[go: up one dir, main page]

JPH0716983Y2 - Gas temperature measurement probe - Google Patents

Gas temperature measurement probe

Info

Publication number
JPH0716983Y2
JPH0716983Y2 JP1989086228U JP8622889U JPH0716983Y2 JP H0716983 Y2 JPH0716983 Y2 JP H0716983Y2 JP 1989086228 U JP1989086228 U JP 1989086228U JP 8622889 U JP8622889 U JP 8622889U JP H0716983 Y2 JPH0716983 Y2 JP H0716983Y2
Authority
JP
Japan
Prior art keywords
temperature
gas flow
gas
measuring element
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1989086228U
Other languages
Japanese (ja)
Other versions
JPH0325124U (en
Inventor
俊夫 阿部
暢 久松
一也 米下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Yamari Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Yamari Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Yamari Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP1989086228U priority Critical patent/JPH0716983Y2/en
Publication of JPH0325124U publication Critical patent/JPH0325124U/ja
Application granted granted Critical
Publication of JPH0716983Y2 publication Critical patent/JPH0716983Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はガスタービンやジェットエンジン等の燃焼機関
内部のガス温度を測定するプローブに関し、更に詳しく
は周囲からの輻射熱の影響を回避することが可能で高精
度な測温ができる構造を有するガス温度測定用プローブ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a probe for measuring the gas temperature inside a combustion engine such as a gas turbine or a jet engine, and more specifically to avoid the influence of radiant heat from the surroundings. The present invention relates to a gas temperature measuring probe having a structure capable of highly accurate temperature measurement.

〔従来の技術〕[Conventional technology]

従来、ガス送給管内温度を測温する為のガス温度測定用
プローブとしては第(8)図に示すごとく、両端開口a,
aした円筒状の遮蔽筒bの内側中心部に、該遮蔽筒bの
壁を貫通して測温素子cの感温部dを位置づけ、該遮蔽
筒bをその開口a,aをガスの流れ方向に向けた状態で支
持筒eを介してガス送給管fの内壁gから懸垂したもの
が知られている。
Conventionally, as shown in FIG. (8), as a gas temperature measuring probe for measuring the temperature inside the gas supply pipe, both end openings a,
The temperature-sensing portion d of the temperature measuring element c is located in the center of the inside of the cylindrical shielding tube b which has been a, penetrating the wall of the shielding tube b, and the shielding tube b is opened through the openings a, a of the gas flow. It is known that the gas supply pipe f is suspended from the inner wall g of the gas supply pipe f via a support cylinder e in a state of being directed.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

測温素子cを遮蔽筒bで外装したのは、測温素子cに対
する周囲からの輻射熱の影響を防止する為であるが、本
構成では測温素子cの感温部dと遮蔽筒bの開口縁hと
を結んだ直線の範囲外、即ち図中α及びβとして示した
角度の範囲外からの輻射熱は防止できるものの、前記範
囲内からの輻射熱は防止することができず、例えばガス
送給管内壁等からの輻射熱に起因する測温誤差を完全に
排除することはできなかった。この問題を解決するに
は、遮蔽筒bを長くすることが考慮されるが、ガス送給
管fへの取付上の制約やガス流による風圧の影響を無視
できない為、長さには限界がある。又、他の方法として
遮蔽筒bの内径を小さくすることも考慮されるが、この
場合には遮蔽筒b内に突出形成する感温部dの長さが不
充分となり、その結果、ガスとの接触面積が不充分とな
って真のガス温度よりも低い値を示す問題があった。
The reason why the temperature-measuring element c is covered with the shielding cylinder b is to prevent the influence of radiant heat from the surroundings on the temperature-measuring element c. However, in this configuration, the temperature-sensing portion d of the temperature-measuring element c and the shielding cylinder b are covered. Although it is possible to prevent radiant heat from outside the range of the straight line connecting the opening edge h, that is, outside the range of the angles shown as α and β in the figure, it is not possible to prevent the radiant heat from within the range, and for example, gas transfer It was not possible to completely eliminate the temperature measurement error due to the radiant heat from the inner wall of the feed pipe. In order to solve this problem, it is considered to lengthen the shielding tube b, but there is a limit to the length because the restriction on the attachment to the gas supply pipe f and the influence of the wind pressure due to the gas flow cannot be ignored. is there. Also, as another method, it is considered to reduce the inner diameter of the shielding cylinder b, but in this case, the length of the temperature sensing portion d formed to project in the shielding cylinder b becomes insufficient, and as a result, gas There was a problem that the contact area of was insufficient and the value was lower than the true gas temperature.

本考案はかかる現況に鑑みてなされたものであり周囲か
らの輻射熱の影響を受けることなく、ガス温度の高精度
な測温が可能であり、しかも装置構成がコンパクトで設
置も容易であるとともに風圧にも耐える構造を有した耐
久性に優れたガス温度測定用プローブを提供することを
目的とする。
The present invention has been made in view of the current situation.It is possible to measure the gas temperature with high accuracy without being affected by radiant heat from the surroundings. Moreover, the device configuration is compact and the installation is easy. It is an object of the present invention to provide a gas temperature measuring probe having a structure that withstands even the above and having excellent durability.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を達成した本考案は次の2つの代表的形態とし
て表現される。第1の形態は、一対の断面円弧状の樋状
外壁板を測温素子をはさんで対向配置してガス流の上流
側に入口を、下流側に出口をそれぞれ形成し、一方の外
壁板の上流側先端には下流へ向かって傾斜する遮蔽板を
その遊端が対向する他の外壁板との間に間隙を設けた状
態で延設し、他方の外壁板にはその下流後端から上流へ
向かって傾斜した遮蔽板を、測温素子をはさんで前記遮
蔽板と並設状態で延設した構成となし、測温素子を周囲
から目視不能にするとともに、外壁板で囲繞された空間
内に入口から出口に連続するガス流路を形成したことを
特徴としている。
The present invention which achieves the above object is expressed as the following two typical forms. In the first embodiment, a pair of gutter-shaped outer wall plates each having an arc-shaped cross section are arranged so as to face each other with a temperature measuring element therebetween to form an inlet on the upstream side of the gas flow and an outlet on the downstream side. A shielding plate inclined toward the downstream side is extended at the upstream end of the with a free space between the other outer wall plate and the opposite outer wall plate. The shielding plate inclined toward the upstream side was arranged in parallel with the shielding plate with the temperature measuring element sandwiched between them, and the temperature measuring element was made invisible from the surroundings and surrounded by the outer wall plate. It is characterized in that a gas flow path continuous from the inlet to the outlet is formed in the space.

遮蔽板によって形成されるガス流路の入口断面積は測温
素子の感温部の位置する部分の断面積よりも大きく、且
つ、出口断面積よりも小さいか若しくは等しく設定する
ことが好ましい。
The inlet cross-sectional area of the gas flow path formed by the shielding plate is preferably set to be larger than the cross-sectional area of the portion where the temperature sensing portion of the temperature measuring element is located and smaller than or equal to the outlet cross-sectional area.

又、測温素子の感温部にはフィンを取付けてガスとの接
触面積を増やすことも適宜採用される。
Further, it is also appropriately adopted to attach a fin to the temperature sensing portion of the temperature measuring element to increase the contact area with the gas.

第2の形態は、次の構成を有する。即ち、一対の断面円
弧状の樋状外壁板を互いに径方向にずらした状態で対向
配置して、ガス流の上流側に入口を、下流側に出口を有
する略S字状のガス流路を外壁材間に形成し、当該ガス
流路の略中間位置である一方の外壁材の端縁部内面と他
方の外壁材の端縁部内面とに挟まれ位置に測温素子を位
置づけて測温素子を周囲から目視不能となし、且つガス
流路の入口断面積よりも測温素子の感温部を位置づけた
部分のガス流路の断面積を小さく設定してなることを特
徴としている。
The second form has the following configuration. That is, a pair of gutter-shaped outer wall plates having an arcuate cross section are arranged so as to be offset from each other in the radial direction, and a substantially S-shaped gas flow path having an inlet on the upstream side of the gas flow and an outlet on the downstream side is provided. It is formed between the outer wall materials, and the temperature is measured by positioning the temperature measuring element at a position sandwiched between the inner surface of the outer edge of one outer wall material and the inner surface of the outer edge material of the other outer wall material, which is a substantially intermediate position of the gas flow path. The element is invisible from the surroundings, and the cross-sectional area of the gas flow passage in the portion where the temperature sensing portion of the temperature measuring element is located is set smaller than the cross-sectional area of the inlet of the gas flow passage.

〔作用〕[Action]

本考案のガス温度測定用プローブはガス流の流れ方向上
流に入口を向け、下流に出口を向けた状態でガス流の中
に位置づける。入口から流入したガスは、遮蔽材に案内
されて測温素子に導かれ、測温素子の感温部に接触した
後、出口から流出する。測温素子は遮蔽材によって装置
外部から全包囲にわたって目視不能としている為、輻射
熱は完全に遮断されガス温度の高精度な測温が可能とな
る。
The gas temperature measuring probe of the present invention is positioned in the gas flow with the inlet directed upstream and the outlet directed downstream in the flow direction of the gas flow. The gas flowing from the inlet is guided to the temperature measuring element by being guided by the shielding material, comes into contact with the temperature sensing portion of the temperature measuring element, and then flows out from the outlet. Since the temperature measuring element is made invisible from the outside of the device by the shielding material over the entire surroundings, the radiant heat is completely blocked, and the gas temperature can be measured with high accuracy.

また第1形態の本プローブはガス流上流から下流へ向か
う傾斜面を有しているので、傾斜面によってガス流が円
滑に案内される。
Further, since the present probe of the first embodiment has the inclined surface from the gas flow upstream to the downstream, the gas flow is smoothly guided by the inclined surface.

又、ガス流路における感温部を設定した部分の断面積を
入口断面積よりも小さく設定したときには感温部周辺の
流速が高まり、感温部のガス温度に対する応答性は一層
高まる。更に感温部にフィンを取付けた場合はガスとの
接触面積が増大して感温部の応答性は向上するととも
に、感温部の機械的強度も同時に高まる。
Further, when the cross-sectional area of the portion of the gas flow path where the temperature-sensitive portion is set is set smaller than the inlet cross-sectional area, the flow velocity around the temperature-sensitive portion is increased, and the responsiveness of the temperature-sensitive portion to the gas temperature is further enhanced. Further, when the fins are attached to the temperature sensing part, the contact area with the gas is increased and the responsiveness of the temperature sensing part is improved, and the mechanical strength of the temperature sensing part is simultaneously increased.

また第2形態の本プローブは、そのガス流路が略S字状
であることから、ガス流の案内はより円滑に行われ、流
れに乱れが生ずることもない。しかも第2形態のプロー
ブはガス流路の入口断面積よりも測温素子の感温部を位
置づけた部分のガス流路の断面積を小さく設定している
ことから感温部周辺の流速は速く応答性に優れている。
Further, in the probe of the second embodiment, the gas flow path is substantially S-shaped, so that the gas flow is guided more smoothly and the flow is not disturbed. Moreover, in the probe of the second embodiment, the cross-sectional area of the gas flow passage in the portion where the temperature sensing portion of the temperature measuring element is positioned is set smaller than the cross-sectional area of the gas flow passage inlet, so that the flow velocity around the temperature sensing portion is faster. Excellent responsiveness.

〔実施例〕〔Example〕

次に本考案の詳細を図示した実施例に基づき説明する。 Next, the details of the present invention will be described based on the illustrated embodiment.

第1図は本考案にかかるガス温度測定用プローブの全体
構成を示す断面説明図である。本プローブAは炭化硅素
(sic)製の円筒状サポート部材1の内部に熱電対等の
測温素子2を挿通し、その先端約20mmをサポート部材先
端から突出させるとともに突出した測温素子2の周囲を
特定構造を有した外装体3で覆った構成とするものであ
る。この外装体3周辺の詳細な構造は第2図及び第3図
(イ)(ロ)(ハ)で示される。
FIG. 1 is a cross-sectional explanatory view showing the entire structure of a gas temperature measuring probe according to the present invention. In this probe A, a temperature measuring element 2 such as a thermocouple is inserted into the cylindrical support member 1 made of silicon carbide (sic), and the tip of the temperature measuring element 2 is projected about 20 mm from the tip of the support member and the surroundings of the protruding temperature measuring element 2. Is covered with an exterior body 3 having a specific structure. The detailed structure around the exterior body 3 is shown in FIGS. 2 and 3 (a) (b) (c).

第2図は外装体3の組立前の状態を示し、第3図(イ)
(ハ)は組立てた状態の縦断面図、第3図(ロ)は横断
面図である。図例の如く本プローブの先端構造は、断面
円弧状の樋状外壁板4a,4bを測温素子2を間にはさんで
対向配置してガス流の流れ方向上流側に入口5を、下流
側に出口6を形成し、外壁板4aのガスの流れ方向上流先
端には該上流先端から下流へ向かって傾斜した遮蔽板7a
をその遊端が対向する外壁板4bとの間に間隙を設けた状
態で延設し、他方測温素子2をはさんで反対側に位置す
る外壁板4bの下流後端には、下流から上流へ向かって傾
斜した遮蔽板7bを前記遮蔽板7aと並行な状態で配置する
ことで測温素子周辺を経由して入口から出口へ向かう連
続したガス流路を形成している。
FIG. 2 shows a state before the exterior body 3 is assembled, and FIG.
FIG. 3C is a vertical sectional view in an assembled state, and FIG. 3B is a horizontal sectional view. As shown in the figure, the tip structure of this probe is such that the gutter-shaped outer wall plates 4a and 4b having an arc-shaped cross section are arranged so as to face each other with the temperature measuring element 2 interposed therebetween, and the inlet 5 is provided on the upstream side in the flow direction of the gas flow, and An outlet 6 is formed on the side, and a shield plate 7a inclined toward the downstream from the upstream tip is formed at the upstream tip of the outer wall plate 4a in the gas flow direction.
Is extended with a gap provided between the outer end of the outer wall plate 4b and the outer wall plate 4b facing the free end of the outer wall plate 4b. By disposing the shield plate 7b inclined toward the upstream side in parallel with the shield plate 7a, a continuous gas flow path from the inlet to the outlet is formed via the periphery of the temperature measuring element.

外壁板4a,4bと遮蔽板7a,7bのそれぞれの寸法関係は、測
温素子2が外部から直接見えないことと、ガスの流通が
円滑であることの二点を基準として設定される。入口5
及び出口6の開口巾は上記条件を満たす限り適宜設定で
きるが、開口巾を大きくした場合には測温素子2を目視
不能とする為には遮蔽板7a,7bは長くする必要がある。
しかしながら遮蔽板7a,7bが長くなると対向する外壁板
との間隙が狭くなってガスの流通が阻害されるおそれが
ある。本実施例ではこれらの事情を考慮したうえ、測温
素子と入口の開口縁とで形成される角度を約60°に設定
している。又、入口5と出口6及び測温素子2が位置す
る部分の流路の大きさの大小関係は、入口5の断面積を
S1、出口6の断面積をS3、測温素子2の位置する部分の
断面積をS2とした場合に、S3≧S1>S2の関係を満たすよ
う設定することが好ましく、このようにすれば測温素子
2周辺を通過するガス流の流速が速くなって測温素子2
の応答性は向上する。
The dimensional relationship between the outer wall plates 4a and 4b and the shielding plates 7a and 7b is set on the basis of two points that the temperature measuring element 2 is not directly visible from the outside and that gas flows smoothly. Entrance 5
The opening width of the outlet 6 can be appropriately set as long as the above conditions are satisfied, but if the opening width is increased, the shielding plates 7a and 7b need to be long in order to make the temperature measuring element 2 invisible.
However, if the shield plates 7a and 7b are long, the gap between the outer wall plates facing each other is narrowed, and the gas flow may be hindered. In the present embodiment, in consideration of these circumstances, the angle formed by the temperature measuring element and the opening edge of the inlet is set to about 60 °. Further, regarding the size relationship of the sizes of the flow paths in the portions where the inlet 5 and the outlet 6 and the temperature measuring element 2 are located,
When S1, the cross-sectional area of the outlet 6 is S3, and the cross-sectional area of the portion where the temperature measuring element 2 is located is S2, it is preferable to set so as to satisfy the relationship of S3 ≧ S1> S2. The flow velocity of the gas flow passing around the temperature sensor 2 becomes faster and the temperature sensor 2
Responsiveness is improved.

遮蔽板7a,7bで囲繞された空間には、測温素子2を挿通
状態で支持する正面視略字形の支持板8を配置してい
る。該支持板8は、ガス流にさらされる測温素子2を補
強して折損を防止することを目的とするものである。
又、支持板8は遮蔽板7a,7b及び外壁板4a,4bと非接触と
なすとともに測温素子2の支持位置も感温部9から一定
距離離間した位置となして、サポート部材1や遮蔽板7
a,7bと感温部9との熱伝導を断つようにしている。支持
板8は測温素子2の強度が充分な場合は除くこともでき
る。外壁板4a,4b下端面には底板10が取付けられ、外壁
板4a,4b下面を閉鎖している。ところで外壁板4a,4b,遮
蔽板7a,7b及び底板10は高耐熱性を有すると同時に熱伝
導に優れ、且つ輻射率の低い素材から形成されている必
要がある。これら外壁板や底板の熱伝導が低いと感温部
9と外壁板及び底板間に温度差が生じて輻射熱に起因す
る誤差が発生するおそれがある。本実施例では、白金製
の薄板を用いることで高耐熱性と応答性、更には低輻射
率を実現しているが、測温値の許容誤差に応じて他の素
材を選択することもできる。
In the space surrounded by the shield plates 7a and 7b, a support plate 8 having a substantially U-shape in front view is arranged to support the temperature measuring element 2 in an inserted state. The support plate 8 is intended to reinforce the temperature measuring element 2 exposed to the gas flow and prevent breakage.
Further, the support plate 8 is not in contact with the shield plates 7a, 7b and the outer wall plates 4a, 4b, and the support position of the temperature measuring element 2 is also a position separated from the temperature sensing part 9 by a certain distance, so that the support member 1 and the shield member are shielded. Board 7
The heat conduction between a and 7b and the temperature sensing portion 9 is cut off. The support plate 8 may be omitted if the temperature measuring element 2 has sufficient strength. The bottom plate 10 is attached to the lower end surfaces of the outer wall plates 4a and 4b, and the lower surfaces of the outer wall plates 4a and 4b are closed. By the way, the outer wall plates 4a, 4b, the shielding plates 7a, 7b, and the bottom plate 10 need to be formed of a material having high heat resistance, excellent heat conduction, and low emissivity. If the heat conduction of the outer wall plate and the bottom plate is low, a temperature difference may occur between the temperature sensing unit 9 and the outer wall plate and the bottom plate, and an error due to radiant heat may occur. In this embodiment, a thin plate made of platinum is used to realize high heat resistance and response, and further low emissivity, but other materials can be selected depending on the tolerance of the temperature measurement value. .

又、感温部9への熱影響としてはサポート部材1への熱
伝導による損失も無視できない。該損失を軽減する為に
は測温素子2の機械的強度が許す限り、サポート部材1
からの突出長さを長く設定することが好ましい。本実施
例ではφ1.6mmの測温素子を16mm〜18mm突出させてい
る。
Further, as a heat influence on the temperature sensing portion 9, a loss due to heat conduction to the support member 1 cannot be ignored. In order to reduce the loss, as long as the mechanical strength of the temperature measuring element 2 permits, the support member 1
It is preferable to set a long protruding length from. In this embodiment, the temperature measuring element having a diameter of 1.6 mm is projected by 16 mm to 18 mm.

第4図は感温部9の応答性を高める為に、感温部9にフ
ィン11を取付けてガスとの接触面積を増やした場合であ
る。該フィン11には感温部9の機械的強度を補強する効
果もある。
FIG. 4 shows a case in which fins 11 are attached to the temperature sensing portion 9 to increase the contact area with the gas in order to enhance the responsiveness of the temperature sensing portion 9. The fins 11 also have the effect of reinforcing the mechanical strength of the temperature sensing section 9.

以上、本考案の代表的な実施例を示したが、本考案にお
ける外装体3は、測温素子2を全包囲から見えないよう
にして輻射シールドするとともに、ガス流を測温素子2
に円滑に案内し得る流通路を有するものであれば他の形
状であってもよく、例えば第5図に示す如く断面円弧状
の樋状外壁板14a,14bを互いに中心をずらして対向配置
して、両樋状外壁板14a,14b間に略S字状のガス流路を
形成するとともに、このガス流路の略中間位置であって
周囲から目視不能な位置に測温素子2を配置し、且つガ
ス流路の入口断面積よりも測温素子の感温部を位置づけ
た部分のガス流路の断面積を小さく設定したものも採用
できる。この形態のプローブはガス流路が略S字状であ
って角部等は存在しないため、ガスの流れは極めて円滑
である。しかも感温部を通過するガスの流速は高められ
ているから応答性にも優れている。
The representative embodiment of the present invention has been described above. The exterior body 3 of the present invention shields the temperature measuring element 2 from radiation by shielding it from the surroundings, and at the same time, detects the gas flow.
It may have any other shape as long as it has a flow passage that can be smoothly guided. For example, as shown in FIG. 5, gutter-shaped outer wall plates 14a and 14b having arcuate cross sections are arranged so as to be offset from each other and face each other. Then, a substantially S-shaped gas flow path is formed between the gutter-shaped outer wall plates 14a and 14b, and the temperature measuring element 2 is arranged at a substantially intermediate position of the gas flow path and invisible to the surroundings. It is also possible to employ a gas flow passage having a cross-sectional area smaller than that of the gas flow passage at the inlet of the temperature measuring element. In this form of probe, the gas flow path is substantially S-shaped and there are no corners, so the gas flow is extremely smooth. Moreover, since the flow velocity of the gas passing through the temperature sensing portion is increased, the responsiveness is also excellent.

このような構成、特に第1図〜第3図で示したガス温度
測定用プローブは、例えば第7図に示すように、燃焼器
15と減温器16間に設けられた耐火材製の連結部17内部の
測温をすべく、該連結部17を貫通して、その先端をガス
流路18の略中央に位置づけて取付けられる。ガス流の流
れ方向上流側に位置づけられた入口5から流入したガス
流は外壁板4a,4b及び遮蔽板7a,7bに案内されて測温素子
周辺を通過した後、出口6から放出される。この詳細は
第(6)図で示される。即ち、入口5から流入したガス
は遮蔽板7aと反対側の外壁板4bに案内されて、遮蔽板7
a,7b間が形成する空間に回り込み、感温部9に接触して
ガス温度を伝えた後、反対側の遮蔽板7bと外壁板4aに案
内されて出口6へ導かれる。このとき遮蔽板7a,7bはガ
ス流に対して傾斜している為、ガス流の通過は阻害され
ることなく円滑に行なわれる。そして、測温素子2は外
壁板4a,4bと遮蔽板7a,7bとによって、全方位にわたって
完全に輻射シールドされているので、減温器16内壁や燃
焼器15内壁からの輻射熱の影響を受けることなく、ガス
温度の高精度な測温が可能となる。
Such a configuration, in particular, the gas temperature measuring probe shown in FIGS. 1 to 3 has a combustor as shown in FIG. 7, for example.
In order to measure the temperature inside the connecting portion 17 made of a refractory material provided between the 15 and the desuperheater 16, the connecting portion 17 is penetrated and the tip thereof is positioned in the approximate center of the gas flow path 18 and attached. . The gas flow introduced from the inlet 5 positioned on the upstream side in the flow direction of the gas flow is guided by the outer wall plates 4a and 4b and the shielding plates 7a and 7b to pass around the temperature measuring element, and then discharged from the outlet 6. The details are shown in FIG. (6). That is, the gas flowing from the inlet 5 is guided to the outer wall plate 4b on the opposite side of the shield plate 7a, and
After wrapping around in the space formed between a and 7b and contacting the temperature sensing part 9 to convey the gas temperature, it is guided to the outlet 6 by being guided by the shield plate 7b and the outer wall plate 4a on the opposite side. At this time, since the shielding plates 7a and 7b are inclined with respect to the gas flow, the passage of the gas flow is smoothly performed without being obstructed. The temperature measuring element 2 is completely radiated and shielded by the outer wall plates 4a, 4b and the shield plates 7a, 7b in all directions, and therefore is affected by the radiant heat from the inner wall of the temperature reducer 16 and the inner wall of the combustor 15. It is possible to measure the gas temperature with high accuracy without any need.

又、図例の実施例は、感温部9の位置する部分の断面積
は、入口5の断面積よりも小さく設定している為、感温
部周辺ではガス流の通過速度は速く、感温部9のガス温
度に対する応答性は極めて高い。
Further, in the embodiment of the illustrated example, the cross-sectional area of the portion where the temperature sensing portion 9 is located is set smaller than the cross-sectional area of the inlet 5, so that the gas flow passage speed is high in the vicinity of the temperature sensing portion. The response of the warm part 9 to the gas temperature is extremely high.

〈表〉は前記連結部17の温度を第1図で示した本考案に
かかるプローブと第(8)図で示した従来のプローブと
を用いて測定した結果である。尚、測温対象のガスの流
速は62m/S、ガス圧は約1気圧、ガス流断面積における
平均温度の理論値は1270℃であり、測定環境としてのガ
ス流路各部の内壁温度は、燃焼器15が600℃、減温器16
が20℃〜50℃、耐火材17が約1000℃であった。又、測定
は、ガス流路の同一断面における複数の測定点について
行ない、これらの測温結果に基づいてガス流断面積の平
均温度を算出した。
The table shows the results of measuring the temperature of the connecting portion 17 by using the probe according to the present invention shown in FIG. 1 and the conventional probe shown in FIG. (8). In addition, the flow velocity of the temperature measurement target gas is 62 m / S, the gas pressure is about 1 atm, and the theoretical value of the average temperature in the gas flow cross-sectional area is 1270 ° C. The inner wall temperature of each part of the gas flow path as the measurement environment is Combustor 15 is 600 ℃, desuperheater 16
Was 20 ℃ ~ 50 ℃, the refractory material 17 was about 1000 ℃. The measurement was performed at a plurality of measurement points on the same cross section of the gas flow path, and the average temperature of the gas flow cross-sectional area was calculated based on these temperature measurement results.

表からわかるように、従来品による測温値は970℃であ
って、理論値(1270℃)と約300℃の差があった。これ
は燃焼器内面温度や減温器内壁温度がガス温度よりも低
かった為に、感温部とこれら内壁との間の輻射熱の授受
において、感温部から内壁へ向かう輻射熱の方が多くな
り、この結果、感温部の温度が降下したものと推測され
る。これに対して本考案品による測温値は1200℃であっ
て理論値(1270℃)と極めて近似した測温値が得られて
おり、本発明にかかるプローブが周囲からの輻射熱をほ
ぼ完全に排除し得ていることがわかる。
As can be seen from the table, the temperature measured by the conventional product was 970 ° C, which was about 300 ° C different from the theoretical value (1270 ° C). This is because the inner surface temperature of the combustor and the inner wall temperature of the desuperheater were lower than the gas temperature.Therefore, in the transfer of radiant heat between the temperature-sensitive part and these inner walls, the radiant heat from the temperature-sensitive part to the inner wall was greater. As a result, it is estimated that the temperature of the temperature sensing part dropped. On the other hand, the temperature measured by the device of the present invention is 1200 ° C, which is extremely close to the theoretical value (1270 ° C), and the probe according to the present invention can almost completely radiate heat from the surroundings. It turns out that they can be eliminated.

〔考案の効果〕[Effect of device]

以上のように本考案にかかるガス温度測定用プローブ
は、一対の断面円弧状の樋状外壁板を測温素子をはさん
で対向配置してガス流の上流側に入口を、下流側に出口
をそれぞれ形成し、測温素子をガス流路の途中に周囲か
ら完全に目視不能な状態で配置した構成とした。したが
って、ガスはガス流路に自由に流入してガス温度が測温
素子の感温部に伝達されるが、輻射熱に対して測温素子
は完全にシールドされている為、測温素子に輻射熱が作
用することはなく、応答性に優れ、且つ高精度なガス温
度の測定が可能となる。
As described above, the gas temperature measuring probe according to the present invention is arranged such that a pair of gutter-shaped outer wall plates having an arc-shaped cross section are arranged to face each other with a temperature measuring element therebetween, and the gas flow has an inlet on the upstream side and an outlet on the downstream side. And the temperature measuring element is arranged in the middle of the gas flow path so as to be completely invisible from the surroundings. Therefore, the gas freely flows into the gas flow path and the gas temperature is transmitted to the temperature sensing part of the temperature measuring element, but since the temperature measuring element is completely shielded against the radiant heat, the radiant heat is radiated to the temperature measuring element. Does not act, the response is excellent, and the gas temperature can be measured with high accuracy.

特に請求項1記載のプローブは、一方の外壁板の上流側
先端に下流へ向かって傾斜する遮蔽板をその遊端が対向
する他の外壁板との間に間隙を設けた状態で延設し、他
方の外壁板にはその下流後端から上流へ向かって傾斜し
た遮蔽板を設けてガス流に対して空気抵抗が小さくなる
ようにしている為、風圧に耐えることができる上に測温
素子周辺のガスの流れも円滑にできる。
In particular, in the probe according to claim 1, a shield plate inclined toward the downstream is provided at the upstream end of one outer wall plate with a gap provided between the shield plate and the other outer wall plate whose free end faces. , The other outer wall plate is provided with a shielding plate inclined from the downstream rear end thereof to the upstream end so as to reduce the air resistance to the gas flow, so that it can withstand wind pressure and has a temperature measuring element. The flow of gas around can be smooth.

更に、測温素子の感温部にフィンを取付けたときには、
感温部の応答性の向上と感温部の機械的強度の向上が同
時に達成される。
Furthermore, when a fin is attached to the temperature sensing part of the temperature measuring element,
Improving the responsiveness of the temperature sensitive part and improving the mechanical strength of the temperature sensitive part are achieved at the same time.

又、請求項4記載のように、一対の断面円弧状の樋状外
壁板を互いに径方向にずらした状態で対向配置して、滑
らかな略S字状のガス流路を外壁材間に形成し、且つガ
ス流路の入口断面積よりも測温素子の感温部を位置づけ
た部分のガス流路の断面積を小さく設定した場合、ガス
流に対する空気抵抗はより小さくなるとともに測温素子
周辺で流れに乱れが生ずることを完全に防止できガスの
流れをより一層円滑にできる。又、測温素子周辺でのガ
ス流速が高まることから、感温部の応答性も高まる。
Further, as described in claim 4, a pair of gutter-shaped outer wall plates having an arc-shaped cross section are arranged so as to be opposed to each other in the radial direction so as to form a smooth substantially S-shaped gas passage between the outer wall members. In addition, if the cross-sectional area of the gas flow path in the part where the temperature sensing element of the temperature sensing element is located is set smaller than the cross-sectional area of the gas flow path inlet, the air resistance to the gas flow becomes smaller and Therefore, it is possible to completely prevent the occurrence of turbulence in the flow and to make the gas flow smoother. Further, since the gas flow velocity around the temperature measuring element is increased, the responsiveness of the temperature sensing portion is also improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案にかかるガス温度測定用プローブの一実
施例の全体構成を示す断面説明図、第2図は同実施例の
要部の分解説明図、第3図(イ)は同実施例の要部の縦
断面図、第3図(ロ)は第3図(イ)中A-A断面図、第
3図(ハ)は第3図(ロ)中B-B断面図、第4図は同実
施例において測温素子にフィンを取り付けた変形例を示
す断面説明図、第5図は他の実施例、第6図は外装体内
のガスの流れを示す説明図、第7図は本プローブの使用
例を示す説明図、第8図は従来例である。 A:プローブ、1:サポート部材、2:測温素子、3:外装体、
4a,4b:外壁板、5:入口、6:出口、7a,7b:遮蔽板、8:支持
板、9:感温部、10:底板、11:フィン、14a,14b:樋状外壁
板、15:燃焼器、16:減温器、17:連結部、18:ガス流路。
FIG. 1 is a cross-sectional explanatory view showing the overall structure of an embodiment of a gas temperature measuring probe according to the present invention, FIG. 2 is an exploded explanatory view of the essential parts of the same embodiment, and FIG. A longitudinal sectional view of the main part of the example, FIG. 3B is a sectional view taken along the line AA in FIG. 3B, FIG. 3C is a sectional view taken along the line BB in FIG. 3B, and FIG. FIG. 5 is a cross-sectional explanatory view showing a modified example in which fins are attached to the temperature measuring element in the embodiment, FIG. 5 is another embodiment, FIG. 6 is an explanatory view showing the gas flow in the outer package, and FIG. An explanatory diagram showing a usage example and FIG. 8 are conventional examples. A: Probe, 1: Support member, 2: Temperature measuring element, 3: Exterior body,
4a, 4b: outer wall plate, 5: inlet, 6: outlet, 7a, 7b: shielding plate, 8: support plate, 9: temperature sensing part, 10: bottom plate, 11: fins, 14a, 14b: gutter-shaped outer wall plate, 15: combustor, 16: desuperheater, 17: connecting part, 18: gas flow path.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−846(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-62-846 (JP, A)

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一対の断面円弧状の樋状外壁板を測温素子
をはさんで対向配置してガス流の上流側に入口を、下流
側に出口をそれぞれ形成し、一方の外壁板の上流側先端
には下流へ向かって傾斜する遮蔽板をその遊端が対向す
る他の外壁板との間に間隙を設けた状態で延設し、他方
の外壁板にはその下流後端から上流へ向かって傾斜した
遮蔽板を、測温素子をはさんで前記遮蔽板と並設状態で
延設した構成となし、測温素子を周囲から目視不能にす
るとともに、外壁板で囲繞された空間内に入口から出口
に連続するガス流路を形成してなるガス温度測定用プロ
ーブ。
1. A pair of gutter-shaped outer wall plates each having an arcuate cross section are arranged so as to face each other with a temperature measuring element interposed therebetween to form an inlet on the upstream side of the gas flow and an outlet on the downstream side. A shield plate inclined toward the downstream side is provided at the upstream end with a gap between the shield plate and the other outer wall plate facing the free end, and the other outer wall plate is upstream from the downstream rear end. A shield plate inclined toward the temperature sensor is arranged in parallel with the shield plate so as to be invisible from the surroundings and a space surrounded by an outer wall plate. A gas temperature measuring probe having a continuous gas flow passage formed therein from the inlet to the outlet.
【請求項2】遮蔽板によって形成されるガス流路の入口
断面積を測温素子の感温部の位置する部分の断面積より
も大きく、且つ、出口断面積よりも小さいか若しくは等
しく設定してなる前記実用新案登録請求の範囲第1項記
載のガス温度測定用プローブ。
2. An inlet cross-sectional area of the gas flow path formed by the shield plate is set to be larger than the cross-sectional area of the portion of the temperature sensing element where the temperature sensing portion is located and smaller than or equal to the outlet cross-sectional area. The probe for gas temperature measurement according to claim 1, wherein the probe is registered as a utility model.
【請求項3】測温素子の感温部近傍にフィンを取付けて
なる前記実用新案登録請求の範囲第1項又は第2項記載
のガス温度測定用プローブ。
3. A probe for gas temperature measurement according to claim 1 or 2, wherein fins are attached in the vicinity of the temperature sensing portion of the temperature measuring element.
【請求項4】一対の断面円弧状の樋状外壁板を互いに径
方向にずらした状態で対向配置して、ガス流の上流側に
入口を、下流側に出口を有する略S字状のガス流路を外
壁材間に形成し、当該ガス流路の略中間位置である一方
の外壁材の端縁部内面と他方の外壁材の端縁部内面とに
挟まれた位置に測温素子を位置づけて測温素子を周囲か
ら目視不能となし、且つガス流路の入口断面積よりも測
温素子の感温部を位置づけた部分のガス流路の断面積を
小さく設定してなるガス温度測定用プローブ。
4. A substantially S-shaped gas having a pair of trough-shaped outer wall plates each having an arcuate cross-section, which are opposed to each other in a state of being radially displaced from each other, having an inlet on the upstream side of the gas flow and an outlet on the downstream side. A flow path is formed between the outer wall members, and a temperature measuring element is provided at a position sandwiched between the inner surface of the outer edge member of one outer wall member and the inner surface of the outer edge member of the other outer wall member, which is a substantially intermediate position of the gas flow path. Positioning the temperature measuring element invisible from the surroundings, and measuring the gas temperature by setting the cross sectional area of the gas flow path at the portion where the temperature sensing part of the temperature measuring element is located smaller than the inlet cross section of the gas flow path. Probe.
JP1989086228U 1989-07-22 1989-07-22 Gas temperature measurement probe Expired - Fee Related JPH0716983Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989086228U JPH0716983Y2 (en) 1989-07-22 1989-07-22 Gas temperature measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989086228U JPH0716983Y2 (en) 1989-07-22 1989-07-22 Gas temperature measurement probe

Publications (2)

Publication Number Publication Date
JPH0325124U JPH0325124U (en) 1991-03-14
JPH0716983Y2 true JPH0716983Y2 (en) 1995-04-19

Family

ID=31635703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989086228U Expired - Fee Related JPH0716983Y2 (en) 1989-07-22 1989-07-22 Gas temperature measurement probe

Country Status (1)

Country Link
JP (1) JPH0716983Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416731B2 (en) * 2013-10-31 2016-08-16 General Electric Company Thermocouple assembly
CN115014553A (en) * 2022-05-12 2022-09-06 中国航发四川燃气涡轮研究院 A dry burning high temperature sensing part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128318A (en) * 1983-12-16 1985-07-09 Mitsubishi Heavy Ind Ltd Gas temperature measuring device
JPS6191532A (en) * 1984-10-12 1986-05-09 Mitsubishi Heavy Ind Ltd Fluid temperature measuring apparatus

Also Published As

Publication number Publication date
JPH0325124U (en) 1991-03-14

Similar Documents

Publication Publication Date Title
US5086650A (en) Low noise fluid flow sensor mounting
KR101456469B1 (en) Micro flow sensor
JP3292817B2 (en) Thermal flow sensor
JPH08501384A (en) Temperature probe with fast response time
US20060266110A1 (en) Apparatus for measuring flow characteristics
JPH0716983Y2 (en) Gas temperature measurement probe
JPH07218308A (en) Flow measuring device
JPH0469521A (en) Flowmeter
JP2000019195A (en) Wind direction and wind speed measurement device
US3245260A (en) Temperature sensor for high velocity liquid flows
JP3615371B2 (en) Airflow measuring device
JPS6191532A (en) Fluid temperature measuring apparatus
JPH09101186A (en) Pitot-tube type mass flowmeter
JPH0617810B2 (en) Thermal air flow meter
JPH05322624A (en) Flow meter
JPH0672793B2 (en) Flow rate detector
EP3421948B1 (en) System for gas distribution and mass flow measurement
JPH0138494Y2 (en)
JPH0531539Y2 (en)
JPH1114466A (en) Gas thermometer
JPH0617809B2 (en) Air flow meter
JP3378833B2 (en) Heating resistor type air flow measurement device
CA1051221A (en) Velocity thermocouple
JP3975556B2 (en) Air cleaner
JPH06288805A (en) Air flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees