[go: up one dir, main page]

JPH07187658A - Method for producing molecular sieve carbon adsorbent - Google Patents

Method for producing molecular sieve carbon adsorbent

Info

Publication number
JPH07187658A
JPH07187658A JP5333499A JP33349993A JPH07187658A JP H07187658 A JPH07187658 A JP H07187658A JP 5333499 A JP5333499 A JP 5333499A JP 33349993 A JP33349993 A JP 33349993A JP H07187658 A JPH07187658 A JP H07187658A
Authority
JP
Japan
Prior art keywords
molecular sieve
carbon adsorbent
oxygen
sieve carbon
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5333499A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Yanagida
勝吉 柳田
Masayoshi Hayashida
政嘉 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP5333499A priority Critical patent/JPH07187658A/en
Publication of JPH07187658A publication Critical patent/JPH07187658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】 【目的】 酸素吸着量が多く、また、酸素・窒素の分離
能にも優れた分子篩炭素吸着剤の製造方法を提供する。 【構成】 炭素を主成分とする基材を常法で処理して得
られる乾留品を酸化性気体と反応させて弱活性化させる
工程と、弱活性化工程後の乾留品を前工程までの処理温
度より高い温度で再熱処理する工程と、再熱処理工程を
終えた乾留品を熱分解性炭化水素と接触させて細孔調整
を行う工程とを順次行う。
(57) [Summary] [Object] To provide a method for producing a molecular sieve carbon adsorbent which has a large amount of oxygen adsorption and is excellent in the separation ability of oxygen and nitrogen. [Structure] A process in which a carbonized product obtained by treating a base material containing carbon as a main component by a conventional method is weakly activated by reacting with an oxidizing gas, and a carbonized product after the weak activation process is processed up to the preceding process. The step of performing reheat treatment at a temperature higher than the treatment temperature and the step of bringing the dry-distilled product after the reheat treatment step into contact with a thermally decomposable hydrocarbon to adjust the pores are sequentially performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分子篩炭素吸着剤の製
造方法に関し、詳しくは、空気中の酸素・窒素を吸着分
離して酸素や窒素を製造する際に好適に用いられる分子
篩炭素吸着剤の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molecular sieve carbon adsorbent, and more particularly to a molecular sieve carbon adsorbent which is suitably used when adsorbing and separating oxygen and nitrogen in air to produce oxygen and nitrogen. Manufacturing method.

【0002】[0002]

【従来の技術】分子篩炭素(カーボンモレキュラーシー
ブ)吸着剤を製造する方法として、例えば、特表平1−
502743号公報に記載されている方法が知られてい
る。この方法によれば、乾留品を特定の条件下で特定の
炉を用いて処理することにより、良好な分離特性を有す
る単一な品質の分子篩炭素吸着剤が製造できるとされて
いる。
2. Description of the Related Art As a method for producing a molecular sieve carbon (carbon molecular sieve) adsorbent, for example, Japanese Patent Publication No.
The method described in Japanese Patent No. 502743 is known. According to this method, it is said that a single-quality molecular sieve carbon adsorbent having good separation characteristics can be produced by treating a carbonized product under a specific condition using a specific furnace.

【0003】また、分子篩炭素吸着剤の他の製造方法と
しては、例えば、特公昭49−18555号公報,同6
1−8004号公報,特開平4−310209号公報等
に記載されている。
Other methods for producing a molecular sieve carbon adsorbent include, for example, JP-B-49-18555 and JP-A-6-18555.
No. 1-8004, JP-A-4-310209, etc.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
従来の方法において、熱処理により分子篩炭素吸着剤を
製造する場合、基材により最高の吸着量が得られる処理
温度のピークが存在するが、その温度で熱処理を行う
と、酸素・窒素の吸着速度が遅くなり、分子篩炭素吸着
剤として大きな分離能を得ることができなかった。この
ため、吸着量を犠牲にして吸着速度を重視し、前記ピー
ク温度よりも低い熱処理温度を採用しているのが実情で
ある。
However, in these conventional methods, when the molecular sieve carbon adsorbent is produced by heat treatment, there is a peak of the treatment temperature at which the maximum adsorption amount is obtained depending on the base material. When heat treatment was carried out, the adsorption rate of oxygen and nitrogen became slow, and a large separation ability as a molecular sieve carbon adsorbent could not be obtained. For this reason, the fact is that the heat treatment temperature lower than the above-mentioned peak temperature is adopted by giving importance to the adsorption rate at the expense of the adsorption amount.

【0005】また、前記特公昭49−18555号公報
には、賦活後に加熱することで分子篩能を向上させるこ
とが、四塩化炭素を例示して記載されているが、酸素・
窒素分離能を向上させる手段については何ら述べられて
おらず、実際上、このような賦活と加熱のみでは、工業
的に満足できる酸素・窒素分離能を有する分子篩炭素吸
着剤を得ることができなかった。
Further, in Japanese Patent Publication No. 49-18555, it is described that carbon tetrachloride is exemplified to improve the molecular sieving ability by heating after activation.
There is no mention of any means for improving the nitrogen separability, and in fact, such activation and heating alone cannot provide a molecular sieve carbon adsorbent having industrially satisfactory oxygen / nitrogen separability. It was

【0006】そこで本発明は、酸素吸着量が多く、ま
た、酸素・窒素の分離能にも優れた分子篩炭素吸着剤の
製造方法を提供することを目的としている。
[0006] Therefore, it is an object of the present invention to provide a method for producing a molecular sieve carbon adsorbent which has a large amount of oxygen adsorption and is excellent in the ability to separate oxygen and nitrogen.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の分子篩炭素吸着剤の製造方法は、炭素を
主成分とする基材を常法で処理して得られる乾留品を酸
化性気体と反応させて弱活性化させる工程と、弱活性化
工程後の乾留品を前工程までの処理温度より高い温度で
再熱処理する工程と、再熱処理工程を終えた分子篩炭素
前躯体を熱分解性炭化水素と接触させて細孔調整を行う
工程とを順次行うことを特徴としている。
In order to achieve the above-mentioned object, a method for producing a molecular sieve carbon adsorbent of the present invention is to oxidize a carbonized product obtained by treating a substrate containing carbon as a main component by a conventional method. Process of reacting with volatile gas to weakly activate, dry heat treatment after weak activation process to reheat treatment at a temperature higher than the treatment temperature up to the previous process, and heat molecular sieve carbon precursor after reheat treatment process It is characterized in that the step of adjusting the fine pores by bringing them into contact with a decomposable hydrocarbon is sequentially performed.

【0008】本発明方法における上記弱活性化工程は、
炭素を主成分とする基材を常法で処理して得られる乾留
品、例えば、常法によりフェノール樹脂を造粒して45
0〜750℃で乾留した乾留品等を、酸素,水蒸気,炭
酸ガス等の酸化性気体と反応させて賦活する工程であ
り、吸着量を増加させるための工程である。この工程に
おける処理温度,処理時間は、通常、700〜900℃
で0.5〜3時間の範囲であるが、処理温度が高いほ
ど、また、処理時間が長いほど、吸着速度を早くするこ
とができる。
The weak activation step in the method of the present invention comprises:
A dry-distilled product obtained by treating a substrate containing carbon as a main component by a conventional method, for example, granulating a phenol resin by a conventional method,
It is a step of activating a dry-distilled product or the like that has been dry-distilled at 0 to 750 ° C. by reacting it with an oxidizing gas such as oxygen, water vapor, carbon dioxide, etc., and is a step for increasing the adsorption amount. The processing temperature and processing time in this step are usually 700 to 900 ° C.
However, the higher the treatment temperature and the longer the treatment time, the faster the adsorption rate can be.

【0009】さらに、この弱活性化工程では、最終的な
細孔調整工程での細孔調整に悪影響を与えないように、
細孔を過度に広げ過ぎないように弱活性化する必要があ
り、炭素収率で99〜90%となるように条件を選定し
て弱活性化することが好ましい。この炭素収率、即ち賦
活収率が少なすぎると吸着量を十分に増加させることが
できず、多すぎると分離能が低下するという不都合を生
じる。
Further, in this weak activation step, in order not to adversely affect the final pore adjusting step,
It is necessary to weakly activate the pores so as not to excessively widen them, and it is preferable to weakly activate by selecting the conditions so that the carbon yield is 99 to 90%. If the carbon yield, that is, the activation yield is too low, the amount of adsorption cannot be sufficiently increased, and if it is too high, the separation ability is lowered.

【0010】次の再熱処理工程は、上記工程で賦活され
たものを、これまでの乾留工程や弱活性化工程で与えら
れた温度より高い温度で熱処理して細孔を熱収縮させる
工程であり、この工程を行うことにより、平衡吸着量を
5〜15%向上させることができる。このときの処理温
度は、1000〜1200℃の範囲が酸素・窒素分離用
として最も適当であり、温度が低いと熱収縮が十分でな
く、高すぎると吸着量がかえって低下することになる。
また、雰囲気ガスは窒素ガス等でよく、処理時間は0.
1〜3時間の範囲が適当であり、短すぎると効果がほと
んどなく、長くしても効果はほとんど向上しない。
The next re-heat treatment step is a step of heat-treating the material activated in the above-mentioned step at a temperature higher than the temperature given in the carbonization step or the weak activation step so far to heat-shrink the pores. By performing this step, the equilibrium adsorption amount can be improved by 5 to 15%. The treatment temperature at this time is most suitable for oxygen / nitrogen separation in the range of 1000 to 1200 ° C. When the temperature is low, thermal contraction is not sufficient, and when it is too high, the adsorption amount is rather lowered.
The atmosphere gas may be nitrogen gas or the like, and the processing time is 0.
The range of 1 to 3 hours is suitable. If it is too short, there is almost no effect, and if it is long, the effect is hardly improved.

【0011】最終の細孔調整工程は、細孔径を調整する
ために行うものであって、例えば、700〜800℃で
熱分解性炭化水素、例えばトルエン等に接触させる工程
である。この工程では、熱分解性炭化水素の種類や処理
温度,処理時間を適当に選定することにより、所望の大
きさの細孔径とすることができる。
The final fine pore adjusting step is performed to adjust the fine pore diameter, and is a step of contacting with a thermally decomposable hydrocarbon such as toluene at 700 to 800 ° C., for example. In this step, the pore size of a desired size can be obtained by appropriately selecting the type of pyrolytic hydrocarbon, the treatment temperature, and the treatment time.

【0012】[0012]

【実施例】以下、本発明の実施例及び比較例を説明す
る。フェノール樹脂を造粒して450〜750℃で乾留
して得られた一般の乾留品を、炭酸ガス20%,窒素8
0%の混合ガス雰囲気で、800℃で0.5〜3時間処
理し、炭素収率が99〜90%になるように弱活性化し
た。次に、これを窒素ガス中で900〜1300℃の範
囲で、処理温度を変えて0.1〜3時間熱処理した。さ
らに、700〜800℃で窒素ガス中にトルエンを20
%含むガスで処理し、酸素の定数kが略4.0〜5.0
×10-2になるように細孔調整を行った。また、比較の
ため、上記弱活性化を行わなかったもの(比較例1)、
熱処理を行わなかったもの(比較例2)をそれぞれ用意
し、各分子篩炭素吸着剤の性能を大気圧,25℃の条件
下で比較した。
EXAMPLES Examples and comparative examples of the present invention will be described below. A general dry-distilled product obtained by granulating a phenol resin and dry-distilling at 450 to 750 ° C. was used as carbon dioxide gas 20%, nitrogen 8
The mixture was treated at 800 ° C. for 0.5 to 3 hours in a 0% mixed gas atmosphere, and was weakly activated so that the carbon yield was 99 to 90%. Next, this was heat-treated in nitrogen gas in the range of 900 to 1300 ° C. for 0.1 to 3 hours while changing the treatment temperature. Furthermore, toluene is added to nitrogen gas at 700 to 800 ° C.
% Gas containing oxygen, the oxygen constant k is approximately 4.0 to 5.0.
Was carried pore adjusted to × become 10-2. In addition, for comparison, those which were not subjected to the weak activation (Comparative Example 1),
Those that were not heat-treated (Comparative Example 2) were prepared, and the performance of each molecular sieve carbon adsorbent was compared under the conditions of atmospheric pressure and 25 ° C.

【0013】なお、分子篩炭素吸着剤の性能の評価とし
ては、様々なものがあるが、ここでは、酸素の平衡吸着
量及び酸素と窒素との分離係数で評価した。また、分離
係数は、種々の表し方があるが、最も一般的と思われる
方法で行った。すなわち、吸着速度式をdq/dt=k
(q*−q)とし(式中、qは時間tにおける吸着量,
q*は平衡吸着量,kは定数)、実測した吸着速度から
定数kを求め、酸素と窒素のそれぞれの定数の比α=k
2 /kN2 を分離係数とした。
There are various evaluations of the performance of the molecular sieve carbon adsorbent, but in this case, the equilibrium adsorption amount of oxygen and the separation coefficient between oxygen and nitrogen were evaluated. There are various ways to express the separation factor, but the most common method was used. That is, the adsorption rate formula is expressed as dq / dt = k
(Q * -q) (where q is the adsorption amount at time t,
(q * is the equilibrium adsorption amount, k is a constant), and the constant k is calculated from the measured adsorption rate, and the ratio of the constants of oxygen and nitrogen is α = k.
The separation coefficient was O 2 / kN 2 .

【0014】炭素収率及び再熱処理温度の違いによる各
分子篩炭素吸着剤の酸素平衡吸着量と酸素/窒素分離係
数の測定結果を表1に示す。
Table 1 shows the measurement results of the oxygen equilibrium adsorption amount and the oxygen / nitrogen separation coefficient of each molecular sieve carbon adsorbent depending on the difference in carbon yield and reheat treatment temperature.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように、本発明方法で製
造した分子篩炭素吸着剤は、比較例1,2のものに比べ
て、酸素吸着量及び分離係数が共に優れており、特に、
炭素収率が99〜90%のとき、熱処理温度が1000
〜1200℃のときに顕著な差が見られる。
As is clear from Table 1, the molecular sieve carbon adsorbents produced by the method of the present invention are superior in oxygen adsorption amount and separation coefficient to those of Comparative Examples 1 and 2, and in particular,
When the carbon yield is 99 to 90%, the heat treatment temperature is 1000.
A significant difference is seen at ~ 1200 ° C.

【0017】なお、本発明方法で製造した分子篩炭素吸
着剤は、主として酸素と窒素の分離を目的として、その
性能を向上させたものであるが、他のガス混合物の分
離、例えば、アルゴンを含む混合ガスの分離にも有効に
使用することができる。また、前記常法で得られる乾留
品は、フェノール樹脂の他、塩化ビニリデン樹脂等でも
よい。
The molecular sieve carbon adsorbent produced by the method of the present invention has improved performance mainly for the purpose of separating oxygen and nitrogen, but it also contains another gas mixture, for example, argon. It can also be effectively used for separation of mixed gas. The dry-distilled product obtained by the conventional method may be a vinylidene chloride resin or the like in addition to the phenol resin.

【0018】[0018]

【発明の効果】以上説明したように、本発明の分子篩炭
素吸着剤の製造方法は、常法により得られる乾留品に対
して、弱活性化(賦活)工程,再熱処理工程,細孔調整
工程を順次行うことにより、酸素吸着量及び分離係数を
大幅に向上させることができる。したがって、これを窒
素製造用の吸着剤として用いることにより、吸着剤単位
量あたりの窒素発生量が多く、窒素収率も高くなり、窒
素の製造コストを低減することができる。
Industrial Applicability As described above, the method for producing a molecular sieve carbon adsorbent of the present invention has a weak activation (activation) step, a reheat treatment step, and a pore adjusting step for a carbonized product obtained by a conventional method. By sequentially performing the above, the oxygen adsorption amount and the separation coefficient can be significantly improved. Therefore, by using this as an adsorbent for nitrogen production, a large amount of nitrogen is generated per unit amount of adsorbent, the nitrogen yield is increased, and the production cost of nitrogen can be reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素を主成分とする基材を常法で処理し
て得られる乾留品を酸化性気体と反応させて弱活性化さ
せる工程と、弱活性化工程後の乾留品を前工程までの処
理温度より高い温度で再熱処理する工程と、再熱処理工
程を終えた分子篩炭素前躯体を熱分解性炭化水素と接触
させて細孔調整を行う工程とを順次行うことを特徴とす
る分子篩炭素吸着剤の製造方法。
1. A step of reacting a dry-distilled product obtained by treating a base material containing carbon as a main component by an ordinary method with an oxidizing gas to weakly activate, and a dry-distilled product after the weak activation step to a pre-process. The molecular sieve characterized by sequentially performing a step of reheat treatment at a temperature higher than the treatment temperature of up to and a step of adjusting the pores by contacting the molecular sieve carbon precursor after the reheat treatment step with a pyrolytic hydrocarbon. Method for producing carbon adsorbent.
【請求項2】 前記弱活性化工程における炭素収率が9
9〜90%であることを特徴とする請求項1記載の分子
篩炭素吸着剤の製造方法。
2. The carbon yield in the weak activation step is 9
It is 9-90%, The manufacturing method of the molecular sieve carbon adsorbent of Claim 1 characterized by the above-mentioned.
【請求項3】 前記再熱処理工程の処理温度が1000
〜1200℃であることを特徴とする請求項1記載の分
子篩炭素吸着剤の製造方法。
3. The processing temperature of the reheat treatment step is 1000.
It is -1200 degreeC, The manufacturing method of the molecular sieve carbon adsorbent of Claim 1 characterized by the above-mentioned.
JP5333499A 1993-12-27 1993-12-27 Method for producing molecular sieve carbon adsorbent Pending JPH07187658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5333499A JPH07187658A (en) 1993-12-27 1993-12-27 Method for producing molecular sieve carbon adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5333499A JPH07187658A (en) 1993-12-27 1993-12-27 Method for producing molecular sieve carbon adsorbent

Publications (1)

Publication Number Publication Date
JPH07187658A true JPH07187658A (en) 1995-07-25

Family

ID=18266745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5333499A Pending JPH07187658A (en) 1993-12-27 1993-12-27 Method for producing molecular sieve carbon adsorbent

Country Status (1)

Country Link
JP (1) JPH07187658A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211911A (en) * 2001-01-12 2002-07-31 Rengo Co Ltd Carbonized material containing hydroxyl group derived from hydrophilic polymer and method for producing the same
WO2003018189A1 (en) * 2001-08-29 2003-03-06 Nippon Sanso Corporation Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen
JP6925081B1 (en) * 2019-11-14 2021-08-25 株式会社大木工藝 Waste volume reduction treatment method and waste volume reduction treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211911A (en) * 2001-01-12 2002-07-31 Rengo Co Ltd Carbonized material containing hydroxyl group derived from hydrophilic polymer and method for producing the same
WO2003018189A1 (en) * 2001-08-29 2003-03-06 Nippon Sanso Corporation Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen
US6916358B2 (en) 2001-08-29 2005-07-12 Taiyo Nippon Sanso Corporation Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen
JP6925081B1 (en) * 2019-11-14 2021-08-25 株式会社大木工藝 Waste volume reduction treatment method and waste volume reduction treatment system

Similar Documents

Publication Publication Date Title
US4914076A (en) Method of producing an adsorbent for separation and recovery of CO
US5321102A (en) Molecular engineering of porous silica using aryl templates
KR20190093960A (en) Method for manufacturing activated carbon
KR960041056A (en) Method for preparing high purity silicon carbide powder for the production of silicon carbide single crystal and hydrocarbon single crystal
JP2000351614A (en) Silicon carbide powder and its production
JPH0760048A (en) Recovery method of ethylene from exhaust gas of ethylene oxide manufacturing plant
JPH07187658A (en) Method for producing molecular sieve carbon adsorbent
JPH0724743B2 (en) Method for producing molecular sieve carbon membrane
JP2992630B2 (en) Graphite-polymer composite and method for producing the same
JP3310348B2 (en) Method for producing molecular sieve carbon
JP3195963B2 (en) Method for producing metal-containing activated carbon
JPS61191510A (en) Production of carbonaceous molecular sieve for concentrating nitrogen
JPS62129144A (en) Porous composite structure and its manufacturing method
CN116474719A (en) A kind of activated carbon-based CO adsorbent and preparation method thereof
JPH01212207A (en) Method for drying mesocarbon microbeads
JPH05253435A (en) Nitrogen monoxide adsorbent and production thereof
KR102687312B1 (en) Method of Preparing Highly Mesoporous Activated Carbon
RU2071935C1 (en) Method of purifying a carbon material
JP3282238B2 (en) Method for producing chemical activated carbon
YANAI et al. Pattern of Pore Development in the Course of Manufacturing Activated Carbon by Gas Activation
SU1480866A1 (en) Method of producing carbon adsorbent for nitrogen oxide
JPH10218613A (en) Purification method of silicon nitride powder
US3033653A (en) Preparation of carbon-free phosphorus
JPH0685871B2 (en) Carbon modified zeolite
JPS59162122A (en) Purification method of silicon tetrafluoride

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees