JPH07185281A - Gas dissolving apparatus - Google Patents
Gas dissolving apparatusInfo
- Publication number
- JPH07185281A JPH07185281A JP34906293A JP34906293A JPH07185281A JP H07185281 A JPH07185281 A JP H07185281A JP 34906293 A JP34906293 A JP 34906293A JP 34906293 A JP34906293 A JP 34906293A JP H07185281 A JPH07185281 A JP H07185281A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ozone
- nozzle
- gas
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 90
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000004090 dissolution Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 239000012153 distilled water Substances 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 7
- 241000251468 Actinopterygii Species 0.000 abstract description 4
- 235000013305 food Nutrition 0.000 abstract description 4
- 235000013372 meat Nutrition 0.000 abstract description 4
- 235000013311 vegetables Nutrition 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 235000019688 fish Nutrition 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Landscapes
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、気体の溶解装置に関す
るものであり、さらに詳しくは特に生鮮魚、精肉、野菜
などの生鮮食品を処理して殺菌を行うことができる高濃
度オゾン水を生成するための気体の溶解装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas dissolving device, and more particularly, it produces highly concentrated ozone water capable of treating and sterilizing fresh food such as fresh fish, meat and vegetables. The present invention relates to a gas dissolving device for producing a gas.
【0002】[0002]
【従来の技術】オゾンは自己分解の過程で生じる原子状
酸素の作用による強い酸化力を持ち、この性質を利用し
たオゾン殺菌は、オゾン自身が分解後には酸素になるた
め残留の危険性がないという利点をもっている。オゾン
の水中殺菌作用についてのこれまでの研究では、混入し
ている有機物の分解に消費されてオゾン濃度が減少する
ために、なるべく高濃度のオゾン水が要求されている。
高濃度のオゾン水が生成できれば、高濃度のオゾン水を
適度に薄めることによってオゾン水を多量に生産するこ
とができる。また、例えば、高濃度のオゾン水が生成で
きる装置と低濃度のオゾン水しか生成できない装置との
大きさが同一であれば、オゾン水の生成装置としてはコ
ンパクト化が図れる。従来、生鮮魚の場合は冷塩水3.
5%、精肉の場合は冷塩水0.9%、野菜の場合は冷水
につけて数分〜数10分単位で浸漬処理を行い、処理中
にエアポンプを使ってオゾンを冷水又は冷塩水に導入す
ることにより生鮮食品の殺菌を行い、その鮮度を保持す
ることが行われている。また、オゾン発生器から発生し
たオゾン空気を電気機械的手段を用いることなく、水噴
射パイプから噴出する冷却水と混合した状態で水槽内に
噴射する装置が提案されている(実開昭60−2197
9号公報)。しかしながら、このような従来の構成にお
いては、装置が大型化する、故障の発生が多いなどの問
題がある上、高濃度のオゾン水が得られないという欠点
があった。2. Description of the Related Art Ozone has a strong oxidizing power due to the action of atomic oxygen generated in the process of self-decomposition, and ozone sterilization utilizing this property has no danger of remaining because ozone itself becomes oxygen after decomposition. Has the advantage of Previous studies on the bactericidal action of ozone in water have required ozone water in a concentration as high as possible in order to reduce the ozone concentration by being consumed by the decomposition of organic substances mixed therein.
If high-concentration ozone water can be produced, a large amount of ozone water can be produced by appropriately diluting the high-concentration ozone water. Further, for example, if the device capable of generating high-concentration ozone water and the device capable of generating only low-concentration ozone water have the same size, the ozone water generating device can be made compact. Conventionally, cold salt water for fresh fish 3.
5%, 0.9% cold salt water for meat, dip treatment for several minutes to several tens of minutes in cold water for vegetables, and use the air pump to introduce ozone into cold water or cold salt water. As a result, fresh food is sterilized to maintain its freshness. Further, there has been proposed a device for injecting ozone air generated from an ozone generator into a water tank in a state of being mixed with cooling water ejected from a water injection pipe, without using an electromechanical means (actually, developed 60-). 2197
No. 9). However, in such a conventional configuration, there are problems that the device becomes large-sized, there are many failures, and there is a drawback that ozone water of high concentration cannot be obtained.
【0003】[0003]
【発明が解決しようとする課題】本発明は上述の課題を
解決するためになされたもので、簡単な装置を用い、容
易に高濃度のオゾン水などの気体が溶解された水を生成
する溶解装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and uses a simple apparatus to easily dissolve water in which a gas such as high-concentration ozone water is dissolved. To provide a device.
【0004】[0004]
【課題を解決するための手段】本発明は、気体が溶解さ
れた水、例えば高濃度オゾン水の生成について鋭意研究
した結果、水中に設けた電極とオゾンを含む気体を水中
に導入するノズルとの間に直流電圧を印加することによ
り上記課題を解決することが可能であることを見いだし
本発明を成すに到った。DISCLOSURE OF THE INVENTION As a result of extensive studies on the production of water in which a gas is dissolved, for example, high-concentration ozone water, the present invention provides an electrode provided in water and a nozzle for introducing a gas containing ozone into the water. It has been found that it is possible to solve the above problems by applying a DC voltage between them, and the present invention has been accomplished.
【0005】本発明の請求項1の発明は、気体をノズル
から水中に導入してこの気体を水に溶かす溶解装置にお
いて、水中に設けた電極と該ノズル間に直流電圧を印加
することを特徴とする気体の溶解装置である。The invention of claim 1 of the present invention is characterized in that, in a dissolving apparatus for introducing a gas into water from a nozzle to dissolve the gas in water, a DC voltage is applied between an electrode provided in the water and the nozzle. This is a gas dissolving device.
【0006】本発明の請求項2の発明は、前記気体には
オゾンが含まれていることを特徴とする請求項1記載の
気体の溶解装置である。The invention of claim 2 of the present invention is the apparatus for dissolving gas according to claim 1, wherein the gas contains ozone.
【0007】[0007]
【作用】本発明の気体の溶解装置、例えば高濃度オゾン
水の生成装置によれば従来の技術と比較して、オゾンを
含む気体の水中における気泡径を飛躍的に小さく(数1
0μm程度)することができ、水中に気泡を雲状に分散
させることによって、水との接触面積が飛躍的に増大
し、同時に気泡の上昇速度が減少するので水との接触時
間が増加するため、極めて小型で高濃度オゾン水を容易
に得ることができる。本発明で用いるオゾン原料は酸素
ガス、空気などいずれでもよく特に限定されない。特に
高濃度、高純度のオゾンを得るには酸素ガスを好ましく
用いることができる。オゾン原料をオゾン化するための
本発明で用いるオゾナイザーも特に限定されない。電解
式でも紫外線式でも低コストで安全に高濃度のオゾンを
生成できるものであればいずれを用いても差し支えな
い。具体的には例えば、沿面放電式セラミックオゾナイ
ザーを挙げることができる。本発明で用いる水も特に限
定されない。しかし電気的に水中における気泡径を小さ
くして気泡を雲状に分散させるためには、イオン交換水
あるいは蒸留水を好ましく用いることができる。本発明
で用いるノズルも特に限定されない。しかし直流電圧を
印加した時、ノズルの先端に電界が集中するようにした
ものが好ましく、その条件があればノズルはシングルノ
ズルでもマルチノズルでも用いることができる。According to the gas dissolving apparatus of the present invention, for example, the apparatus for producing high-concentration ozone water, the bubble diameter of the gas containing ozone is drastically smaller than that of the prior art (Equation 1).
0 μm), and by dispersing bubbles in water in a cloud shape, the contact area with water dramatically increases, and at the same time the rising speed of the bubbles decreases, so the contact time with water increases. The extremely small size and high concentration ozone water can be easily obtained. The ozone raw material used in the present invention may be either oxygen gas or air, and is not particularly limited. In particular, oxygen gas can be preferably used to obtain ozone of high concentration and high purity. The ozonizer used in the present invention for ozonizing an ozone raw material is not particularly limited. Any of electrolytic type and ultraviolet type may be used as long as they can produce ozone of high concentration safely at low cost. Specifically, for example, a surface discharge type ceramic ozonizer can be cited. The water used in the present invention is also not particularly limited. However, in order to electrically reduce the bubble diameter in water to disperse the bubbles in a cloud shape, ion-exchanged water or distilled water can be preferably used. The nozzle used in the present invention is also not particularly limited. However, it is preferable that the electric field be concentrated at the tip of the nozzle when a DC voltage is applied, and if the condition is satisfied, the nozzle can be a single nozzle or a multi-nozzle.
【0008】[0008]
【実施例】以下本発明を実施例により、具体的に説明す
るが、本発明はこれら実施例によって限定されるもので
はない。 (実施例1)図1は、本発明の高濃度オゾン水の生成装
置(実験室レベル)による高濃度オゾン水の生成工程を
示す説明図である。オゾン原料の酸素ボンベ1、オゾナ
イザー2、電源3、シングルノズル4、水(蒸留水)
5、吸収槽6、水中に設けた電極8と該ノズル4間に直
流電圧を印加するための電源7、高濃度オゾン水9、気
泡10、フード11、活性炭フィルター12、排ガスの
排出13などから構成されている。酸素ボンベ1から供
給される酸素はオゾナイザー2によりオゾン化されてノ
ズル4より蒸留水5が供給されている吸収槽6中に連続
的に導入される。電源7により水中に設けた電極8と該
ノズル4間に直流電圧を印加すると気泡10は小さくな
り(数10μm程度)雲状に分散されて水と充分接触し
て高濃度オゾン水9が連続的に得られる。排ガスはフー
ド11で集めて活性炭フィルター12を通して分解して
安全に排出13する。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. (Embodiment 1) FIG. 1 is an explanatory view showing a process of producing high-concentration ozone water by the high-concentration ozone water producing apparatus (laboratory level) of the present invention. Ozone source oxygen cylinder 1, ozonizer 2, power supply 3, single nozzle 4, water (distilled water)
5, an absorption tank 6, a power source 7 for applying a DC voltage between the electrode 8 provided in the water and the nozzle 4, a high-concentration ozone water 9, bubbles 10, a hood 11, an activated carbon filter 12, an exhaust gas exhaust 13 and the like. It is configured. Oxygen supplied from the oxygen cylinder 1 is ozonized by the ozonizer 2 and continuously introduced from the nozzle 4 into the absorption tank 6 to which the distilled water 5 is supplied. When a direct current voltage is applied between the electrode 8 provided in the water and the nozzle 4 by the power source 7, the bubbles 10 become small (about several tens of μm) and are dispersed in a cloud shape and sufficiently contact with the water to continuously form the high concentration ozone water 9 Can be obtained. Exhaust gas is collected by the hood 11, decomposed through the activated carbon filter 12, and safely discharged 13.
【0009】(実施例2)図2は、本発明の他の高濃度
オゾン水の生成装置(量産化レベル)による高濃度オゾ
ン水の生成工程を示す説明図である。オゾン原料1の空
気を導入するためのコンプッレサ、オゾナイザー2、電
源3、マルチノズル4、水(イオン交換水)5、吸収槽
6、水中に設けた電極8と該マルチノズル4間に直流電
圧を印加するための電源7、高濃度オゾン水9、気泡1
0、活性炭フィルター12、排ガスの排出13などから
構成されている。コンプレッサ1から供給される空気は
オゾナイザー2によりオゾン化されてマルチノズル4よ
り連続的にイオン交換水5が供給されている吸収槽6中
に連続的に導入される。電源7により水中に設けた電極
8と該マルチノズル4間に直流電圧を印加すると気泡1
0は小さくなり(数10μm程度)雲状に分散されて水
と充分接触して高濃度オゾン水9が連続的に得られる。
排ガスは活性炭フィルター12を通して分解して安全に
排出13する。このマルチノズル4を6本とし、印加電
圧を0V、1500V、2000V、2500Vに変え
た場合の溶存オゾン濃度の経時変化を図7に示した。(Embodiment 2) FIG. 2 is an explanatory view showing a process for producing high-concentration ozone water by another high-concentration ozone water producing device (mass production level) of the present invention. A direct voltage is applied between the compressor for introducing the air of the ozone raw material 1, the ozonizer 2, the power source 3, the multi-nozzle 4, the water (ion exchanged water) 5, the absorption tank 6, the electrode 8 provided in the water and the multi-nozzle 4. Power supply 7 for application, high-concentration ozone water 9, bubbles 1
0, activated carbon filter 12, exhaust gas discharge 13 and the like. The air supplied from the compressor 1 is ozoned by the ozonizer 2 and continuously introduced into the absorption tank 6 to which the ion-exchanged water 5 is continuously supplied from the multi-nozzle 4. When a DC voltage is applied between the electrode 8 provided in the water and the multi-nozzle 4 by the power supply 7, bubbles 1
0 becomes small (about several tens of μm) and is dispersed in a cloud shape and sufficiently contacts with water to continuously obtain high-concentration ozone water 9.
The exhaust gas is decomposed through the activated carbon filter 12 and safely discharged 13. FIG. 7 shows the time-dependent change in the dissolved ozone concentration when the number of the multi-nozzles 4 is 6, and the applied voltage is changed to 0V, 1500V, 2000V and 2500V.
【0010】(実施例3)シングルノズルを用いる実施
例1で用いた方法に準じた工程により、バブリング時に
ノズル、アース電極間に電圧を印加すると、印加電圧の
上昇に伴い、気泡が微細になる静電微泡化現象をオゾン
ガス吸収に応用し、高濃度オゾン水の生成実験を行いオ
ゾン水濃度と印加電圧との関係、およびオゾン水濃度と
ガス流量との関係を求めた。オゾン原料ガスとして酸素
を用い、オゾナイザより生成したオゾンはノズルから吸
収塔内の蒸留水中に気泡となって流出する。ここで、気
泡を微細にする直流電圧がノズル本体と、それに対向し
て上方に取り付けられている内径30mm、外径45m
mのリング状アース電極間に印加した。吸収塔は一辺が
60mm、高さ200mmの透明アクリル樹脂製であ
る。ここでステンレス製注射針21がガラス管20より
突出する寸法Aは0が望ましい。これは針21の先端が
ガラス管20より突出していると、気泡の微細化が難し
くなるためである。使用したノズルの断面概略図を図3
に示す。ノズル4は内径0.25mm、外径0.5mm
のステンレス製注射針21の先を平に研磨し、絶縁のた
めに先端を除いてガラス管20で被覆を施してある。ノ
ズル内には、短時間で圧力平衡に達し、微細な気泡が連
続的に生成するようにガラスビーズ16を充填した。1
9は吸収槽底部、18はコネクター、17は直流高電圧
供給源(図1および図2における電源7に相当する)を
示す。(Embodiment 3) When a voltage is applied between the nozzle and the ground electrode during bubbling by the process according to the method used in Embodiment 1 using a single nozzle, the bubbles become finer as the applied voltage rises. The electrostatic bubble generation phenomenon was applied to ozone gas absorption, and the experiment of generating high-concentration ozone water was carried out to find the relationship between the ozone water concentration and the applied voltage, and the relationship between the ozone water concentration and the gas flow rate. Oxygen is used as the ozone source gas, and ozone generated from the ozonizer flows out as bubbles from the nozzle into the distilled water in the absorption tower. Here, a DC voltage that makes bubbles fine is attached to the nozzle body, and the inner diameter is 30 mm and the outer diameter is 45 m, which is installed above and facing the nozzle body.
m was applied between the ring-shaped ground electrodes. The absorption tower is made of transparent acrylic resin having a side of 60 mm and a height of 200 mm. Here, the dimension A by which the stainless steel injection needle 21 projects from the glass tube 20 is preferably 0. This is because if the tip of the needle 21 projects from the glass tube 20, it is difficult to make bubbles fine. A schematic cross-sectional view of the nozzle used is shown in FIG.
Shown in. Nozzle 4 has an inner diameter of 0.25 mm and an outer diameter of 0.5 mm
The tip of the stainless steel injection needle 21 is flatly ground, and the tip is removed for insulation to cover it with the glass tube 20. The glass beads 16 were filled in the nozzle so that pressure equilibrium was reached in a short time and fine bubbles were continuously generated. 1
Reference numeral 9 denotes an absorption tank bottom portion, 18 denotes a connector, and 17 denotes a DC high voltage supply source (corresponding to the power source 7 in FIGS. 1 and 2).
【0011】(実験結果) (1)オゾン水濃度に及ぼす印加電圧の影響 図4に蒸留水温度5℃、オゾン濃度48000ppmの
ガス流量1.5ml/minにおけるオゾン水濃度の経
時変化を示す。これより印加電圧を増加させることによ
り、電圧無印加時と比較して最大10倍程度のオゾン水
濃度を得ることができた。また、電圧の印加による電気
流体力学的流れによりノズル電極からアース電極へ向か
う蒸留水の流動が生じ、特に微細な気泡がその流動に乗
って対流することが観察され、蒸留水中の気泡の滞留時
間が増加した。尚、印加電圧は高すぎるとノズル先端で
のコロナ放電によるオゾンの分解が起こるため、1.7
Vが望ましい。(Experimental Results) (1) Effect of Applied Voltage on Ozone Water Concentration FIG. 4 shows a change with time of the ozone water concentration at a distilled water temperature of 5 ° C. and an ozone concentration of 48,000 ppm at a gas flow rate of 1.5 ml / min. By increasing the applied voltage, it was possible to obtain a concentration of ozone water up to about 10 times as high as when no voltage was applied. In addition, it was observed that the flow of distilled water from the nozzle electrode to the ground electrode was caused by the electrohydrodynamic flow due to the application of voltage, and that particularly fine bubbles convection along with this flow, and the residence time of bubbles in distilled water was observed. increased. If the applied voltage is too high, ozone is decomposed by corona discharge at the nozzle tip, so 1.7
V is desirable.
【0012】(2)オゾン水濃度に及ぼすガス流量の影
響 図4より、ガス流量1.5ml/minにおいては、印
加電圧−1.75kv以上ではオゾン水濃度が高くなら
ないことが認められたため、次に印加電圧を0kv、お
よび−1.75kvとし、ガス流量を変化させた結果を
図5に示す。図5より、ガス流量が多い程オゾン水濃度
は高くなることがわかる。また、図6に電圧無印加時の
オゾン水濃度CO と、それに対する電圧印加時のオゾン
水濃度Cとの比、C/CO を示す。これより流量が増加
するに従い、C/CO が減少していく結果を得た。以上
のことから、高濃度のオゾン水を効率よく生成するため
には、一つのノズルを通るガスの量を少なく、また一定
時間にオゾン吸収槽に流入するガスの量を多くすること
で高濃度のオゾン水が得られるといえる。そのための手
段として複数のノズルを用いることが有効であると考え
られる。上記実施例ではオゾンを生成する装置について
説明したが、オゾン以外の気体、例えば窒素(N2 )や
水素(H2 )などの気体を溶解させる装置としても本発
明の装置を適用することができる。(2) Effect of gas flow rate on ozone water concentration From FIG. 4, it was confirmed that the ozone water concentration did not increase at an applied voltage of -1.75 kv or more at a gas flow rate of 1.5 ml / min. FIG. 5 shows the results of changing the gas flow rate with the applied voltage set to 0 kv and -1.75 kv. From FIG. 5, it can be seen that the ozone water concentration increases as the gas flow rate increases. Further, FIG. 6 shows the ratio of the ozone water concentration C O when no voltage is applied to the ozone water concentration C when a voltage is applied, C / C O. From this, it was found that C / C O decreased as the flow rate increased. From the above, in order to efficiently generate high-concentration ozone water, reducing the amount of gas passing through one nozzle and increasing the amount of gas flowing into the ozone absorption tank at a certain time increases the high concentration. It can be said that the ozone water is obtained. It is considered effective to use a plurality of nozzles as a means for that. In the above embodiment, the device for generating ozone has been described, but the device of the present invention can be applied as a device for dissolving a gas other than ozone, for example, a gas such as nitrogen (N 2 ) or hydrogen (H 2 ). .
【0013】[0013]
【発明の効果】本発明は気体の溶解装置、例えば高濃度
オゾン水の生成装置に関するものであり、簡単である
上、生鮮魚、精肉、野菜などの生鮮食品を処理して殺菌
するなどの用途に使用できる高濃度オゾン水を安全に容
易に得ることができる。本発明の気体の溶解装置は、オ
ゾン以外の気体、例えば窒素や水素などの気体を溶解さ
せる装置としても用いることができる。INDUSTRIAL APPLICABILITY The present invention relates to a gas dissolving device, for example, a device for producing high-concentration ozone water, which is simple and is used for treating and sterilizing fresh food such as fresh fish, meat and vegetables. It is possible to safely and easily obtain high-concentration ozone water that can be used for. The gas dissolving device of the present invention can also be used as a device for dissolving a gas other than ozone, for example, a gas such as nitrogen or hydrogen.
【図1】 本発明の高濃度オゾン水の生成装置による高
濃度オゾン水の生成工程を示す説明図である。FIG. 1 is an explanatory diagram showing a production process of high-concentration ozone water by a high-concentration ozone water production apparatus of the present invention.
【図2】 本発明の他の高濃度オゾン水の生成装置によ
る高濃度オゾン水の生成工程を示す説明図である。FIG. 2 is an explanatory diagram showing a production process of high-concentration ozone water by another high-concentration ozone water production device of the present invention.
【図3】 ノズルの断面説明図である。FIG. 3 is a cross-sectional explanatory diagram of a nozzle.
【図4】 オゾン水濃度と印加電圧の関係を示すグラフ
である。FIG. 4 is a graph showing the relationship between ozone water concentration and applied voltage.
【図5】 オゾン水濃度とガス流量の関係を示すグラフ
である。FIG. 5 is a graph showing the relationship between ozone water concentration and gas flow rate.
【図6】 オゾン吸収効率とガス流量の関係を示すグラ
フである。FIG. 6 is a graph showing the relationship between ozone absorption efficiency and gas flow rate.
【図7】 印加電圧と溶存オゾン濃度の経時変化との関
係を示すグラフである。FIG. 7 is a graph showing a relationship between an applied voltage and a temporal change in dissolved ozone concentration.
1 オゾン原料 2 オゾナイザー 3 電源 4 ノズル 5 水 6 吸収槽 7 電源 8 電極 9 高濃度オゾン水 10 気泡 11 フード 12 活性炭フィルター 13 排出 14 乾燥器 15 オゾン入口 16 ガラスビーズ 17 直流高電圧供給源 18 コネクター 19 吸収槽底部 20 ガラス管 21 注射針 1 Ozone Raw Material 2 Ozonizer 3 Power Supply 4 Nozzle 5 Water 6 Absorption Tank 7 Power Supply 8 Electrode 9 High Concentration Ozone Water 10 Bubbles 11 Hood 12 Activated Carbon Filter 13 Emission 14 Dryer 15 Ozone Inlet 16 Glass Beads 17 DC High Voltage Supply Source 18 Connector 19 Bottom of absorption tank 20 Glass tube 21 Injection needle
───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 正和 栃木県足利市寿町15−10 (72)発明者 村井 健二 栃木県栃木市日ノ出町20−22 (72)発明者 阿萬 誉 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 田村 敏行 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Kuroda 15-10, Kotobuki, Ashikaga City, Tochigi Prefecture (72) Inventor Kenji Murai 20-22, Hinodecho, Tochigi City, Tochigi Prefecture (72) Inventor, Honor of Moriguchi, Osaka Prefecture Keihan Hondori 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Tamura 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Co., Ltd.
Claims (2)
体を水に溶かす溶解装置において、水中に設けた電極と
該ノズル間に直流電圧を印加することを特徴とする気体
の溶解装置。1. A dissolution apparatus for introducing a gas into water from a nozzle to dissolve the gas in water, wherein a DC voltage is applied between an electrode provided in the water and the nozzle.
を特徴とする請求項1記載の気体の溶解装置。2. The gas dissolving device according to claim 1, wherein the gas contains ozone.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34906293A JPH07185281A (en) | 1993-12-28 | 1993-12-28 | Gas dissolving apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34906293A JPH07185281A (en) | 1993-12-28 | 1993-12-28 | Gas dissolving apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07185281A true JPH07185281A (en) | 1995-07-25 |
Family
ID=18401235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP34906293A Pending JPH07185281A (en) | 1993-12-28 | 1993-12-28 | Gas dissolving apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07185281A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002273205A (en) * | 2001-03-21 | 2002-09-24 | Mitsubishi Materials Natural Resources Development Corp | Apparatus for producing gas hydrate |
| WO2005075365A1 (en) | 2004-02-03 | 2005-08-18 | Matsuedoken Co., Ltd. | Gas-liquid dissolution apparatus |
| KR101036568B1 (en) * | 2009-02-19 | 2011-05-24 | 정종덕 | High efficiency gas dissolving device and method |
-
1993
- 1993-12-28 JP JP34906293A patent/JPH07185281A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002273205A (en) * | 2001-03-21 | 2002-09-24 | Mitsubishi Materials Natural Resources Development Corp | Apparatus for producing gas hydrate |
| WO2005075365A1 (en) | 2004-02-03 | 2005-08-18 | Matsuedoken Co., Ltd. | Gas-liquid dissolution apparatus |
| US7571899B2 (en) | 2004-02-03 | 2009-08-11 | Matsuedoken Co., Ltd. | Gas-liquid dissolving apparatus |
| KR101036568B1 (en) * | 2009-02-19 | 2011-05-24 | 정종덕 | High efficiency gas dissolving device and method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100349804C (en) | Method for removing difficultly degradable organic substance from packed bed in high voltage pulse electric field | |
| US8349192B2 (en) | Method for collapsing microbubbles | |
| CN101935092B (en) | Water treatment device for combining low-temperature plasma and air oxidation | |
| US4351734A (en) | Spark cell ozone generator | |
| JP2004268003A (en) | Underwater discharge plasma method and liquid treatment apparatus | |
| JP2000093967A (en) | Method and apparatus for liquid treatment | |
| CA2431402A1 (en) | Decontaminated fluids and biocidal liquids | |
| KR20110109111A (en) | Water treatment device and method using plasma gun | |
| JP6208968B2 (en) | Water treatment method and water treatment apparatus | |
| KR20200069296A (en) | Free radical generators and methods of use | |
| JP4073240B2 (en) | Radical treatment equipment | |
| JPH03154691A (en) | Method and apparatus for making high concentration ozone water | |
| RU2152359C1 (en) | Device for cleaning and decontamination of water by high-voltage electrical discharges | |
| JP2001058803A (en) | Apparatus for generating ionized gas using high-voltage discharge | |
| JPH07185281A (en) | Gas dissolving apparatus | |
| KR101483616B1 (en) | Plasma processing apparatus | |
| US11492274B2 (en) | Liquid treatment apparatus | |
| JP2001293478A (en) | Waste water treating device | |
| JP5534846B2 (en) | Water treatment equipment | |
| US11708281B1 (en) | Device for hydroxyl-radical-based water disinfection and purification and method of use | |
| RU2372296C1 (en) | Device for water purification and disinfection | |
| JP2014117639A (en) | Method for decomposing dioxane in water to be treated | |
| Nikiforov | An application of AC glow discharge stabilized by fast air flow for water treatment | |
| JP2000279977A (en) | Fluid treatment method and fluid treatment device | |
| Mok et al. | Treatment of dyeing wastewater by using positive pulsed corona discharge to water surface |