JPH07186151A - Mold for dielectric heating resin molding - Google Patents
Mold for dielectric heating resin moldingInfo
- Publication number
- JPH07186151A JPH07186151A JP33504293A JP33504293A JPH07186151A JP H07186151 A JPH07186151 A JP H07186151A JP 33504293 A JP33504293 A JP 33504293A JP 33504293 A JP33504293 A JP 33504293A JP H07186151 A JPH07186151 A JP H07186151A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- dielectric heating
- molding
- resin
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
(57)【要約】
【目的】成形体の肉厚にはほとんど無関係に設計でき、
誘電加熱により成形体を均一に加熱できる成形型とす
る。
【構成】キャビティ4内に樹脂材料を充填し誘電加熱に
より樹脂材料を加熱して硬化させることにより成形する
誘電加熱樹脂成形に用いられる成形型であって、成形型
1,2はエポキシ樹脂とエポキシ樹脂中に含まれたタル
クとからなることを特徴とする。成形型は誘電加熱時に
肉厚の影響をほとんど受けずに昇温され、かつ昇温速度
が大きいので、成形体は薄肉部であっても放熱が少なく
なり均一に加熱される。
(57) [Summary] [Purpose] Design can be performed almost independently of the wall thickness of the molded product,
A molding die capable of uniformly heating a molded body by dielectric heating. A mold used for dielectric heating resin molding, in which a cavity 4 is filled with a resin material and the resin material is heated and cured by dielectric heating, the molding dies 1 and 2 being epoxy resin and epoxy. It is characterized by comprising talc contained in a resin. The molding die is heated almost without being affected by the wall thickness during dielectric heating and has a high temperature rising rate. Therefore, even if the molding body has a thin portion, the heat radiation is reduced and the molding body is uniformly heated.
Description
【0001】[0001]
【産業上の利用分野】本発明は、成形型内の樹脂材料を
高周波による誘電加熱により加熱硬化させて成形体とす
る誘電加熱樹脂成形用の成形型に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding die for dielectric heating resin molding, in which a resin material in a molding die is heated and hardened by dielectric heating at a high frequency to form a molded body.
【0002】[0002]
【従来の技術】いわゆる高周波加熱樹脂成形方法には、
交番電磁界の誘電体損を利用して材料を内部から直接加
熱する誘電加熱方式と、交番電磁界の電磁誘導により金
型に生じる渦電流や表皮電流の抵抗損またはヒステリシ
ス損を利用して金型を加熱し間接的に樹脂材料を加熱す
る誘導加熱方式の二種類が知られている。加熱時間及び
熱効率の点で前者の誘電加熱方式が有利であるので、誘
電加熱方式が一般に採用されている。2. Description of the Related Art A so-called high-frequency heating resin molding method includes
A dielectric heating method that directly heats the material from the inside by using the dielectric loss of the alternating electromagnetic field, and a resistance loss or hysteresis loss of the eddy current or skin current generated in the mold by the electromagnetic induction of the alternating electromagnetic field Two types of induction heating methods are known, in which a mold is heated to indirectly heat a resin material. Since the former dielectric heating method is advantageous in terms of heating time and thermal efficiency, the dielectric heating method is generally adopted.
【0003】誘電加熱方式の成形方法に用いられる成形
型としては、高周波を遮断せず、それ自身は必要以上に
加熱されにくいシリコーンゴムやポリエステルなどから
製造されたものが多い。なかには高周波発生手段を備え
たものもあるが、コストが安価なことや型の更新の容易
さなどから、高周波発生手段はもたず外部から高周波を
照射することで加熱成形するものが一般的である。Many of the molds used in the dielectric heating molding method are manufactured from silicone rubber, polyester, or the like, which does not block high frequency waves and is hard to heat more than necessary. Some of them are equipped with a high-frequency generator, but due to their low cost and ease of mold renewal, they do not have a high-frequency generator and are generally heat-molded by radiating a high frequency from the outside. is there.
【0004】ところで誘電加熱樹脂成形方法では、成形
型に充填された樹脂材料は高周波による誘電加熱により
加熱されるが、発熱当初は成形型に熱を奪われ成形型の
肉厚が厚く熱容量が大きいほど奪われる熱量も大きくな
る。また成形体の肉厚が厚いほど発熱量が多く肉厚が薄
いほど発熱量は少ないが、成形型の肉厚は成形体の肉厚
とはほとんど無関係であり成形体の薄肉部ほど奪われる
熱量(放熱量)が大きくなる場合も多い。By the way, in the dielectric heating resin molding method, the resin material filled in the molding die is heated by dielectric heating by high frequency, but at the beginning of heat generation, the molding die loses heat and the molding die has a large wall thickness and a large heat capacity. The amount of heat taken away also increases. Also, the thicker the molded body, the larger the amount of heat generation, and the thinner the thickness, the smaller the amount of heat generation.However, the wall thickness of the mold is almost independent of the wall thickness of the molded body, and the amount of heat lost in the thinner part of the molded body In many cases (heat dissipation amount) becomes large.
【0005】したがって成形体の肉厚の差によって発熱
・放熱量が異なり、肉厚が薄い部分では加熱不足となっ
たり、肉厚が厚い部分では加熱過多となって炭化が発生
したりして、均一な加熱が困難であるという不具合があ
った。そこで特開平4−284207号公報には、成形
体の加熱されにくい薄肉部などを成形する成形型型面の
一部又は全部を、高周波で発熱する粒子を含む型材料か
ら形成した成形型が開示されている。このような成形型
を用いることにより、発熱粒子を含む部分の成形型が発
熱するため、薄肉部などの放熱量が小さくなるとともに
成形型からの加熱を受けて昇温特性を厚肉部と同等とす
ることができ、成形体を均一に加熱することが可能とな
る。Therefore, the amount of heat generation / heat radiation varies depending on the difference in the wall thickness of the molded body, and the portion with a small thickness has insufficient heating, and the portion with a large thickness has excessive heating, resulting in carbonization. There was a problem that uniform heating was difficult. Therefore, Japanese Patent Laid-Open No. 4-284207 discloses a molding die in which a part or all of the surface of a molding die for molding a thin portion of a molded body that is difficult to be heated is formed from a molding material containing particles that generate heat at high frequencies. Has been done. By using such a mold, the mold containing heat-generating particles generates heat, which reduces the amount of heat radiated from the thin part, etc. Therefore, the molded body can be heated uniformly.
【0006】例えば図10に示すように、厚肉部100
と薄肉部101をもつ成形体を形成する成形型の場合、
薄肉部101に対応する成形型部分をカーボンを含むシ
リコーンゴムからなる発熱型200で構成する。そして
高周波を照射すると、薄肉部101の樹脂材料が発熱す
るとともにカーボンの存在により発熱型200も発熱す
るため、放熱量を差し引いた発熱量を厚肉部100と薄
肉部101でほぼ同等とすることができ、均一に加熱す
ることが可能となる。[0006] For example, as shown in FIG.
In the case of a mold for forming a molded body having a thin portion 101 and
A molding die portion corresponding to the thin portion 101 is composed of a heating die 200 made of silicone rubber containing carbon. When irradiated with a high frequency, the resin material of the thin portion 101 also generates heat and the heating die 200 also generates heat due to the presence of carbon. Therefore, the amount of heat generated by subtracting the amount of heat radiation should be approximately equal in the thick portion 100 and the thin portion 101. It becomes possible to heat uniformly.
【0007】[0007]
【発明が解決しようとする課題】発熱型200をもつ成
形型では、発熱型200も発熱するので、成形体は自身
の発熱に加えて発熱型200からの加熱を受け、両方の
熱により昇温する。例えば発熱型200の昇温速度が樹
脂材料の昇温速度と同一であれば、薄肉部101の厚さ
と発熱型200の厚さの合計が厚肉部100の厚さと同
一となるようにすることにより、薄肉部101の昇温速
度は厚肉部100と同一となり全体の均一加熱が可能と
なる。In the mold having the heat generating mold 200, the heat generating mold 200 also generates heat. Therefore, the molded body receives heat from the heat generating mold 200 in addition to its own heat generation, and the temperature is raised by both heats. To do. For example, if the heating rate of the heating die 200 is the same as the heating rate of the resin material, the total thickness of the thin portion 101 and the heating die 200 should be the same as the thickness of the thick portion 100. As a result, the heating rate of the thin portion 101 becomes the same as that of the thick portion 100, and uniform heating of the whole is possible.
【0008】ところが成形体の形状が複雑な場合、例え
ばリブ部やボス部などをもつ場合には、その部分では成
形体の厚さが局部的に厚くなるため発熱型200の厚さ
を薄くする必要がある。しかし強度上の問題などから、
キャビティ形状に合わせて型の厚さを変更することが困
難な場合も多い。したがって発熱型200の厚さを薄肉
部101の形状に合わせて形成することは、必ずしも容
易とはいえない。However, when the shape of the molded body is complicated, for example, when the molded body has ribs or bosses, the thickness of the molded body locally increases at that portion, and the thickness of the heating die 200 is reduced. There is a need. However, because of problems with strength,
It is often difficult to change the thickness of the mold according to the shape of the cavity. Therefore, it is not always easy to form the thickness of the heating die 200 to match the shape of the thin portion 101.
【0009】さらに、従来の発熱型に用いられているカ
ーボン入りのシリコーンゴムは熱膨張係数が大きく、例
えば長さ1mにおける寸法誤差を±0.5mm以下とす
るためには、設定温度に対する温度幅を±1.5℃の範
囲に制御する必要があって、そのような細かな制御が困
難であるために成形体の寸法精度が低いという問題もあ
る。Furthermore, the carbon-containing silicone rubber used in the conventional heat-generating type has a large coefficient of thermal expansion. For example, in order to keep the dimensional error within a length of 1 m within ± 0.5 mm, the temperature range with respect to the set temperature is set. Is required to be controlled within a range of ± 1.5 ° C., and since such fine control is difficult, there is a problem that the dimensional accuracy of the molded body is low.
【0010】本発明はこのような事情に鑑みてなされた
ものであり、成形体の肉厚にはほとんど無関係に設計で
き、誘電加熱により成形体を均一に加熱できる成形型と
することを目的とする。The present invention has been made in view of such circumstances, and an object thereof is to provide a molding die which can be designed almost irrespective of the wall thickness of a molded body and which can uniformly heat the molded body by dielectric heating. To do.
【0011】[0011]
【課題を解決するための手段】上記課題を解決する本発
明の誘電加熱樹脂成形用の成形型は、キャビティ内に樹
脂材料を充填し誘電加熱により樹脂材料を加熱して硬化
させることにより成形する誘電加熱樹脂成形に用いられ
る成形型であって、成形型はエポキシ樹脂とエポキシ樹
脂中に含まれたタルクとからなることを特徴とする。A molding die for dielectric heating resin molding of the present invention which solves the above problems is formed by filling a cavity with a resin material and heating the resin material by dielectric heating to cure the resin material. A molding die used for dielectric heating resin molding, characterized in that the molding die comprises an epoxy resin and talc contained in the epoxy resin.
【0012】また第2発明の誘電加熱樹脂成形用の成形
型は、キャビティ内に樹脂材料を充填し誘電加熱により
樹脂材料を加熱して硬化させることにより成形する誘電
加熱樹脂成形に用いられる成形型であって、成形型は誘
電加熱により加熱可能であり厚肉で加熱過多の部分に高
周波遮蔽部材をもつことを特徴とする。The mold for dielectric heating resin molding according to the second invention is a mold used for dielectric heating resin molding in which a cavity is filled with a resin material and the resin material is heated and cured by dielectric heating. The mold is capable of being heated by dielectric heating, and is characterized by having a high-frequency shielding member in a thick-walled portion that is overheated.
【0013】[0013]
【作用】熱伝導による放熱速度は、放熱側と受熱側の温
度差が大きいほど大きい。そして本第1発明の成形型は
エポキシ樹脂とタルクとから形成されているため、高周
波を照射した場合の昇温速度が大きく、成形樹脂材料と
略同等の昇温速度を示す。したがって成形体(放熱側)
と成形型(受熱側)の温度差が従来より小さくなり、成
形体から成形型への放熱が生じにくくなって、成形体の
肉厚に差があったとしても厚肉部と薄肉部の放熱量の差
は小さく均一に加熱することができる。The heat dissipation rate by heat conduction increases as the temperature difference between the heat dissipation side and the heat receiving side increases. Since the molding die of the first aspect of the present invention is made of epoxy resin and talc, it has a high temperature rising rate when irradiated with a high frequency, and shows a temperature rising rate substantially equal to that of the molding resin material. Therefore, molded body (heat radiation side)
Since the temperature difference between the mold and the mold (heat receiving side) is smaller than before, heat radiation from the molded body to the mold is less likely to occur, and even if there is a difference in the wall thickness of the molded body, the thick and thin parts can be released. The difference in the amount of heat is small and uniform heating is possible.
【0014】また第1発明の成形型は、その肉厚による
誘電加熱特性の変動が小さいという特性をもつ。すなわ
ち厚肉であっても薄肉であっても昇温速度に大きな差は
ないので、成形型から成形体に加えられる熱量が全体に
均一となる。さらに、エポキシ樹脂とタルクとから形成
された本第1発明の成形型では、所定温度になると高周
波の照射を続行してもあまり温度が上昇しないという頭
打ち現象が生じる。したがって成形型の肉厚に差があっ
ても、成形型が局部的に温度が高くなることが防止され
ている。The mold of the first aspect of the invention has a characteristic that the variation in dielectric heating characteristics due to its wall thickness is small. That is, since there is no great difference in the temperature rising rate regardless of whether the thickness is thick or thin, the amount of heat applied from the molding die to the molding is uniform throughout. Further, in the molding die of the first aspect of the present invention formed of epoxy resin and talc, when the temperature reaches a predetermined temperature, the temperature does not rise so much even if high frequency irradiation is continued, which causes a capping phenomenon. Therefore, even if there is a difference in wall thickness of the molding die, the temperature of the molding die is prevented from locally increasing.
【0015】そして、第1発明の成形型は、従来のカー
ボン入りシリコーンゴム型に比べて熱膨張係数が小さい
ので、加熱温度幅の制御が容易となる。なお、このよう
になる原因は明らかではないが、高温になるとタルクの
分子構造が変化して高周波が吸収されにくくなるものと
推察される。また高温になるとタルクの熱伝導率が大き
くなり、熱を外部に逃がし易くなることも原因の一つと
推察される。Since the mold of the first invention has a smaller coefficient of thermal expansion than the conventional silicone rubber mold containing carbon, the heating temperature range can be easily controlled. The cause of this is not clear, but it is presumed that at high temperatures, the molecular structure of talc changes and it becomes difficult for high frequencies to be absorbed. It is also presumed that one of the causes is that the thermal conductivity of talc increases at high temperatures and heat is easily released to the outside.
【0016】またタルクの含有量は樹脂材料中に10〜
80重量%程度が好ましい。これより少ないと誘電加熱
による発熱量が小さくなり、多すぎると成形型の機械的
強度などが低下する場合がある。なお、第1発明の成形
型には、作業性や使用条件などによりアルミナ、ガラ
ス、炭酸カルシウムなど、他の充填材を併用することも
できる。The content of talc is 10 to 10 in the resin material.
About 80% by weight is preferable. If the amount is less than this, the amount of heat generated by dielectric heating becomes small, and if the amount is too large, the mechanical strength of the molding die may decrease. The mold of the first invention may be combined with other fillers such as alumina, glass and calcium carbonate depending on workability and use conditions.
【0017】そして第2発明の成形型は誘電加熱により
加熱可能であり、厚肉で加熱過多の部分に高周波遮蔽部
材をもつ。したがって高周波遮蔽部材が無い場合に加熱
過多となる部分では、高周波遮蔽部材の存在により高周
波が遮蔽されるので、加熱過多となるのが防止され成形
型は全体が均一に加熱される。この高周波遮蔽部材とし
ては、金属板や金網など高周波を反射する材料、フッ素
樹脂やポリエステルなどの単体で高周波の吸収の小さい
材料、あるいはエポキシ樹脂やウレタン樹脂など単体で
は高周波を吸収し易い材料にガラスバルーン、石英など
高周波を吸収しにくい材料を混合して結果的に高周波を
吸収しにくくなった材料などを用いることができる。The mold of the second invention can be heated by dielectric heating, and has a high-frequency shielding member in a thick and overheated portion. Therefore, since the high frequency is shielded by the presence of the high frequency shielding member in the portion which is overheated when there is no high frequency shielding member, the excessive heating is prevented and the entire mold is uniformly heated. As the high-frequency shielding member, a material such as a metal plate or a wire net that reflects high frequencies, a material such as fluororesin or polyester that has a small absorption of high frequencies, or a material such as an epoxy resin or urethane resin that easily absorbs high frequencies is glass. It is possible to use a material which is difficult to absorb high frequencies as a result of mixing materials such as balloons and quartz which are difficult to absorb high frequencies.
【0018】また高周波遮蔽部材を設けるには、成形型
内に内蔵してもよいし外部から成形型を覆うように設け
ることもできる。Further, the high frequency shield member may be built in the molding die or may be provided so as to cover the molding die from the outside.
【0019】[0019]
【実施例】以下、実施例により具体的に説明する。 (実施例1)図1に本発明の一実施例の誘電加熱樹脂成
形用の成形型を示す。この成形型は上型1と下型2とか
ら構成され、上型1と下型2とがボルト3で型閉じされ
ることで、内部にキャビティ4が形成される。EXAMPLES The present invention will be specifically described below with reference to examples. (Embodiment 1) FIG. 1 shows a molding die for molding a dielectric heating resin according to an embodiment of the present invention. This molding die is composed of an upper die 1 and a lower die 2, and the upper die 1 and the lower die 2 are closed with a bolt 3 to form a cavity 4 inside.
【0020】上型1は後述のエポキシ樹脂から形成さ
れ、キャビティ4と連通する上がり口10が形成されて
いる。この上がり口10にはホース接続用のシリコーン
ゴム11が嵌合されている。また上型1の外側表面には
フレーム12が固定され、上型1を補強している。下型
2も上型1と同様に後述のエポキシ樹脂から形成されて
いる。また下型2の外側表面にはフレーム20が固定さ
れ、下型2を補強している。The upper mold 1 is made of an epoxy resin, which will be described later, and has an upward opening 10 communicating with the cavity 4. A silicone rubber 11 for connecting a hose is fitted into the rising port 10. A frame 12 is fixed to the outer surface of the upper mold 1 to reinforce the upper mold 1. Like the upper mold 1, the lower mold 2 is also made of an epoxy resin described later. A frame 20 is fixed to the outer surface of the lower mold 2 to reinforce the lower mold 2.
【0021】そして上型1と下型2の境界の一部にはキ
ャビティ4と連通する注入口21が形成され、注入口2
1にはホース接続用のシリコーンゴム22が嵌合されて
いる。以下、製造方法を説明することにより、本実施例
の成形型の組成を説明する。上型1及び下型2の基体を
構成するエポキシ樹脂としては、高周波で短時間に加熱
できるためには耐熱性が高いものが望ましい。そしてウ
レタン樹脂を硬化させるためには80℃±5℃の許容温
度幅が必要であるが、成形型はもっと高温に耐える必要
がある。そこで最高120℃まで加熱することを前提と
し、安全を見越して140℃以上の耐熱性を有するもの
が必要とされた。An injection port 21 communicating with the cavity 4 is formed at a part of the boundary between the upper mold 1 and the lower mold 2.
A silicone rubber 22 for connecting a hose is fitted to the connector 1. Hereinafter, the composition of the mold of this example will be described by explaining the manufacturing method. As the epoxy resin forming the base bodies of the upper mold 1 and the lower mold 2, a resin having high heat resistance is desirable because it can be heated at a high frequency in a short time. In order to cure the urethane resin, an allowable temperature range of 80 ° C. ± 5 ° C. is required, but the molding die must withstand higher temperatures. Therefore, on the premise of heating up to a maximum of 120 ° C., it is necessary to have a heat resistance of 140 ° C. or higher in consideration of safety.
【0022】このようなエポキシ樹脂としてはビスフェ
ノールF型とフェノールノボラック型があるが、常温で
液状であり80〜150℃の低温で硬化可能で作業性の
良好なビスフェノールF型を用いることとした。また各
種充填材粉末を誘電加熱したときの昇温速度を測定し、
結果を図2に示す。図2よりタルクは昇温速度が大き
く、温度がある程度高くなると昇温速度が低下して頭打
ちになっていることがわかる。As such an epoxy resin, there are a bisphenol F type and a phenol novolac type, but it is decided to use a bisphenol F type which is liquid at room temperature and can be cured at a low temperature of 80 to 150 ° C. and has good workability. Also, measure the heating rate when dielectric heating various filler powders,
The results are shown in Figure 2. It can be seen from FIG. 2 that talc has a high rate of temperature rise, and when the temperature rises to some extent, the rate of temperature rise slows down to a level.
【0023】次に、ビスフェノールF型エポキシ樹脂に
タルクと石英をそれぞれ3種類の含有量で添加し、誘電
加熱した際の昇温特性のグラフを図3に示す。これより
タルクを添加したものが昇温速度が大きく、また高温で
温度が頭打ちとなるタルクの特性を維持していることも
わかる。そこで以下の配合にて各原料を混合して、成形
体用樹脂組成物を調整した。Next, FIG. 3 shows a graph of temperature rising characteristics when talc and quartz are added to the bisphenol F type epoxy resin in three kinds of contents and dielectric heating is performed. From this, it can be seen that the one to which talc is added has a high rate of temperature rise and maintains the characteristics of talc in which the temperature reaches a peak at high temperatures. Therefore, the respective raw materials were mixed in the following formulation to prepare a resin composition for molded bodies.
【0024】エポキシ樹脂(「エピクロン830」大日
本インキ化学(株)製)38重量% エポキシ硬化剤(「H−491」エース化研(株)製)
11重量% タルク (「MSタルク」日本タルク(株)製)
23重量% ガラスパウダー(「EGP−200」セントラル硝子
(株)製)13重量% ガラスバルーン(「K−28」3M(株)製)6重量% ガラスチョップ(「ECS−015」セントラル硝子
(株)製)9重量% なお、ガラスパウダー及びガラスバルーンは、樹脂組成
物の粘度を調整して、成形型制作時の作業性を良好とす
るために用いられている。またガラスチョップは成形型
の強度を向上させるために用いられている。Epoxy resin (“Epiclon 830”, manufactured by Dainippon Ink and Chemicals, Inc.) 38% by weight Epoxy curing agent (“H-491”, manufactured by Ace Kaken Co., Ltd.)
11 wt% Talc (“MS Talc” manufactured by Nippon Talc Co., Ltd.)
23% by weight Glass powder ("EGP-200" manufactured by Central Glass Co., Ltd.) 13% by weight Glass balloon ("K-28" manufactured by 3M Co., Ltd.) 6% by weight Glass chop ("ECS-015" Central Glass Co., Ltd. )) 9% by weight The glass powder and the glass balloon are used for adjusting the viscosity of the resin composition to improve workability in producing a mold. Glass chops are also used to improve the strength of the mold.
【0025】この樹脂組成物をシリコーンゴム11,2
2が配置された所定の木型に盛り付け室温又は加熱硬化
により成形して上型1及び下型2を形成し、フレーム1
2,20に固定して本実施例の成形型を得た。得られた
成形型は、ボルトにより上型1と下型2が型閉じされた
後、注入口21から液状ウレタン樹脂が注入され、上が
り口10から樹脂が出た段階で充填完了と判断された。
そして高周波出力3〜15Kw、加熱時間15分以下、
加熱温度80〜90℃の条件で誘電加熱されたときに、
全体が均一に硬化した成形体が得られた。 (実験例)上記樹脂組成物から直径100mm、厚さ1
0,20,40mmの3種類の試験片を成形し、それぞ
れの試験片の誘電加熱特性を調べた。試験は同じ厚さの
試験片を2枚重ねて電子レンジに入れ、加熱時間ととも
に2枚の試験片の間の中央部の温度を測定した。This resin composition was used as silicone rubber 11 and 2.
2 is placed on a predetermined wooden mold and molded by room temperature or heat curing to form an upper mold 1 and a lower mold 2, and a frame 1
The mold was fixed to 2, 20 to obtain the mold of this example. The obtained molding die was determined to be filled when the upper mold 1 and the lower mold 2 were closed with bolts, the liquid urethane resin was injected from the injection port 21 and the resin was discharged from the rising port 10.
And high frequency output 3-15Kw, heating time 15 minutes or less,
When dielectrically heated under the heating temperature of 80 to 90 ° C,
A molded body was obtained in which the whole was uniformly cured. (Experimental Example) Diameter 100 mm, thickness 1 from the above resin composition
Three types of test pieces of 0, 20, 40 mm were molded, and the dielectric heating characteristics of each test piece were examined. In the test, two test pieces having the same thickness were stacked and placed in a microwave oven, and the temperature of the central portion between the two test pieces was measured with heating time.
【0026】なお、電子レンジの出力は1Kwである
が、試験片のみを加熱した場合と、容器に入った2リッ
トルの水とともに試験片を加熱し試験片に作用する高周
波出力を約半減させた場合の2種類の条件で測定を行っ
た。それぞれの結果を図4と図5に示す。また、シリコ
ーンゴム(「KE−1310ST」信越化学(株)製)
にカーボン(「アサヒサーマル」旭カーボン(株)製)
を30重量%含有した従来の組成物についても、上記と
同様に試験片を成形し、同様に誘電加熱特性を調べた結
果を図6と図7に示す。Although the output of the microwave oven is 1 Kw, the high frequency output acting on the test piece was reduced by about half by heating the test piece alone and by heating the test piece with 2 liters of water contained in the container. The measurement was performed under the two types of conditions. The respective results are shown in FIGS. 4 and 5. Silicone rubber ("KE-1310ST" manufactured by Shin-Etsu Chemical Co., Ltd.)
Carbon (“Asahi Thermal” manufactured by Asahi Carbon Co., Ltd.)
Regarding the conventional composition containing 30% by weight, the test piece was molded in the same manner as above, and the results of similarly examining the dielectric heating characteristics are shown in FIGS. 6 and 7.
【0027】図4〜図7より、エポキシ樹脂+タルクの
方が試験片の厚さによる昇温速度の差が小さく、特に加
熱初期の5分間でシリコーンゴム+カーボンに比べて試
験片の厚さによる昇温の差が極めて小さくなっているこ
とが明らかである。すなわちこの実験例から明らかなよ
うに、エポキシ樹脂+タルクから形成された成形型はシ
リコーンゴム+カーボンから形成されたものに比べて加
熱初期の昇温速度が大きく、かつ肉厚の差による昇温速
度の差が小さい。したがって加熱初期において成形用樹
脂材料から熱を奪って昇温を妨げることがなく、また成
形型の厚さが部分的に異なっている場合でも昇温特性は
ほぼ同一であるため、成形用樹脂材料を均一に加熱する
ことができる。 (実施例2)図8に第2発明の一実施例を示す。この成
形型は実施例1の成形型とほぼ同様の構成であるが、下
型2の厚肉部25の内部に高周波誘電加熱されにくい発
泡体(例:ウレタンフォーム)からなる高周波遮蔽部材
50が埋設されていること、厚肉部25に対向する上型
1の表面及び下型2の表面は金属板又は金網からなる高
周波遮蔽部材51で覆われていることで、実施例1と異
なっている。From FIGS. 4 to 7, the difference in temperature rising rate between the epoxy resin and talc due to the thickness of the test piece is smaller, and in particular, the thickness of the test piece is smaller than that of the silicone rubber + carbon in the initial 5 minutes of heating. It is clear that the difference in temperature rise due to is extremely small. That is, as is clear from this experimental example, the mold made of epoxy resin + talc has a higher temperature rising rate in the initial heating stage than the mold made of silicone rubber + carbon, and the temperature rise due to the difference in wall thickness. The speed difference is small. Therefore, in the initial stage of heating, heat is not taken from the molding resin material to prevent temperature rise, and the temperature rising characteristics are almost the same even when the mold thicknesses are partially different. Can be heated uniformly. (Embodiment 2) FIG. 8 shows an embodiment of the second invention. This mold has substantially the same structure as that of the mold of Example 1, but a high-frequency shielding member 50 made of a foam (eg, urethane foam) which is hard to be subjected to high-frequency dielectric heating is provided inside the thick portion 25 of the lower mold 2. It is different from the first embodiment in that it is embedded and that the surface of the upper mold 1 and the surface of the lower mold 2 facing the thick portion 25 are covered with the high frequency shielding member 51 made of a metal plate or a wire mesh. .
【0028】本実施例の成形型では、誘電加熱樹脂成形
時に高周波遮蔽部材50,51により厚肉部25の加熱
が抑制されるため、成形型の昇温を一層均一とすること
ができる。なお、本実施例では成形型の材質にエポキシ
樹脂+タルクを用いたが、これに限るものではなく誘電
加熱可能な材質であれば用いることができる。 (実施例3)図9に第2発明の他の実施例を示す。この
成形型は、下型6のスライドコア60を誘電加熱されに
くいエポキシパテ(「A−129」エース化研(株)
製)から形成し、他は誘電加熱されやすいビスフェノー
ルA型エポキシ樹脂から形成したものである。In the molding die of this embodiment, since heating of the thick portion 25 is suppressed by the high-frequency shielding members 50 and 51 during dielectric heating resin molding, the temperature rise of the molding die can be made more uniform. In this embodiment, epoxy resin + talc is used as the material of the molding die, but the material is not limited to this and any material capable of dielectric heating can be used. (Embodiment 3) FIG. 9 shows another embodiment of the second invention. This mold is made of an epoxy putty (“A-129”) manufactured by Ace Kaken Co., Ltd.
And a bisphenol A type epoxy resin which is easily dielectrically heated.
【0029】スライドコア60をもつ下型6の部分は厚
肉部となっているので、スライドコア60のみを誘電加
熱されにくい材質とすれば、厚肉部全体の昇温を遅くす
ることができ、他の薄肉部の昇温とほぼ同一とすること
ができるので、成形型の昇温を一層均一とすることがで
きる。なお、本実施例ではビスフェーノールA型エポキ
シ樹脂から成形型を形成したが、実施例1と同様のエポ
キシ樹脂+タルクから成形型を形成することができるこ
とは言うまでもない。Since the lower die 6 portion having the slide core 60 is a thick wall portion, if only the slide core 60 is made of a material that is not easily dielectrically heated, the temperature rise of the entire thick wall portion can be delayed. Since the temperature of the other thin portions can be made substantially the same, the temperature of the mold can be made more uniform. In this example, the molding die was formed from the bisphenol A type epoxy resin, but it goes without saying that the molding die can be formed from the same epoxy resin as in Example 1 + talc.
【0030】[0030]
【発明の効果】すなわち本発明の成形型によれば、成形
体の肉厚や成形型の肉厚に部分的に差があっても、キャ
ビティ内に充填された樹脂材料を均一に加熱することが
可能となり、均一な品質の成形体を形成することができ
る。そして第1発明の成形型によれば、温度制御の幅が
広いので、寸法精度の高い成形体を容易に製造すること
ができる。そしてエポキシ樹脂は成形用のウレタン樹脂
原料や溶剤で侵されにくいので、成形型の寿命がシリコ
ーンゴム型に比べて約5倍程度向上する。また、シリコ
ーンゴムとポリエステルとからなる従来の成形型と比べ
て製造が容易である。さらに、ポリエステルは型制作時
の発熱が大きいので一度に厚肉とすることは困難である
が、エポキシ樹脂は発熱がほとんどないので一度に厚肉
とすることができ型制作時間が短縮される。[Effects of the Invention] That is, according to the mold of the present invention, even if there is a partial difference in the wall thickness of the molded body or the wall thickness of the mold, the resin material filled in the cavity is heated uniformly. It is possible to form a molded product of uniform quality. Further, according to the molding die of the first invention, since the temperature control range is wide, it is possible to easily manufacture a molded body having high dimensional accuracy. Since the epoxy resin is not easily attacked by the urethane resin raw material for molding or the solvent, the life of the molding die is improved by about 5 times as compared with the silicone rubber mold. In addition, it is easier to manufacture than a conventional molding die made of silicone rubber and polyester. Further, since polyester has a large amount of heat generated during mold making, it is difficult to make it thick at one time, but since epoxy resin hardly generates heat, it can be made thick at one time, which shortens the mold making time.
【0031】また第2発明の成形型によれば、成形型の
厚肉部に高周波遮蔽部材を設けるだけで成形型の加熱が
均一となるので、成形体が受ける成形型からの熱量が均
一となる。そして高周波遮蔽部材はその肉厚などに無関
係に高周波を遮蔽するので、成形型の制作も容易であ
る。したがって第1発明と第2発明を組み合わせた成形
型によれば、成形型の厚さに無関係に成形体を極めて均
一に加熱することができる。According to the mold of the second aspect of the present invention, the heating of the mold is uniform only by providing the high-frequency shielding member in the thick portion of the mold, so that the amount of heat received by the molded body from the mold is uniform. Become. Since the high-frequency shielding member shields high-frequency waves regardless of its thickness, the mold can be easily manufactured. Therefore, according to the molding die in which the first invention and the second invention are combined, the molded body can be heated extremely uniformly regardless of the thickness of the molding die.
【図1】本発明の一実施例の成形型の断面図である。FIG. 1 is a cross-sectional view of a mold according to an embodiment of the present invention.
【図2】各種粉末の誘電加熱時の昇温速度を示すグラフ
である。FIG. 2 is a graph showing a temperature rising rate during dielectric heating of various powders.
【図3】ビスフェノールF型エポキシ樹脂に各種充填材
を添加した材料の誘電加熱時の昇温速度を示すグラフで
ある。FIG. 3 is a graph showing a temperature rising rate during dielectric heating of a material in which various fillers are added to bisphenol F type epoxy resin.
【図4】本発明の一実施例の成形型を構成する組成物の
誘電加熱時の昇温速度を示すグラフである。FIG. 4 is a graph showing the rate of temperature rise during dielectric heating of the composition constituting the mold of one example of the present invention.
【図5】本発明の一実施例の成形型を構成する組成物の
誘電加熱時の昇温速度を示すグラフである。FIG. 5 is a graph showing the rate of temperature rise during dielectric heating of the composition constituting the mold of one example of the present invention.
【図6】従来の成形型を構成する組成物の誘電加熱時の
昇温速度を示すグラフである。FIG. 6 is a graph showing a temperature rising rate during dielectric heating of a composition constituting a conventional molding die.
【図7】従来の成形型を構成する組成物の誘電加熱時の
昇温速度を示すグラフである。FIG. 7 is a graph showing a temperature rising rate during dielectric heating of a composition forming a conventional molding die.
【図8】本発明の第2の実施例の成形型の断面図であ
る。FIG. 8 is a sectional view of a molding die according to a second embodiment of the present invention.
【図9】本発明の第3の実施例の成形型の断面図であ
る。FIG. 9 is a cross-sectional view of a molding die according to a third embodiment of the present invention.
【図10】従来の成形型の断面図である。FIG. 10 is a cross-sectional view of a conventional molding die.
1:上型 2:下型 4:キャビ
ティ1: Upper mold 2: Lower mold 4: Cavity
Claims (2)
熱により該樹脂材料を加熱して硬化させることにより成
形する誘電加熱樹脂成形に用いられる成形型であって、 前記成形型はエポキシ樹脂と該エポキシ樹脂中に含まれ
たタルクとからなることを特徴とする誘電加熱樹脂成形
用の成形型。1. A molding die used for dielectric heating resin molding, which comprises molding a resin material into a cavity and heating the resin material by dielectric heating to cure the resin material, wherein the molding die comprises an epoxy resin and A molding die for dielectric heating resin molding, which comprises talc contained in an epoxy resin.
熱により該樹脂材料を加熱して硬化させることにより成
形する誘電加熱樹脂成形に用いられる成形型であって、 前記成形型は誘電加熱により加熱可能であり厚肉で加熱
過多の部分に高周波遮蔽部材をもつことを特徴とする誘
電加熱樹脂成形用の成形型。2. A molding die used for dielectric heating resin molding, wherein a cavity is filled with a resin material, and the resin material is heated and cured by dielectric heating to be molded. The molding die is heated by dielectric heating. Mold for dielectric heating resin molding characterized by having a high frequency shielding member in a thick, overheated portion that is possible.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33504293A JPH07186151A (en) | 1993-12-28 | 1993-12-28 | Mold for dielectric heating resin molding |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33504293A JPH07186151A (en) | 1993-12-28 | 1993-12-28 | Mold for dielectric heating resin molding |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07186151A true JPH07186151A (en) | 1995-07-25 |
Family
ID=18284100
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33504293A Pending JPH07186151A (en) | 1993-12-28 | 1993-12-28 | Mold for dielectric heating resin molding |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07186151A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000030826A1 (en) * | 1998-11-23 | 2000-06-02 | Alliedsignal Inc. | Low pressure injection molding of metal and ceramic powders using soft tooling |
| JP2022115834A (en) * | 2021-01-28 | 2022-08-09 | アディダス アーゲー | Molds and methods for producing parts by molding, parts thereof, and shoes with such parts |
| US11938697B2 (en) | 2016-05-24 | 2024-03-26 | Adidas Ag | Method and apparatus for automatically manufacturing shoe soles |
| US11945184B2 (en) | 2013-02-13 | 2024-04-02 | Adidas Ag | Methods for manufacturing cushioning elements for sports apparel |
| US11964445B2 (en) | 2016-05-24 | 2024-04-23 | Adidas Ag | Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article |
| USD1035231S1 (en) | 2013-04-12 | 2024-07-16 | Adidas Ag | Shoe |
| US12089698B2 (en) | 2015-02-05 | 2024-09-17 | Adidas Ag | Cushioning element and shoe |
| US12122114B2 (en) | 2016-12-01 | 2024-10-22 | Adidas Ag | Method for the manufacture of a plastic component, plastic component, midsole and shoe |
-
1993
- 1993-12-28 JP JP33504293A patent/JPH07186151A/en active Pending
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000030826A1 (en) * | 1998-11-23 | 2000-06-02 | Alliedsignal Inc. | Low pressure injection molding of metal and ceramic powders using soft tooling |
| US6203734B1 (en) | 1998-11-23 | 2001-03-20 | Alliedsignal Inc. | Low pressure injection molding of metal and ceramic powders using soft tooling |
| US11945184B2 (en) | 2013-02-13 | 2024-04-02 | Adidas Ag | Methods for manufacturing cushioning elements for sports apparel |
| USD1035231S1 (en) | 2013-04-12 | 2024-07-16 | Adidas Ag | Shoe |
| US12089698B2 (en) | 2015-02-05 | 2024-09-17 | Adidas Ag | Cushioning element and shoe |
| US11938697B2 (en) | 2016-05-24 | 2024-03-26 | Adidas Ag | Method and apparatus for automatically manufacturing shoe soles |
| US11964445B2 (en) | 2016-05-24 | 2024-04-23 | Adidas Ag | Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article |
| US12122114B2 (en) | 2016-12-01 | 2024-10-22 | Adidas Ag | Method for the manufacture of a plastic component, plastic component, midsole and shoe |
| US12172400B2 (en) | 2016-12-01 | 2024-12-24 | Adidas Ag | Method for the manufacture of a plastic component, plastic component, and shoe |
| JP2022115834A (en) * | 2021-01-28 | 2022-08-09 | アディダス アーゲー | Molds and methods for producing parts by molding, parts thereof, and shoes with such parts |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4423191A (en) | High frequency electric field curing of polymeric composites | |
| US4544339A (en) | Apparatus for vulcanization of rubber by dielectric heating | |
| JPH07186151A (en) | Mold for dielectric heating resin molding | |
| US6365076B1 (en) | Graphite-fiber enhanced molded plastic for electronic enclosures | |
| JP5920347B2 (en) | Electromagnetic wave irradiation molding apparatus and electromagnetic wave irradiation molding method | |
| PL169609B1 (en) | Method of and apparatus for making composite material products | |
| CN113301833A (en) | Cooking utensil for microwave oven and method for manufacturing the same | |
| US20050158533A1 (en) | Bio-degradable foamed products | |
| Pal et al. | Microwave-assisted curing of silicon carbide-reinforced epoxy composites: role of dielectric properties | |
| EP3868245B1 (en) | Method for manufacturing shoe member, and molding die | |
| EP1829933B1 (en) | Method of controlling specific inductive capacity, dielectric material, mobile phone and human phantom model | |
| US5396051A (en) | Safety container for mold assembly in microwave oven | |
| US2891284A (en) | Method for molding objects of non-uniform thickness | |
| JP2017168436A (en) | Heat treatment device, heat insulating housing box for heat treatment device, and heat treatment method | |
| JP2018144457A (en) | Thermosetting resin molding method | |
| JP4545246B2 (en) | Method for producing thermally conductive silicone molded body | |
| CN208052409U (en) | High molecular material foam device | |
| US5281784A (en) | Mold assembly for microwave oven | |
| JP4942780B2 (en) | Carbon injection molding degassing filter | |
| JPH04284207A (en) | Molding mold for dielectric heating resin molding | |
| JP4234130B2 (en) | Resin molding method and resin molding apparatus | |
| JP2003168444A (en) | Method for manufacturing fuel cell separator | |
| JP4800786B2 (en) | Resin molding method and resin molding apparatus | |
| JP3400531B2 (en) | Microwave absorption mold | |
| EP0404380A1 (en) | Method for molding and vulcanizing of rubber |