JPH0717991B2 - Al-Mg based alloy that does not generate stretcher strain marks during forming and method for producing the same - Google Patents
Al-Mg based alloy that does not generate stretcher strain marks during forming and method for producing the sameInfo
- Publication number
- JPH0717991B2 JPH0717991B2 JP63272323A JP27232388A JPH0717991B2 JP H0717991 B2 JPH0717991 B2 JP H0717991B2 JP 63272323 A JP63272323 A JP 63272323A JP 27232388 A JP27232388 A JP 27232388A JP H0717991 B2 JPH0717991 B2 JP H0717991B2
- Authority
- JP
- Japan
- Prior art keywords
- based alloy
- annealing
- during forming
- producing
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Metal Rolling (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はAl−Mg系合金に係り、より詳細には、深絞り加
工を主対象とする成形加工用Al−Mg系合金とその製造方
法に関する。Description: TECHNICAL FIELD The present invention relates to an Al—Mg alloy, and more specifically, an Al—Mg alloy for forming which is mainly intended for deep drawing and a method for producing the same. Regarding
(従来の技術及び解決しようとする課題) 食缶等の絞り缶(DR缶)には主としてアルミニウム材料
が使用され、熱間圧延、冷間圧延等の加工後、深絞り加
工により製造されている。(Prior art and problems to be solved) Aluminum materials are mainly used for drawn cans (DR cans) such as food cans, and they are manufactured by deep drawing after hot rolling, cold rolling, etc. .
このような食缶用アルミニウム材料には、以下のような
材料特性が要求される。Such aluminum materials for food cans are required to have the following material characteristics.
強度 成形性 低方向性 表面性状、特にSSマーク(ストレッチャー・ストレ
インマーク)のないこと 耐食性 塗膜の密着性 以上の観点から、従来より、我国ではAl−2.5%Mgをベ
ースとする5052合金が、また米国ではAl−3.5Mgをベー
スとする5042合金が主として使われていた。Strength Formability Low directionality Surface quality, especially no SS mark (stretcher / strain mark) Corrosion resistance Adhesion of coating film From the above viewpoint, in Japan, 5052 alloy based on Al-2.5% Mg has been conventionally used. In the United States, the Al-3.5Mg-based 5042 alloy was mainly used.
しかし、最近、食缶でも絞り比が約2.0に近い深絞り缶
の採用に伴い、BタイプのSSマーク(パラレルバンド)
が缶胴に発生し、美観のみならず、缶詰の内容物の保護
のため内面に塗装してある塗膜まで損傷する恐れが出て
きた。However, recently, with the adoption of deep-drawing cans with a drawing ratio close to about 2.0 for food cans, B type SS mark (parallel band)
Occurs on the body of the can, and not only the aesthetic appearance but also the damage to the coating film applied to the inner surface of the can to protect the contents.
このBタイプのSSマークについては、例えば「アルミニ
ウム材料の基礎と工業技術」(社)軽金属協会発行(昭
和60年)のp.140に、「(BタイプのSSマーク)につい
ては材料面からの防止は困難で、加工速度を増大する、
ひずみ条件を調整するなど、変形条件を変える必要があ
る」と記載されているように、変形条件(加工条件)か
らの防止策が挙げられていた。確かに、引張変形などの
ような単純加工では変形速度の高速化や低温変形などは
効果的であるが、現実の食缶材の成形ではプレス加工速
度の増大や温度制御は困難であり、材料面からの改善が
長年要望されてきた。For this B type SS mark, see, for example, "Basics and Industrial Technology of Aluminum Materials" published by The Light Metals Association of Japan (1985), p.140. Difficult to prevent, increase processing speed,
It is necessary to change the deformation conditions, such as adjusting the strain conditions. ", A preventive measure from the deformation conditions (processing conditions) was mentioned. Certainly, in simple processing such as tensile deformation, speeding up the deformation speed and low temperature deformation are effective, but in the actual forming of can material, it is difficult to increase the press working speed and control the temperature. There has been a long-standing demand for improvement in terms of aspects.
本発明は、上記要請に応えるべくなされたものであっ
て、成形加工時にストレッチャー・ストレインマークの
発生しないAl−Mg系合金を提供し、またかゝるAl−Mg系
合金を工業的に製造できる方法を提供することを目的と
するものである。The present invention has been made to meet the above requirements, provides an Al-Mg alloy that does not generate stretcher strain marks during molding, and industrially manufactures such an Al-Mg alloy. The purpose is to provide a possible method.
(課題を解決するための手段) 前記目的を達成するため、本発明者等は、食缶用アルミ
ニウム合金として多用され、今後共に使用量が期待され
る5052合金(2.5%Mg)、5042合金(3.5%Mg)を対象
に、SSマークの発生しない材料を見い出すべく、材料面
からSSマークの防止策を図ると共に、強度等の面も考慮
し、工業的に製造可能とする方策について鋭意研究を重
ねた。(Means for Solving the Problem) In order to achieve the above-mentioned object, the inventors of the present invention frequently use aluminum alloys for food cans, and 5052 alloys (2.5% Mg), which are expected to be used in the future, 5042 alloys ( For 3.5% Mg), in order to find a material that does not generate SS mark, we will take measures to prevent SS mark from the material side, consider strength, etc. Overlaid.
その結果、Al−Mg基合金を特定条件で圧延加工、熱処理
を施して結晶粒度と共に軟化度を規制することにより、
SSマークを効果的に防止できることを見い出した。As a result, by rolling the Al-Mg-based alloy under specific conditions and subjecting it to heat treatment to control the degree of softening along with the grain size,
We have found that the SS mark can be effectively prevented.
すなわち、本発明は、Mgを1.5〜4wt%含有するAl−Mg基
合金であって、結晶粒度が10〜40μmであり、且つ、次
式で定義される軟化度、 軟化度=(σy0−σy)×100÷σy0(%) (ここで、σy0:安定化焼鈍前の材料の耐力 σy :安定化焼鈍後の材料の耐力 が10%以上であることを特徴とする成形加工時にストレ
ッチャー・ストレインマークの発生しないAl−Mg系合金
を要旨とするものである。That is, the present invention is an Al-Mg based alloy containing 1.5 to 4 wt% of Mg, having a grain size of 10 to 40 μm, and having a softening degree defined by the following equation, a softening degree = (σy 0 − σy) × 100 ÷ σy 0 (%) (where σy 0 : yield strength of material before stabilization annealing σy: yield strength of material after stabilization annealing is 10% or more The gist is an Al-Mg-based alloy that does not generate letcher strain marks.
また、その製造方法に係る本発明は、Mgを1.5〜4wt%含
有するAl−Mg基合金の鋳塊を熱間圧延後、加工率40%以
上の中間圧延を行い、300〜500℃の温度で中間焼鈍を施
し、更に加工率40%以上の仕上圧延を行い、次いで150
〜250℃の温度で安定化焼鈍を施すことを特徴とする成
形加工時のストレッチャー・ストレインマークの発生し
ないAl−Mg系合金の製造方法を要旨とするものである。Further, the present invention according to the manufacturing method thereof, after hot rolling the ingot of Al-Mg based alloy containing 1.5 to 4 wt% Mg, intermediate rolling with a working rate of 40% or more, the temperature of 300 ~ 500 ℃. Intermediate annealing is performed, and further finish rolling with a working rate of 40% or more is performed.
A gist of the present invention is to provide a method for producing an Al-Mg-based alloy that does not generate stretcher strain marks during forming, which is characterized by performing stabilizing annealing at a temperature of up to 250 ° C.
以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.
(作用) まず、本発明における化学成分の限定理由について説明
する。(Operation) First, the reasons for limiting the chemical components in the present invention will be described.
本発明が対象とするAl合金は、Mgを1.5〜4wt%含有する
Al−Mg基合金である。本系合金の強度はMg量と冷間加工
により導入された転位置により決定されるので、所定量
のMgを必須成分とする必要がある。すなわち、Mg量が1.
5wt%未満では耐力が20kgf/mm2以上という目安を達成で
きない。また、Mgが4wt%を超えると強度は十分に得ら
れるが、プレス加工性が低下する。したがって、Mg量は
1.5〜4wt%の範囲とする。The Al alloy targeted by the present invention contains 1.5 to 4 wt% of Mg.
It is an Al-Mg based alloy. Since the strength of this system alloy is determined by the amount of Mg and the translocation introduced by cold working, it is necessary to use a predetermined amount of Mg as an essential component. That is, the amount of Mg is 1.
If it is less than 5 wt%, the proof that the yield strength is 20 kgf / mm 2 or more cannot be achieved. Further, when Mg exceeds 4 wt%, sufficient strength is obtained, but press workability is deteriorated. Therefore, the amount of Mg is
The range is 1.5 to 4 wt%.
その他の成分については、5052合金、5042合金等のAl−
Mg系合金に含有される元素を必要に応じて適量含有させ
ることができる。例えば、組織制御のためにCr(5052合
金)、Mn(5042合金)などの遷移元素を含有しても良
い。As for other components, 5052 alloy, 5042 alloy and other Al-
An element contained in the Mg-based alloy can be contained in an appropriate amount as necessary. For example, a transition element such as Cr (5052 alloy) or Mn (5042 alloy) may be contained for controlling the structure.
次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be described.
上記の如く所望の組成に調整したAl−Mg基合金を、通常
はDC鋳造法で造塊し、均質化熱処理を施した後、熱間圧
延を行う。均質化熱処理は500〜550℃の温度で行うのが
望ましい。また、熱間圧延は300〜550℃の温度で行うの
が望ましい。なお、熱間圧延後、中間焼鈍を施しても良
い。中間焼鈍を施すと、より材料組織の制御が容易とな
る。The Al—Mg based alloy adjusted to the desired composition as described above is usually ingot-cast by the DC casting method, subjected to homogenizing heat treatment, and then hot rolled. The homogenization heat treatment is preferably performed at a temperature of 500 to 550 ° C. Further, hot rolling is preferably performed at a temperature of 300 to 550 ° C. After the hot rolling, intermediate annealing may be performed. When the intermediate annealing is performed, the control of the material structure becomes easier.
次いで、加工率40%以上の中間圧延(冷間圧延)を施
す。加工率が40%未満の圧延では最終的な結晶粒が40μ
mよりも大きくなり、成形加工時に肌荒れとなり、表面
品質を損ねるので好ましくない。Then, intermediate rolling (cold rolling) with a working rate of 40% or more is performed. When the rolling rate is less than 40%, the final grain size is 40μ.
m is larger than m, the surface becomes rough during the molding process, and the surface quality is deteriorated, which is not preferable.
その後、中間焼鈍を施すが、300℃未満では再結晶が起
こらず、550℃を超えると結晶粒の粗大化やバーニング
の危険性がある。したがって、温度は300〜550℃の範囲
とする。なお、この熱処理は、バッチ式の炉では300〜3
50℃×2hr位で十分であり、連続式の加熱炉(CAL)では
500〜550℃×1〜10secで十分である。After that, intermediate annealing is performed, but recrystallization does not occur below 300 ° C, and there is a risk of coarsening of the crystal grains and burning above 550 ° C. Therefore, the temperature is in the range of 300 to 550 ° C. In addition, this heat treatment is 300 to 3 in a batch type furnace.
50 ℃ x 2hr is enough, and in continuous heating furnace (CAL)
500 to 550 ° C x 1 to 10 seconds is sufficient.
続く最終的な仕上圧延(冷間圧延)は、40%以上の加工
率で行う。加工率が40%未満では十分な強度が得られな
い。Subsequent final finish rolling (cold rolling) is performed at a working rate of 40% or more. If the processing rate is less than 40%, sufficient strength cannot be obtained.
最後に150〜250℃の温度で安定化焼鈍を施す。この場
合、150℃未満では内部組織の変化を起こすのに不十分
であり、250℃を超えると軟化が進んで十分な強度が得
られない。Finally, stabilization annealing is performed at a temperature of 150 to 250 ° C. In this case, if the temperature is lower than 150 ° C, the internal structure is insufficiently changed, and if the temperature exceeds 250 ° C, softening proceeds and sufficient strength cannot be obtained.
以上の方法で得られるAl−Mg基合金において、結晶粒度
が40μmを超えると絞り加工時に肌荒れを起こし、10μ
m未満であると加工中の転位の動きが遅くなり、SSマー
クが発生し易くなる。したがって、結晶粒度は10〜40μ
mの範囲に調整するのが好ましい。In the Al-Mg based alloy obtained by the above method, when the grain size exceeds 40 μm, roughening occurs during drawing,
If it is less than m, the movement of dislocations during processing becomes slow, and SS marks are likely to occur. Therefore, the grain size is 10-40μ
It is preferable to adjust to the range of m.
更に、本発明においては、次式で定義される軟化度を規
制するものである。Further, in the present invention, the softening degree defined by the following formula is regulated.
軟化度=(σy0−σy)×100÷σy0(%) (ここで、σy0:安定化焼鈍前の材料の耐力 σy :安定化焼鈍後の材料の耐力 すなわち、上記軟化度は10%以上とするが、これは工業
的な安定化焼鈍の目安を考えるもので、10%未満ではSS
マークの原因となる転位が多く、SSマークの発生が容易
となるので好ましくない。また、安定化焼鈍を施すこと
により、固溶Mg量も変化し、安定存在状態となっている
ようであり、転位との動的反応を起こりにくくする効果
があるので、上記条件で安定化焼鈍を施すのが好まし
い。Softening degree = (σy 0 −σy) × 100 ÷ σy 0 (%) (where, σy 0 : yield strength of material before stabilizing annealing σy: yield strength of material after stabilizing annealing, that is, the softening degree is 10% The above is to be considered as a guideline for industrial stabilization annealing.
There are many dislocations that cause marks and SS marks are easily generated, which is not preferable. In addition, the amount of solid solution Mg is also changed by performing the stabilizing annealing, and it seems that it is in a stable existence state, and it has the effect of making it difficult to cause a dynamic reaction with dislocations. Is preferably applied.
なお、このようにして得られたAl−Mg基合金は常法によ
る成形加工に供されるが、特に絞り比が約2.0に近い深
絞り加工に供してもSSマークを防止できる。The Al-Mg-based alloy thus obtained is subjected to forming processing by a conventional method, but even if it is subjected to deep drawing with a drawing ratio close to about 2.0, SS marks can be prevented.
次に本発明の実施例を示す。Next, examples of the present invention will be described.
(実施例) 第1表に示す化学成分を有するAl合金の鋳塊(厚さ50m
m)を面削し、500℃×8hrの均質化熱処理を施した後、3
00〜500℃の熱間圧延を施し、厚さ2〜4mmの熱延板とし
た。(Example) An ingot of an Al alloy having a chemical composition shown in Table 1 (thickness: 50 m
m) is faced and subjected to homogenizing heat treatment at 500 ℃ x 8hr, then 3
Hot rolling was performed at 00 to 500 ° C to obtain a hot rolled sheet having a thickness of 2 to 4 mm.
その後、第2表に示す条件で加工、熱処理を施して厚さ
0.25mmの供試材を得た。After that, processing and heat treatment under the conditions shown in Table 2
A test material of 0.25 mm was obtained.
得られた供試材について、結晶粒度と軟化度を調べると
共に、引張特性、SSマーク(パラレルバンド)及び肌荒
れ状況を調査した。その結果を第2表に併記する。With respect to the obtained test materials, the grain size and the softening degree were examined, and the tensile properties, SS marks (parallel band) and rough skin were examined. The results are also shown in Table 2.
なお、SSマークは、40mmφ、50%絞りカップテストを行
い、発生なしの場合に○、発生した場合に×を付して評
価した。The SS mark was evaluated by conducting a 40 mmφ, 50% squeeze cup test, and when there was no occurrence, it was marked with O, and when it occurred, was marked with X.
第2表より、本発明例No.1〜No.5は、いずれもSSマーク
の発生がなく、必要強度(>20kgf/mm2)が得られてい
ることがわかる。It can be seen from Table 2 that Examples No. 1 to No. 5 of the present invention have the required strength (> 20 kgf / mm 2 ) without any SS mark.
一方、比較例No.6〜No.9は、安定化焼鈍を施さないため
に軟化度が零の例であり、SSマークが発生している。Mg
含有量が本発明範囲外のAl合金についての比較例No.10
〜No.11は軟化度が小さく、SSマークが発生している。
中間圧延の加工率が低い比較例No.12は結晶粒度が大き
くなり、SSマークが発生すると共に肌荒れが生じてい
る。中間圧延の加工率及び中間焼鈍温度がともに低い比
較例No.13は再結晶が不十分であり、軟化度が小さく、S
Sマークが発生している。中間焼鈍温度と仕上圧延加工
率がともに低い比較例No.14は必要強度が得られず、SS
マークが発生している。安定化焼鈍温度が低い比較例N
o.15は軟化度が小さく、SSマークが発生し、また安定化
焼鈍温度が高い比較例No.16は必要強度が得られない。On the other hand, Comparative Examples No. 6 to No. 9 are examples in which the degree of softening is zero because the stabilizing annealing is not performed, and SS marks are generated. Mg
Comparative example No. 10 for Al alloys whose content is outside the scope of the present invention
No. 11 has a small softening degree and SS marks are generated.
Comparative Example No. 12, which has a low intermediate rolling working ratio, has a large crystal grain size, which causes SS marks and rough skin. Comparative Example No. 13 in which both the workability of intermediate rolling and the intermediate annealing temperature are low, the recrystallization is insufficient, the softening degree is small, and S
S mark is generated. Comparative Example No. 14, which has a low intermediate annealing temperature and a low finish rolling rate, did not have the required strength and
The mark is generated. Comparative example N with low stabilization annealing temperature
Comparative Example No. 16 of which the softening degree is small, SS mark is generated, and the stabilization annealing temperature is high cannot be obtained in o.15.
(発明の効果) 以上詳述したように、本発明によれば、特定組成のAl−
Mg基合金に特定条件の圧延加工、熱処理を施すことによ
り、結晶粒度及び軟化度を規制するので、成形加工時に
ストレッチャー・ストレインマーク(パラレルバンド)
の発生のないアルミニウム材料を得ることができる。特
に絞り比が2.0に近い深絞り加工においてもストレッチ
ャー・ストレインマークを発生することなく食缶等の深
絞り缶を製造することが可能である。また本発明法によ
れば工業的製造が容易である。 (Effect of the Invention) As described in detail above, according to the present invention, Al-containing a specific composition
By subjecting Mg-based alloy to rolling and heat treatment under specific conditions, the grain size and softening degree are regulated, so stretcher strain marks (parallel band) are used during forming.
It is possible to obtain an aluminum material that does not generate In particular, it is possible to manufacture deep-drawn cans such as food cans without generating stretcher strain marks even in deep-drawing where the drawing ratio is close to 2.0. Further, according to the method of the present invention, industrial production is easy.
Claims (2)
塊を熱間圧延後、加工率40%以上の中間圧延を行い、30
0〜500℃の温度の中間焼鈍を施し、更に加工率40%以上
の仕上圧延を行い、次いで150〜250℃の温度で安定化焼
鈍を施すことを特徴とする成形加工時にストレッチャー
・ストレインマークの発生しないAl−Mg系合金の製造方
法。1. An ingot of an Al-Mg based alloy containing 1.5 to 4 wt% of Mg is hot-rolled and then subjected to an intermediate rolling with a working rate of 40% or more.
Stretcher / strain mark during forming, characterized by performing intermediate annealing at a temperature of 0 to 500 ° C, finish rolling at a working rate of 40% or more, and then stabilizing annealing at a temperature of 150 to 250 ° C. A method for producing an Al-Mg-based alloy that does not generate heat.
って、結晶粒度が10〜40μmであり、且つ、次式で定義
される軟化度、 軟化度=(σy0−σy)×100÷σy0(%) (ここで、σy0:安定化焼鈍前の材料の耐力 σy :安定化焼鈍後の材料の耐力 が10%以上であることを特徴とする成形加工時にストレ
ッチャー・ストレインマークの発生しないAl−Mg系合
金。2. An Al-Mg based alloy containing 1.5 to 4 wt% of Mg, having a grain size of 10 to 40 μm, and having a softening degree defined by the following formula, softening degree = (σy 0 −σy ) × 100 ÷ σy 0 (%) (where σy 0 : yield strength of material before stabilization annealing σy: yield strength of material after stabilization annealing is 10% or more, stretcher during forming process -Al-Mg alloy that does not generate strain marks.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63272323A JPH0717991B2 (en) | 1988-10-28 | 1988-10-28 | Al-Mg based alloy that does not generate stretcher strain marks during forming and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63272323A JPH0717991B2 (en) | 1988-10-28 | 1988-10-28 | Al-Mg based alloy that does not generate stretcher strain marks during forming and method for producing the same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8098196A Division JPH0913152A (en) | 1996-03-07 | 1996-03-07 | Production of aluminum-magnesium alloy free from generation stretcher strain mark at the time of forming |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02122054A JPH02122054A (en) | 1990-05-09 |
| JPH0717991B2 true JPH0717991B2 (en) | 1995-03-01 |
Family
ID=17512283
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63272323A Expired - Lifetime JPH0717991B2 (en) | 1988-10-28 | 1988-10-28 | Al-Mg based alloy that does not generate stretcher strain marks during forming and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0717991B2 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02290953A (en) * | 1989-04-29 | 1990-11-30 | Kobe Steel Ltd | Production of al-mg alloy free from occurrence of stretcher strain mark at the time of forming |
| JPH03173752A (en) * | 1989-12-01 | 1991-07-29 | Kobe Steel Ltd | Manufacture of low earing and high strength al-mg series alloy free from the generation of stretcher strain mark in the stage of forming |
| US7048814B2 (en) | 2002-02-08 | 2006-05-23 | Applied Materials, Inc. | Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus |
| US7033447B2 (en) * | 2002-02-08 | 2006-04-25 | Applied Materials, Inc. | Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6280256A (en) * | 1985-10-01 | 1987-04-13 | Sky Alum Co Ltd | Manufacture of material for redrawn vessel |
| JPH0756068B2 (en) * | 1986-06-19 | 1995-06-14 | 住友軽金属工業株式会社 | Manufacturing method of aluminum hard plate with small ear ratio and excellent strength and ductility |
-
1988
- 1988-10-28 JP JP63272323A patent/JPH0717991B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH02122054A (en) | 1990-05-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4645544A (en) | Process for producing cold rolled aluminum alloy sheet | |
| WO1995022634A1 (en) | Method of manufacturing aluminum alloy plate for molding | |
| US4838958A (en) | Aluminum-alloy rolled sheet and production method therefor | |
| JPH05263203A (en) | Production of rolled sheet of aluminum alloy for forming | |
| JP3590685B2 (en) | Manufacturing method of aluminum alloy sheet for automobile outer panel | |
| JPH05195171A (en) | Production of aluminum hard plate excellent in formability and low in earing rate | |
| JPH0931616A (en) | Al-Mg-Si alloy plate excellent in formability and method for producing the same | |
| JP3791337B2 (en) | Highly formable aluminum alloy plate and method for producing the same | |
| JPH0717991B2 (en) | Al-Mg based alloy that does not generate stretcher strain marks during forming and method for producing the same | |
| US20220127708A1 (en) | Method for producing a sheet or strip from an aluminium alloy, and a sheet, strip or molded part produced thereby | |
| JP3605662B2 (en) | Aluminum foil for containers | |
| JPH0122345B2 (en) | ||
| JP2001073104A (en) | Manufacturing method of aluminum alloy soft plate for deep drawing | |
| JPS6365402B2 (en) | ||
| JP3278130B2 (en) | Method for producing high-strength heat-treated aluminum alloy sheet for drawing | |
| JPH0890091A (en) | Method for forming Al-Mg alloy plate with less occurrence of stretcher strain marks | |
| JPH1161365A (en) | Production of aluminum alloy sheet for deep drawing | |
| JPH10219412A (en) | Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming | |
| JPH02290953A (en) | Production of al-mg alloy free from occurrence of stretcher strain mark at the time of forming | |
| JPS63125645A (en) | Production of aluminum alloy material having fine crystal grain | |
| JP3983454B2 (en) | Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method | |
| JP3103122B2 (en) | Aluminum alloy sheet for forming process with high formability and method for producing the same | |
| JP2956038B2 (en) | Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same | |
| JP3180812B2 (en) | Method for producing Al-Fe alloy foil | |
| KR960007633B1 (en) | High Formability High Strength Aluminum-Magnesium-Based Alloy and Manufacturing Method Thereof |