(c)で
は時間当たりの細胞増殖量は一定になってしまうため、
微細藻類の効率的な培養を行うためには対数増殖期
(b)をなるべく長い時間維持することが必要になる。Usually, the growth curve of microalgae draws a curve as shown in FIG. A few hours after the start of the culture, a time lag (a) occurs, and then several hours show a logarithmic growth phase (b), which becomes a linear growth phase (c) as the cell density in the culture medium increases, and the supply of light is insufficient or The stationary phase (d) is reached due to lack of nutrients in the medium. In the linear growth phase (c), the amount of cell growth per hour becomes constant, so
In order to efficiently culture microalgae, it is necessary to maintain the logarithmic growth phase (b) as long as possible.
【0014】対数増殖期(b)から直線増殖期(c)に
移行する原因は、供給光量の不足が大きな要因である。
そこで、対数増殖期(b)を長時間維持するためには供
給光量が不足する直前において、供給光量を増加させる
ことが必要になる。The cause of the transition from the logarithmic growth phase (b) to the linear growth phase (c) is largely due to the insufficient supply of light.
Therefore, in order to maintain the logarithmic growth phase (b) for a long time, it is necessary to increase the supply light amount immediately before the supply light amount becomes insufficient.
【0015】[0015]
【図1】[Figure 1]
【0016】[0016]
【作用】したがって、本発明の微細藻類の培養装置を用
いると、細胞密度が高くなるにしたがい供給光量を増加
させることができ、対数増殖期(b)を長時間維持する
ことが可能になる。その結果、細胞の活性が良好に維持
され、効率的な微細藻類の培養が行えることになる。Therefore, when the culture apparatus for microalgae of the present invention is used, the amount of light supplied can be increased as the cell density increases, and the logarithmic growth phase (b) can be maintained for a long time. As a result, the cell activity is maintained well and efficient culture of microalgae can be performed.
【0017】[0017]
【実施例】次に実施例を挙げて本発明を詳細に説明する
が、本発明はこの実施例に限定されるものではない。 実施例EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples. Example
【0018】図2に本実施例に用いた微細藻類の培養装
置の概略図を示す。(1)は内径が85mm、高さ25
0mmのガラス製の円筒容器であり、円筒容器(1)の
天板から内径5mm、外径7mm、長さ230mmのガ
ラス管(2)が3mm間隔で46本配置されている(な
お図中では、本数を3本として図示している)。このガ
ラス管(2)の中に光源として、ガラス管表面照度にし
て3klxから30klxの範囲で調光可能な光量可変
型蛍光灯(3)(外径3mm、発光部長さ15mm)が
それぞれ挿入されている。また、内径3mm、外径5m
m、長さ200mmのガラス管(2)1本を円筒容器
(1)の天板から任意の場所に配置し、その中に外径1
mm、長さ180mmの照度計(4)が挿入してある。
培養液量は1リットルとし、円筒容器(1)の天板の中
心から挿入した通気管(5)から空気を300ml/m
inの速度で通気した。培養液(6)の攪拌はスターラ
ー(図示省略)を用い、長さ2cmの攪拌子(7)で1
50rpmで攪拌した。培養液(6)の温度は、円筒容
器(1)を温度調節可能な水槽(図示省略)に置くこと
によって22〜23度に制御した。(8)は照度モニタ
ー、(9)は光量コントローラーである。FIG. 2 shows a schematic view of a culture apparatus for microalgae used in this example. (1) has an inner diameter of 85 mm and a height of 25
It is a 0 mm glass cylindrical container, and 46 glass tubes (2) having an inner diameter of 5 mm, an outer diameter of 7 mm and a length of 230 mm are arranged at 3 mm intervals from the top plate of the cylindrical container (1). , The number is shown as three). Into this glass tube (2), a variable light quantity type fluorescent lamp (3) (outer diameter 3 mm, light emitting part length 15 mm) capable of adjusting the surface illuminance of the glass tube in the range of 3 klx to 30 klx is inserted as a light source. ing. Also, inner diameter 3 mm, outer diameter 5 m
A glass tube (2) with a length of m and a length of 200 mm is placed at an arbitrary position from the top plate of the cylindrical container (1), and an outer diameter of 1 is placed therein.
An illuminometer (4) having a length of mm and a length of 180 mm is inserted.
The culture liquid volume was set to 1 liter, and 300 ml / m of air was supplied from the ventilation pipe (5) inserted from the center of the top plate of the cylindrical container (1).
Aerated at a rate of in. The stirrer (not shown) was used to stir the culture solution (6), and the stirrer (7) with a length of 2 cm was used to
It was stirred at 50 rpm. The temperature of the culture solution (6) was controlled to 22 to 23 degrees by placing the cylindrical container (1) in a temperature-controllable water tank (not shown). (8) is an illuminance monitor, and (9) is a light quantity controller.
【0019】[0019]
【図2】[Fig. 2]
【0020】本実施例に用いた微細藻類は、ハプト植物
門に属する円石藻プレウロクリシス・カルテレ(Ple
urochrysis carterae)を使用し
た。培地として、天然海水に硝酸塩やリン酸塩等の無機
塩類および種々の微量金属を補足したエプレイ(Epp
ley’s)の培地を使用した。The microalgae used in this example are the coccolithophorid Pleurochrysis cartere (Ple) belonging to the phytophyta Haptophyta.
urochrysis carterae) was used. As a culture medium, natural seawater is supplemented with inorganic salts such as nitrates and phosphates and various trace metals (Epp)
ley's) medium was used.
【0021】円筒容器(1)にエプレイの培地1リット
ルを入れ、プレウロクリシス・カルテレの培養液を初期
細胞密度がO.D.(Optical Densit
y)=0.05となるように100ml植菌した。供給
光量の調節は培養液のO.D.を照度計(4)の照度を
照度モニター(8)により計測し、光量コントローラー
(9)で光量調節を手動で行った。発光体からの発光量
の初期値は3klxとし、O.D.が0.05〜0.2
までは3klx、0.2〜0.5までは6klx、0.
5〜0.7までは9klx、0.7〜1.0までは12
klxとして培養を行った。その結果、培養6日目で藻
体生産量は585mg/lに達した。In a cylindrical container (1), 1 liter of Eple's medium was placed, and a culture solution of Pleurocrisis cartere was added to the cell culture medium having an initial cell density of 0. D. (Optical Densit
100 ml was inoculated so that y) = 0.05. The amount of light supplied can be adjusted to 0. D. The illuminance of the illuminance meter (4) was measured by the illuminance monitor (8), and the light amount was manually adjusted by the light amount controller (9). The initial value of the amount of light emitted from the light emitter is set to 3 klx, and O.I. D. Is 0.05 to 0.2
Up to 3 klx, from 0.2 to 0.5 up to 6 klx, 0.
9 klx from 5 to 0.7, 12 from 0.7 to 1.0
Culture was performed as klx. As a result, the production amount of algal cells reached 585 mg / l on the 6th day of culture.
【0022】比較例 比較として、光量を調節せず、発光量を6klxで一定
としてプレウロクリシス・カルテレを培養した。この場
合の藻体生産量は6日目で320mg/lであった。Comparative Example As a comparison, Pleurocrisis cartel was cultured without adjusting the amount of light and keeping the amount of luminescence constant at 6 klx. In this case, the alga body production was 320 mg / l on the 6th day.
【0023】以上のことから、本発明の培養装置を用い
て、藻体密度に合わせて発光量を調節して培養すれば、
細胞の活性が良好に維持され、藻体生産量が比較例の
1.8倍に増大せしめることができた。From the above, if the amount of luminescence is adjusted according to the alga body density and culturing is performed using the culturing apparatus of the present invention,
The cell activity was maintained well, and the amount of algal cells produced could be increased 1.8 times that of the comparative example.
【0024】[0024]
【発明の効果】本発明の微細藻類の培養装置を用いれ
ば、培養期間を通じて細胞の増殖能力、代謝産物生成能
力を維持できるので藻体生産量および代謝産物生産量を
増大することができる。By using the culture apparatus for microalgae of the present invention, cell growth ability and metabolite production ability can be maintained throughout the culturing period, so that the alga body production amount and the metabolite production amount can be increased.
【図1】微細藻類の培養時間と藻体収量との関係を示す
グラフFIG. 1 is a graph showing the relationship between the culture time of microalgae and the yield of algal bodies.
【図2】本実施例に使用した微細藻類の培養装置FIG. 2 Microalgae culture device used in this example
a タイムラグ b 対数増殖期 c 直線増殖期 d 定常期 1 円筒容器 2 ガラス管 3 光量可変型蛍光灯 4 照度計 5 通気管 6 培養液 7 攪拌子 8 照度モニター 9 光量コントローラー a Time lag b Logarithmic growth phase c Linear growth phase d Stationary phase 1 Cylindrical container 2 Glass tube 3 Variable light intensity fluorescent lamp 4 Illuminance meter 5 Vent tube 6 Culture solution 7 Stirrer 8 Illumination monitor 9 Light intensity controller
Claims (3)
置とその変化に応じて光量を可変する装置とを設けたこ
とを特徴とする微細藻類の培養装置。1. An apparatus for culturing microalgae, comprising: a device for measuring a change in cell density of microalgae; and a device for varying a light amount according to the change.
置が、照度計または濁度計である請求項1記載の微細藻
類の培養装置。2. The culture apparatus for microalgae according to claim 1, wherein the apparatus for measuring the change in cell density of the microalgae is an illuminometer or a turbidimeter.
である請求項1記載の微細藻類の培養装置。3. The apparatus for culturing microalgae according to claim 1, wherein the device for changing the light amount is a variable light type fluorescent lamp.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34507793A JPH07155167A (en) | 1993-12-09 | 1993-12-09 | Culture device for fine alga |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34507793A JPH07155167A (en) | 1993-12-09 | 1993-12-09 | Culture device for fine alga |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07155167A true JPH07155167A (en) | 1995-06-20 |
Family
ID=18374131
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP34507793A Pending JPH07155167A (en) | 1993-12-09 | 1993-12-09 | Culture device for fine alga |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07155167A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100392914B1 (en) * | 2001-03-19 | 2003-07-28 | 라파즈 한라 시멘트 주식회사 | An internally illuminated photobioreactor for biological CO2 fixation |
| KR20030079379A (en) * | 2002-04-03 | 2003-10-10 | 썬테크 주식회사 | Simplified Microorganism Multiplying Apparatus |
| KR100415150B1 (en) * | 2001-08-27 | 2004-01-16 | 학교법인 인하학원 | Stirred tank photobioreactors with illuminated turbine impellers used in large-scale microalgal cultures |
| KR100439971B1 (en) * | 2002-09-18 | 2004-07-12 | 학교법인 인하학원 | Bubble column photobioreactors and methods for culturing photosynthetic microorganism using them |
| JP2009195163A (en) * | 2008-02-21 | 2009-09-03 | Ccs Inc | Culture apparatus for algae |
| CN101906380A (en) * | 2010-08-11 | 2010-12-08 | 孙以川 | Seal type pipeline culture device of bait microalgae and microalgae pipeline culture method |
| JP2012034609A (en) * | 2010-08-05 | 2012-02-23 | Shimizu Corp | Tube-type algae-culturing device |
| DE102010043586A1 (en) * | 2010-11-08 | 2012-05-10 | Christoph Peppmeier | Breeding device for phototrophic crops |
| JP2020137514A (en) * | 2019-02-27 | 2020-09-03 | 国立大学法人神戸大学 | Method of culturing algae and photo bioreactor |
| CN111621422A (en) * | 2019-02-27 | 2020-09-04 | 国立大学法人神户大学 | Method for culturing algae cells and photobioreactor |
| EP3788133A4 (en) * | 2018-05-03 | 2022-01-19 | Vaxa Technologies Ltd. | Device and method for storing live microalgae |
-
1993
- 1993-12-09 JP JP34507793A patent/JPH07155167A/en active Pending
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100392914B1 (en) * | 2001-03-19 | 2003-07-28 | 라파즈 한라 시멘트 주식회사 | An internally illuminated photobioreactor for biological CO2 fixation |
| KR100415150B1 (en) * | 2001-08-27 | 2004-01-16 | 학교법인 인하학원 | Stirred tank photobioreactors with illuminated turbine impellers used in large-scale microalgal cultures |
| KR20030079379A (en) * | 2002-04-03 | 2003-10-10 | 썬테크 주식회사 | Simplified Microorganism Multiplying Apparatus |
| KR100439971B1 (en) * | 2002-09-18 | 2004-07-12 | 학교법인 인하학원 | Bubble column photobioreactors and methods for culturing photosynthetic microorganism using them |
| JP2009195163A (en) * | 2008-02-21 | 2009-09-03 | Ccs Inc | Culture apparatus for algae |
| JP2012034609A (en) * | 2010-08-05 | 2012-02-23 | Shimizu Corp | Tube-type algae-culturing device |
| CN101906380A (en) * | 2010-08-11 | 2010-12-08 | 孙以川 | Seal type pipeline culture device of bait microalgae and microalgae pipeline culture method |
| DE102010043586A1 (en) * | 2010-11-08 | 2012-05-10 | Christoph Peppmeier | Breeding device for phototrophic crops |
| DE102010043586B4 (en) * | 2010-11-08 | 2012-06-14 | Christoph Peppmeier | Breeding device for phototrophic crops |
| EP3788133A4 (en) * | 2018-05-03 | 2022-01-19 | Vaxa Technologies Ltd. | Device and method for storing live microalgae |
| JP2022514721A (en) * | 2018-05-03 | 2022-02-15 | バクサ テクノロジーズ リミテッド | Equipment and methods for storing live microalgae |
| JP2020137514A (en) * | 2019-02-27 | 2020-09-03 | 国立大学法人神戸大学 | Method of culturing algae and photo bioreactor |
| CN111621422A (en) * | 2019-02-27 | 2020-09-04 | 国立大学法人神户大学 | Method for culturing algae cells and photobioreactor |
| US12188007B2 (en) | 2019-02-27 | 2025-01-07 | Nichia Corporation | Method of cultivating algae and photobioreactor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Grobbelaar et al. | Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation | |
| US4952511A (en) | Photobioreactor | |
| Suh et al. | Photobioreactor engineering: design and performance | |
| Ogbonna et al. | Sequential heterotrophic/autotrophic cultivation–an efficient method of producing Chlorella biomass for health food and animal feed | |
| US5541056A (en) | Method of control of microorganism growth process | |
| CA2758636C (en) | Method for the effective delivery of photonic energy to cultures in a fluid medium | |
| JPH07155167A (en) | Culture device for fine alga | |
| JP3239805U (en) | A system for growing algae | |
| CN110257250B (en) | Culture medium composition of Chaetoceros muelleri, culture method and photobioreactor | |
| RU2176667C1 (en) | Method of culturing microalga based on strain "chlorella vulgaris ifr n c-111" | |
| JP3283982B2 (en) | Culture device for photosynthetic organisms | |
| RU150345U1 (en) | INSTALLATION FOR CULTIVATION OF LOWER PHOTOTROPHES | |
| CN116515635A (en) | A kind of breeding method of Phaeodactylum tricornutum under indoor artificial light source environment | |
| Sergejevová et al. | Photobioreactors with internal illumination | |
| JPH0564577A (en) | Method and device for culturing photosynthetic microorganism | |
| CN119263517A (en) | A system and method for recycling microalgae in aquaculture wastewater | |
| US11912966B2 (en) | System and method for growing algae | |
| JP2020508064A (en) | Systems and methods for growing algae | |
| RU2668162C1 (en) | Method of chlorella microalgae cultivation | |
| RU2732225C1 (en) | Method for cultivation of phototrophic microorganisms | |
| JPH10150974A (en) | Photosynthetic microorganism culture apparatus and culture method | |
| Carlozzi et al. | Growth characteristics of Arthrospira platensis cultured inside a new close‐coil photobioreactor incorporating a mandrel to control culture temperature | |
| CN204434600U (en) | The bioreactor of continuously light-adjustable | |
| JP2007236277A (en) | Method for culturing isochrysis algae | |
| KR100461015B1 (en) | Method for culturing photosynthetic microorganism by lumostat method |