JPH07161367A - Fuel cell electrolyte replenishment method - Google Patents
Fuel cell electrolyte replenishment methodInfo
- Publication number
- JPH07161367A JPH07161367A JP5339864A JP33986493A JPH07161367A JP H07161367 A JPH07161367 A JP H07161367A JP 5339864 A JP5339864 A JP 5339864A JP 33986493 A JP33986493 A JP 33986493A JP H07161367 A JPH07161367 A JP H07161367A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- carbonate
- supplied
- gas
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 24
- 239000000446 fuel Substances 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 14
- 239000007789 gas Substances 0.000 claims abstract description 46
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 35
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002737 fuel gas Substances 0.000 claims abstract description 21
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 14
- 230000001590 oxidative effect Effects 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 10
- 150000004679 hydroxides Chemical class 0.000 claims abstract description 5
- 238000003411 electrode reaction Methods 0.000 claims description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 abstract description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 abstract description 6
- 239000011734 sodium Substances 0.000 abstract description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052744 lithium Inorganic materials 0.000 abstract description 3
- 229910052700 potassium Inorganic materials 0.000 abstract description 3
- 239000011591 potassium Substances 0.000 abstract description 3
- 229910052708 sodium Inorganic materials 0.000 abstract description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 24
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 1
- -1 NaOH hydroxides Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
(57)【要約】
【目的】 通常の運転状態で且つ電池の設備をそのまま
利用して電解質を補給する。
【構成】 電解質板1をカソード2とアノード3の両電
極で挟んでなるセルCをセパレータ4を介し積層する。
カソード2側には酸化ガス供給ライン8より酸化ガスO
Gを供給する。アノード3側には燃料ガス供給ライン9
より燃料ガスFGを供給する。電解質としての炭酸塩の
主成分であるリチウム、カリウム、ナトリウム等の水酸
化物(LiOH、KOH、NaOH)を気体の状態で燃
料ガス供給ライン9を通してアノード3側へ供給する。
アノード3での反応により発生した炭酸ガスと水酸化物
を接触させて炭酸塩とするので、炭酸塩の補給が容易と
なる。
(57) [Summary] [Purpose] To replenish the electrolyte under normal operating conditions and using the battery equipment as it is. [Structure] A cell C having an electrolyte plate 1 sandwiched between electrodes of a cathode 2 and an anode 3 is laminated with a separator 4 in between.
Oxidizing gas O is supplied from the oxidizing gas supply line 8 to the cathode 2 side.
Supply G. Fuel gas supply line 9 on the anode 3 side
More fuel gas FG is supplied. Hydroxides (LiOH, KOH, NaOH) such as lithium, potassium and sodium, which are the main components of carbonate as an electrolyte, are supplied to the anode 3 side through the fuel gas supply line 9 in a gaseous state.
Carbon dioxide generated by the reaction at the anode 3 and hydroxide are brought into contact with each other to form a carbonate, so that the carbonate can be easily replenished.
Description
【0001】[0001]
【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換するエネルギー部門で
用いる燃料電池のうち、溶融炭酸塩型燃料電池において
運転中に失われる電解質を補給する方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for replenishing an electrolyte lost during operation in a molten carbonate fuel cell among fuel cells used in the energy sector for directly converting chemical energy of fuel into electric energy. Is.
【0002】[0002]
【従来の技術】燃料電池のうち、溶融炭酸塩型燃料電池
は、図2に概略を示す如く、多孔質物質に電解質として
溶融炭酸塩をしみ込ませてなる電解質板(タイル)1の
両面をカソード(酸素極)2とアノード(燃料極)3の
両電極で挟み、カソード2側に酸化ガスOGを供給する
と共に、アノード3側に燃料ガスFGを供給することに
より、カソード2側とアノード3側で反応させて発電さ
せるようにしたセルCをセパレータ4を介し多層に積層
してスタックとするようにしてある。2. Description of the Related Art Among fuel cells, a molten carbonate fuel cell is a cathode on both sides of an electrolyte plate (tile) 1 made by impregnating a molten carbonate as an electrolyte into a porous material as shown in FIG. It is sandwiched between both electrodes (oxygen electrode) 2 and anode (fuel electrode) 3, and the oxidizing gas OG is supplied to the cathode 2 side and the fuel gas FG is supplied to the anode 3 side, so that the cathode 2 side and the anode 3 side are provided. The cells C which are made to react with each other to generate electric power are laminated in multiple layers via the separator 4 to form a stack.
【0003】上記燃料電池内での反応は、次のようにし
て行われる。The reaction in the fuel cell is carried out as follows.
【0004】カソード2側では、カソード2側へ酸化ガ
ス(O2 、CO2 等)OGが供給されることにより、 CO2 + 1/2O2 +2e- →CO3 2- の反応が行われて炭酸イオンCO3 2-が生じ、このCO
3 2-が電解質板1中を泳動してアノード3に到達する。On the cathode 2 side, an oxidizing gas (O 2 , CO 2, etc.) OG is supplied to the cathode 2 side, whereby a reaction of CO 2 + 1 / 2O 2 + 2e − → CO 3 2− is performed. Carbonate ion CO 3 2- is generated, and this CO
3 2− migrates in the electrolyte plate 1 and reaches the anode 3.
【0005】アノード3側では、アノード3側に燃料ガ
ス(H2 等)FGが供給されることにより CO3 2-+H2 →H2 O+CO2 +2e- の反応が行われる。On the anode 3 side, a fuel gas (H 2 etc.) FG is supplied to the anode 3 side, whereby a reaction of CO 3 2- + H 2 → H 2 O + CO 2 + 2e − is performed.
【0006】燃料電池の運転中は、上記の反応が行われ
ることにより、カソード2側とアノード3側で電位差が
生じてターミナルに負荷5を接続することによって電気
が流れることになる。[0006] During the operation of the fuel cell, the reaction described above causes a potential difference between the cathode 2 side and the anode 3 side, and electricity is supplied by connecting the load 5 to the terminal.
【0007】かかる燃料電池の運転中においては、電解
質(炭酸塩)は僅かながら蒸発するか又は蒸発生成物を
生成して反応ガスに運ばれることにより失われている。
数千時間から数万時間の運転においては、上記電解質の
ロスが電池の性能に大きな影響を及ぼすことになる。During the operation of such a fuel cell, the electrolyte (carbonate) is slightly evaporated, or an evaporation product is generated and is lost by being carried to a reaction gas.
In the operation for several thousand hours to several tens of thousands of hours, the loss of the electrolyte has a great influence on the performance of the battery.
【0008】そのため、燃料電池の運転中に失われる電
解質を補給することができれば、電池の寿命を大幅に延
ばすことが可能となる。Therefore, if the electrolyte lost during the operation of the fuel cell can be replenished, the life of the cell can be significantly extended.
【0009】従来、かかる背景の下に、溶融炭酸塩型燃
料電池において電解質としての炭酸塩を補給することが
行われている。Against this background, it has been practiced to replenish a carbonate as an electrolyte in a molten carbonate fuel cell.
【0010】従来の炭酸塩の補給方法としては、炭酸塩
を液状の形態で電池内部へ供給することにより補給する
ようにしたもの(特開昭58−10373号)があり、
又、電解質を固体の形態で供給するようにしたものもあ
る。As a conventional method of replenishing carbonate, there is a method of replenishing carbonate by supplying it to the inside of the battery in a liquid form (Japanese Patent Laid-Open No. 58-10373).
Further, there is also one in which the electrolyte is supplied in a solid form.
【0011】[0011]
【発明が解決しようとする課題】ところが、上記従来の
補給方法では、 電池内へ供給した炭酸塩が目的の場所にすべて送り込
まれたか否かの判定が困難で且つ定量的な補給が難しい
こと、 必要とするところ以外の場所へ大量の炭酸塩を充填し
て電池の性能を逆に低下させてしまうおそれがあるこ
と、 電池の運転を止めたり、配管等の部品を取りはずして
補給しているので、通常の運転状態での補給が難しいこ
と、 等の問題がある。又、気相で炭酸塩を補給することも考
えられるが、上記の問題がある上に、炭酸塩の蒸気
圧は極めて低く、極く僅かしか補給できなくなり、短時
間で補給するのは通常の運転条件(温度、プロセスガス
量)では極めて困難である、という問題がある。However, in the above-described conventional replenishment method, it is difficult to determine whether or not the carbonate supplied to the battery has been sent to the intended location, and quantitative replenishment is difficult, There is a possibility that a large amount of carbonate may be filled in places other than where it is needed, which may adversely affect the battery performance.Because the battery is stopped or parts such as pipes are removed for replenishment. , It is difficult to replenish under normal operating conditions, etc. It is also conceivable to replenish the carbonate in the gas phase, but in addition to the above problems, the vapor pressure of the carbonate is extremely low, and it is possible to replenish only a very small amount. There is a problem that it is extremely difficult under operating conditions (temperature, process gas amount).
【0012】そこで、本発明は、上記した従来の補給方
法のもつ諸問題を解消し、確実に補給できるようにする
と共に通常の運転状態での補給ができるようにする補給
方法を提供しようとするものである。Therefore, the present invention solves the above-mentioned problems of the conventional replenishment method, and provides a replenishment method that enables reliable replenishment and replenishment under normal operating conditions. It is a thing.
【0013】[0013]
【課題を解決するための手段】本発明は、上記課題を解
決するために、電解質板を挟んで両側にカソードとアノ
ードの両電極を配置して、カソード側に酸化ガス供給ラ
インより酸化ガスを、又、アノード側に燃料ガス供給ラ
インより燃料ガスをそれぞれプロセスガスとして供給す
るようにしてある燃料電池の上記アノード側に、炭酸塩
の主成分であるリチウム、カリウム、ナトリウム等の水
酸化物を気相で送入し、アノード側での電極反応により
生成される炭酸ガスと接触させて炭酸塩に変え電池内部
の電極反応部に定着させて補給させるようにする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention arranges both electrodes of a cathode and an anode on both sides of an electrolyte plate, and supplies an oxidizing gas from a oxidizing gas supply line to the cathode side. Further, hydroxides such as lithium, potassium and sodium, which are the main components of carbonate, are added to the anode side of the fuel cell in which the fuel gas is supplied as a process gas from the fuel gas supply line to the anode side. It is fed in the gas phase and brought into contact with carbon dioxide gas generated by the electrode reaction on the anode side to convert into carbonate, so that it is fixed to the electrode reaction portion inside the battery to be replenished.
【0014】[0014]
【作用】炭酸塩の主成分であるリチウム、カリウム、ナ
トリウム等の水酸化物は炭酸塩に比して蒸気圧が高いの
で、気相で送ることができて、高濃度でアノード側へ送
入できる。又、上記水酸化物は、アノードで生成される
炭酸ガスと接触して炭酸塩となるので、この炭酸塩が補
給されることになる。この際、アノードで生成される炭
酸ガスの発生量は、炭酸イオンの泳動量で決まり、これ
は燃料電池自身の電流値としてコントロール可能である
ため、補給する炭酸塩の量を調節することができる。[Function] Hydrocarbons such as lithium, potassium and sodium, which are the main components of carbonate, have a higher vapor pressure than carbonate, so they can be sent in the gas phase and can be sent to the anode side in high concentration. it can. Further, since the hydroxide comes into contact with the carbon dioxide gas generated at the anode to form a carbonate, this carbonate is replenished. At this time, the amount of carbon dioxide gas generated at the anode is determined by the amount of migration of carbonate ions, which can be controlled as the current value of the fuel cell itself, so the amount of carbonate to be replenished can be adjusted. .
【0015】[0015]
【実施例】以下、本発明の実施例を図面を参照して説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0016】図1は本発明の実施例の概要を示すもの
で、電解質板1を挟んでその両側にカソード2とアノー
ド3の両電極を重ね合わせたセルCをガス流路を形成し
たセパレータ4を介して積層し、カソード側ガス流路6
には酸化ガス供給ライン8からの酸化ガスOGが供給さ
れ、アノード側ガス流路7には燃料ガス供給ライン9か
らの燃料ガスFGが供給されるようにしてある燃料電池
において、電解質板1にしみ込ませてある電解質の補給
を、電解質としての炭酸塩中の主成分{リチウム炭酸塩
(Li2 CO3 )、カリウム炭酸塩(K2 CO3 )、ナ
トリウム炭酸塩(Na2 CO3 )}をLiOH、KO
H、NaOHという水酸化物の形で行うように、燃料ガ
ス供給ライン9の途中に、水酸化物補給ライン10を接
続し、上記炭酸塩の主成分の水酸化物LiOH、KO
H、NaOHを気体の状態で燃料ガス供給ライン9に、
還元性ガスをフローガスに用いて送り込み、燃料ガスと
ともにアノード3側へ供給させるようにする。上記フロ
ーガスは、通常のプロセスガスから炭酸ガスCO2 を除
いたガスであり、ガス組成は、H2 +H2 O+N2 又は
H2 +H2 Oであり、N2 はCO2 以外の適当な不活性
ガスでも置き換えることが可能である。FIG. 1 shows an outline of an embodiment of the present invention, in which a cell C having a cathode 2 and an anode 3 superposed on both sides of an electrolyte plate 1 sandwiched therebetween, a separator 4 having a gas flow path formed therein. And the cathode side gas flow path 6
Is supplied with the oxidizing gas OG from the oxidizing gas supply line 8 and the anode gas flow path 7 is supplied with the fuel gas FG from the fuel gas supply line 9 in the electrolyte plate 1. To replenish the impregnated electrolyte, the main components {lithium carbonate (Li 2 CO 3 ), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 )} in the carbonate as the electrolyte are added. LiOH, KO
As in the form of H and NaOH hydroxides, a hydroxide replenishment line 10 is connected in the middle of the fuel gas supply line 9, and hydroxides LiOH and KO, which are the main components of the carbonate, are used.
H and NaOH in a gaseous state to the fuel gas supply line 9,
A reducing gas is used as a flow gas to be fed so as to be supplied to the anode 3 side together with the fuel gas. The flow gas is a gas obtained by removing carbon dioxide CO 2 from a normal process gas, and has a gas composition of H 2 + H 2 O + N 2 or H 2 + H 2 O, and N 2 is an appropriate gas other than CO 2. It is also possible to replace it with active gas.
【0017】今、燃料電池の長時間運転により炭酸塩を
補給しようとするときは、上記炭酸塩の主成分の水酸化
物LiOH、KOH、NaOHを、還元性ガスをフロー
ガスとして用いて補給ライン10を通して燃料ガス供給
ライン9に送り込み、燃料ガスとともに燃料電池のアノ
ード3側のガス流路7へ供給させるようにする。この
際、上記水酸化物は、炭酸塩に比べて蒸気圧は100〜
1000倍と高いため、高濃度で燃料ガスFG中に含有
させることができ、通常の運転状態で補給操作を行うこ
とができる。アノード3側へ補給された水酸化物は、電
池の運転中の電池反応によりアノード3側で生成される
炭酸ガスCO2 と電極反応部で接触して炭酸塩Li2 C
O3 、K2 CO3 、Na2 CO3 に変わるので、電池部
分に定着し確実に反応領域に補給することができる。ア
ノード3で発生するCO2 量は、燃料電池自身の電流値
として制御可能であるため、補給される炭酸塩の量もこ
れによりコントロールすることができ、適量を補給させ
ることができる。When a fuel cell is to be replenished with a carbonate by operating the fuel cell for a long period of time, a replenishing line using hydroxides LiOH, KOH, and NaOH, which are the main components of the carbonate, as a reducing gas. It is sent to the fuel gas supply line 9 through 10 and supplied to the gas flow path 7 on the anode 3 side of the fuel cell together with the fuel gas. At this time, the hydroxide has a vapor pressure of 100 to 100, as compared with carbonate.
Since it is as high as 1000 times, it can be contained in the fuel gas FG at a high concentration, and the replenishment operation can be performed in a normal operating state. The hydroxide replenished to the anode 3 side is brought into contact with carbon dioxide gas CO 2 generated on the anode 3 side in the electrode reaction part by the cell reaction during the operation of the cell, and carbonate Li 2 C
Since it is changed to O 3 , K 2 CO 3 , and Na 2 CO 3 , it can be fixed on the battery part and surely supplied to the reaction region. Since the amount of CO 2 generated at the anode 3 can be controlled as the current value of the fuel cell itself, the amount of carbonate to be replenished can also be controlled by this, and an appropriate amount can be replenished.
【0018】本発明の補給方法においては、燃料電池の
通常の運転状態のままで補給できるため、電池の運転を
止める必要がないと共に、補給するラインは通常の電池
プロセスのラインがそのまま利用できるため、設備を改
造する必要がない。In the replenishing method of the present invention, since the fuel cell can be replenished in the normal operating state, it is not necessary to stop the operation of the cell, and the replenishing line can be the normal cell process line as it is. , There is no need to modify the equipment.
【0019】[0019]
【発明の効果】以上述べた如く、本発明の燃料電池の電
解質補給方法によれば、電解質としての炭酸塩の成分を
水酸化物の形で気体の状態でアノードへの燃料ガス供給
ラインを通してアノード側へ供給するようにし、アノー
ド側での反応で発生した炭酸ガスと接触させて炭酸塩に
変え、電池に定着させて補給するようにしてあるので、
次の如き優れた効果を奏し得る。 (i) 水酸化物は炭酸塩に比して蒸気圧が高いので、気体
のまま通常の運転状態で電池内への供給が容易にでき
る。 (ii)水酸化物をアノード側へ供給してアノードで反応に
より発生する炭酸ガスと接触させて炭酸塩とするので、
確実に反応領域に補給することができる。 (iii) 補給する系は通常のプロセスガスのラインを利用
できるので、電池の設備を変えることなくそのまま利用
できる。 (iv)アノードで発生する炭酸ガスの量は、電流値として
制御可能であることから、この炭酸ガスの量により炭酸
塩の量を調節することができ、必要外の場所へ大量に補
給するようなことを防止できる。As described above, according to the electrolyte replenishing method for the fuel cell of the present invention, the component of the carbonate as the electrolyte is in the form of hydroxide in the form of gas in the form of gas, and the anode is passed through the fuel gas supply line to the anode. The carbon dioxide gas generated by the reaction on the anode side is brought into contact with the carbon dioxide to convert it into a carbonate, which is fixed to the battery and replenished.
The following excellent effects can be achieved. (i) Since the vapor pressure of hydroxide is higher than that of carbonate, it can be easily supplied as a gas into the battery under normal operating conditions. (ii) Since hydroxide is supplied to the anode side and brought into contact with carbon dioxide gas generated by the reaction at the anode to form a carbonate,
The reaction area can be surely replenished. (iii) Since the system for replenishment can use the normal process gas line, it can be used as it is without changing the battery equipment. (iv) Since the amount of carbon dioxide gas generated at the anode can be controlled as a current value, the amount of carbonate salt can be adjusted by this amount of carbon dioxide gas, so that a large amount of carbon dioxide can be supplied to an unnecessary place. You can prevent this.
【図1】本発明の実施例を示す概要図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.
【図2】燃料電池の一例を示す切断斜視図である。FIG. 2 is a cut perspective view showing an example of a fuel cell.
1 電解質板 2 カソード 3 アノード 4 セパレータ 6 カソード側ガス流路 7 アノード側ガス流路 8 酸化ガス供給ライン 9 燃料ガス供給ライン 10 水酸化物補給ライン OG 酸化ガス FG 燃料ガス C セル DESCRIPTION OF SYMBOLS 1 Electrolyte plate 2 Cathode 3 Anode 4 Separator 6 Cathode side gas flow path 7 Anode side gas flow path 8 Oxidizing gas supply line 9 Fuel gas supply line 10 Hydroxide supply line OG Oxidizing gas FG Fuel gas C cell
Claims (1)
で挟み、カソード入口側には酸化ガスを酸化ガス供給ラ
インにより、又、アノード入口側には燃料ガスを燃料ガ
ス供給ラインによりそれぞれ供給するようにしてある燃
料電池の上記アノード側に、炭酸塩の主成分の水酸化物
を気体の状態で、上記燃料ガス供給ラインを通して供給
し、上記アノードでの電極反応により発生した炭酸ガス
と上記供給された水酸化物を接触させて炭酸塩に変え、
電池の電極反応部に定着させて補給させるようにするこ
とを特徴とする燃料電池の電解質補給方法。1. An electrolyte plate is sandwiched between electrodes of a cathode and an anode, and an oxidizing gas is supplied to the cathode inlet side by an oxidizing gas supply line, and a fuel gas is supplied to the anode inlet side by a fuel gas supply line. To the anode side of the fuel cell, the hydroxide of the main component of carbonate is supplied in a gaseous state through the fuel gas supply line, and the carbon dioxide gas generated by the electrode reaction at the anode and the carbon dioxide gas are supplied. Contact hydroxides to convert them to carbonates,
An electrolyte replenishing method for a fuel cell, characterized in that the electrolyte is fixed to an electrode reaction portion of the cell to be replenished.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP05339864A JP3094767B2 (en) | 1993-12-07 | 1993-12-07 | Fuel cell electrolyte replenishment method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP05339864A JP3094767B2 (en) | 1993-12-07 | 1993-12-07 | Fuel cell electrolyte replenishment method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07161367A true JPH07161367A (en) | 1995-06-23 |
| JP3094767B2 JP3094767B2 (en) | 2000-10-03 |
Family
ID=18331553
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP05339864A Expired - Fee Related JP3094767B2 (en) | 1993-12-07 | 1993-12-07 | Fuel cell electrolyte replenishment method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3094767B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101251374B1 (en) * | 2011-01-31 | 2013-04-05 | 한국과학기술연구원 | Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method of supplying lithium source |
| KR20220057347A (en) * | 2020-10-29 | 2022-05-09 | 한국과학기술연구원 | Methods of supplying electrolyte of molten carbonate fuel cells and molten carbonate fuel cell system using the same |
-
1993
- 1993-12-07 JP JP05339864A patent/JP3094767B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101251374B1 (en) * | 2011-01-31 | 2013-04-05 | 한국과학기술연구원 | Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method of supplying lithium source |
| US8999598B2 (en) | 2011-01-31 | 2015-04-07 | Korea Institute Of Science & Technology | Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method for supplying lithium source |
| KR20220057347A (en) * | 2020-10-29 | 2022-05-09 | 한국과학기술연구원 | Methods of supplying electrolyte of molten carbonate fuel cells and molten carbonate fuel cell system using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3094767B2 (en) | 2000-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1198475A (en) | Fuel cell using organic, high-molecular electrolyte | |
| US7344801B2 (en) | High-voltage dual electrolyte electrochemical power sources | |
| JP2554664B2 (en) | Two-chamber anodic structure | |
| KR101296431B1 (en) | Battery and method for operating a battery | |
| US6423434B1 (en) | Method and apparatus for managing fuel cell performance | |
| EP0068508A2 (en) | Methanol fuel cell | |
| AU5153693A (en) | Electrochemical apparatus for power delivery utilizing an air electrode | |
| US8110314B2 (en) | Means of stabilizing electrolyte in a direct carbon-air fuel cell based on a molten metal hydroxide electrolyte | |
| Savaskan et al. | Further studies of a zinc-air cell employing a packed bed anode part I: discharge | |
| US3419900A (en) | Fuel cells with alkali metal hydroxide electrolyte and electrode containing fluorocarbon polymer | |
| Bacon et al. | Review Lecture-The development and practical application of fuel cells | |
| JP3094767B2 (en) | Fuel cell electrolyte replenishment method | |
| JPH0622144B2 (en) | Fuel cell | |
| US7972739B2 (en) | Method for inerting the anodes of fuel cells | |
| JPS5975569A (en) | How to store fuel cells | |
| CN118451574A (en) | Method for conditioning an electrochemical cell | |
| JP3575650B2 (en) | Molten carbonate fuel cell | |
| JPS6191876A (en) | fuel cell device | |
| US20090075137A1 (en) | Filter, hydrogen generator and fuel cell power generation system having the same | |
| JPH0339493A (en) | Water electrolyzing equipment | |
| JPS6247968A (en) | Molten carbonate fuel cell with internal reforming | |
| KR20070095686A (en) | Characteristic Recovery Method of Passive Fuel Cell System | |
| Chambers et al. | Carbonaceous fuel cells | |
| JP2766185B2 (en) | Molten salt fuel cell power plant | |
| JPH0622153B2 (en) | How to operate a fuel cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |