[go: up one dir, main page]

JPH07194572A - Magnetic field generating device for magnetic resonance imaging device - Google Patents

Magnetic field generating device for magnetic resonance imaging device

Info

Publication number
JPH07194572A
JPH07194572A JP5349028A JP34902893A JPH07194572A JP H07194572 A JPH07194572 A JP H07194572A JP 5349028 A JP5349028 A JP 5349028A JP 34902893 A JP34902893 A JP 34902893A JP H07194572 A JPH07194572 A JP H07194572A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
measurement space
permanent magnets
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5349028A
Other languages
Japanese (ja)
Inventor
Chikako Nakamura
村 千賀子 中
Hirotaka Takeshima
島 弘 隆 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP5349028A priority Critical patent/JPH07194572A/en
Publication of JPH07194572A publication Critical patent/JPH07194572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To generate a uniform magnetostatic field in a measuring space by arranging permanent magnets formed by combining first permanent magnets arranged at intervals from the measuring space and second permanent magnets fixed by projecting to the measuring space side in a peripheral part on the side facing the measuring space of these permanent magnets with each other, around a specimen. CONSTITUTION:In this magnetic field generating device in which upper and lower yokes 1a and 1b are provided, and permanent magnets 12a and 12b are arranged around a specimen to be put in the cavity 4, and a uniform magnetostatic field is generated in a measuring space 7 of a central part in the cavity 4, the permanent magnets 12a and 12b are constituted by combining the first permanent magnets 13a and 13b which are arranged separately by a specific distance from the measuring space 7 and are low in the maximum energy product and the second permanent magnets 14a and 14b which are fixed by projecting to the measuring space 7 side in a peripheral part on the side facing the measuring space 7 of these permanent magnets and are high in the maximum energy product with each other. Thereby, uniformity of a magnetic field in a peripheral part 7' of the measuring space 7 is heightened, and uniformity of a magnetic field in the measuring space 7 is improved as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核磁気共鳴(NMR)
現象を利用して被検体の検査部位の断層像を得る磁気共
鳴イメージング装置(以下「MRI装置」という)に用
いられる永久磁石を使用した静磁界の発生装置に関し、
特に被検体を挿入する空隙内の中心部の計測空間の磁界
均一度を向上できると共に永久磁石材料の使用量を低減
することができるMRI装置の磁界発生装置に関する。
FIELD OF THE INVENTION The present invention relates to nuclear magnetic resonance (NMR).
The present invention relates to a static magnetic field generator using a permanent magnet used in a magnetic resonance imaging apparatus (hereinafter referred to as “MRI apparatus”) that obtains a tomographic image of an examination region of a subject by utilizing a phenomenon.
In particular, the present invention relates to a magnetic field generator of an MRI apparatus capable of improving the magnetic field homogeneity of the measurement space at the center of the void into which the subject is inserted and reducing the amount of permanent magnet material used.

【0002】[0002]

【従来の技術】MRI装置は、NMR現象を利用して被
検体の所望の検査部位について計測した信号を演算処理
することで、上記検査部位の核スピンの密度分布及び緩
和時間分布等を断層像として画像表示するものである。
そして、上記のNMR現象を発生させるためには、空間
的及び時間的に一様な強度と方向を持った静磁界が必要
である。例えば、人体などの空間的に広い範囲を計測対
象とする場合には、直径30〜50cmの球空間からなる計測
空間内において0.05〜2T(テスラ;1テスラは10,000
ガウス)程度の静磁場を数10ppm以下の均一度で発生さ
せる磁界発生装置が必要である。このような磁界発生装
置としては、従来から常電導磁石、超電導磁石、永久磁
石の三方式が用いられている。
2. Description of the Related Art An MRI apparatus uses a NMR phenomenon to perform arithmetic processing on a signal measured at a desired examination site of an object to obtain a tomographic image of the density distribution and relaxation time distribution of nuclear spins at the examination site. Is displayed as an image.
Then, in order to generate the above-mentioned NMR phenomenon, a static magnetic field having a spatially and temporally uniform strength and direction is required. For example, when measuring a spatially wide range such as the human body, 0.05 to 2T (Tesla; 1 Tesla is 10,000 in a measurement space consisting of a spherical space with a diameter of 30 to 50 cm).
A magnetic field generator that can generate a static magnetic field of about Gauss) with a uniformity of several tens of ppm or less is required. As such a magnetic field generator, three types of conventional methods have been used: a normal conducting magnet, a superconducting magnet, and a permanent magnet.

【0003】そして、永久磁石を用いた従来のMRI装
置の磁界発生装置は、例えば特開昭60-88407号公報や特
開平2-83903号公報などに記載されているように、大き
く分けて、被検体の計測空間を間に挟んで対向配置され
た永久磁石が該計測空間に静磁界を発生する対向型磁界
発生装置と、被検体の計測空間の周囲に環状に配置され
た複数個の永久磁石ブロックが該計測空間に静磁界を発
生する環状型磁界発生装置とがある。これらを図8及び
図9を参照して説明する。
A conventional magnetic field generator for an MRI apparatus using a permanent magnet is roughly classified into, for example, as disclosed in JP-A-60-88407 and JP-A-2-83903. An opposed type magnetic field generator in which permanent magnets arranged to face each other with the measurement space of the subject interposed therebetween generate a static magnetic field in the measurement space, and a plurality of permanent magnets annularly arranged around the measurement space of the subject. There is an annular magnetic field generator in which a magnet block generates a static magnetic field in the measurement space. These will be described with reference to FIGS. 8 and 9.

【0004】まず、図8は特開昭60-88407号公報に記載
された従来の対向型磁界発生装置を示す一部断面した正
面図である。図8において、一対の平板状の継鉄1a,
1bは、後述の永久磁石2a,2b及びカラム3,3,
…と共に磁気回路を構成するもので、軟磁性材料で形成
されている。この継鉄1a,1bは、その四隅部を4本
のカラム3,3,…で支持され、所定の距離をおいて対
向して保持されている。そして、上記継鉄1a,1bの
内壁面にて上下に相対する面には、一対の永久磁石2
a,2bが該両者間に被検体の入り得る空隙4を形成し
て対向配置されている。これらの永久磁石2a,2b
は、上記内壁面に対して図示のように垂直方向の主磁束
を発生させるもので、例えば円盤状に形成されており、
互いに向かい合う面の極性を異ならせている。また、上
記永久磁石2a,2bの対向する面には、上記空隙4内
の磁界均一度を向上するための磁極片5a,5bが取り
付けられている。さらに、上記対向する磁極片5a,5
bの周縁部には、上下とも同一形状の環状突起部6a,
6bが形成されており、周辺外方への磁束の漏れを抑
え、上記空隙4内の中心部の計測空間7に均一な静磁界
を発生するように構成されている。
First, FIG. 8 is a partially sectional front view showing a conventional opposed type magnetic field generator disclosed in Japanese Patent Laid-Open No. 60-88407. In FIG. 8, a pair of flat plate-shaped yokes 1a,
1b is a permanent magnet 2a, 2b and columns 3, 3, which will be described later.
And a magnetic circuit, which is made of a soft magnetic material. The yokes 1a, 1b are supported at their four corners by four columns 3, 3, ... And held facing each other with a predetermined distance. The pair of permanent magnets 2 are provided on the surfaces of the inner wall surfaces of the yokes 1a and 1b which face each other vertically.
a and 2b are arranged so as to face each other with forming a space 4 between them for allowing a subject to enter. These permanent magnets 2a, 2b
Is for generating a main magnetic flux in the vertical direction with respect to the inner wall surface as shown in the figure, and is formed in a disc shape, for example.
The polarities of the surfaces facing each other are different. Further, magnetic pole pieces 5a and 5b for improving the magnetic field homogeneity in the air gap 4 are attached to the opposing surfaces of the permanent magnets 2a and 2b. Furthermore, the opposing pole pieces 5a, 5
At the peripheral edge of b, the upper and lower annular projections 6a having the same shape,
6b is formed so as to suppress the leakage of magnetic flux to the outside of the periphery and generate a uniform static magnetic field in the measurement space 7 at the center of the void 4.

【0005】次に、図9は特開平2-83903号公報に記載
された従来の環状型磁界発生装置を示す斜視図である。
図9において、中央部に配置された環状の永久磁石群8
と、その両側部に配置された同じく環状の永久磁石群
9,10とを備え、全体として多角形断面の筒状体をな
しており、これらの永久磁石群8,9,10の外周部を
覆う継鉄は存在しない。そして、上記両側部に配置され
た永久磁石群9,10の厚さを中央部の永久磁石群8の
厚さよりも大きくすることにより、筒状体の中心部に被
検体が入り得るように形成された空隙4内の計測空間の
磁界均一度を向上させようとしたものである。この例に
おいて、それぞれの永久磁石群8,9,10を構成する
各々のブロック磁石は同じ材質で形成されており、その
磁化方向は図9において矢印を付して示すように、筒状
体の中心軸11に対して各々垂直な方向を向いている。
Next, FIG. 9 is a perspective view showing a conventional annular magnetic field generator described in Japanese Patent Laid-Open No. 2-83903.
In FIG. 9, an annular permanent magnet group 8 arranged in the central portion
And a group of similarly annular permanent magnets 9 and 10 arranged on both sides thereof to form a tubular body having a polygonal cross section as a whole. The outer peripheral portions of these permanent magnet groups 8, 9 and 10 are There is no yoke to cover. Then, the thickness of the permanent magnet groups 9 and 10 arranged on both sides is made larger than the thickness of the central permanent magnet group 8 so that the subject can enter the center of the tubular body. This is intended to improve the magnetic field homogeneity of the measurement space in the created void 4. In this example, the block magnets constituting each of the permanent magnet groups 8, 9, and 10 are made of the same material, and their magnetization directions are as shown by the arrows in FIG. Each is oriented in a direction perpendicular to the central axis 11.

【0006】上記いずれの従来例の場合も、被検体を挿
入する空隙4内の計測空間に均一な静磁界を発生させる
ために、上記空隙4の周囲に多くの永久磁石を配置して
いる。このように多くの永久磁石を使用すると、MRI
装置の全体が大形かつ大重量となると共に、永久磁石材
は非常に高価であることからコスト高となるので、でき
るだけその使用量を減らす必要がある。そして、この磁
石使用量を減らすためには、磁界発生装置としての磁界
生成効率を向上させればよい。
In any of the above-mentioned conventional examples, many permanent magnets are arranged around the gap 4 in order to generate a uniform static magnetic field in the measurement space in the gap 4 into which the subject is inserted. With so many permanent magnets, MRI
Since the entire apparatus is large and heavy, and the permanent magnet material is very expensive, the cost is high. Therefore, it is necessary to reduce the amount of use as much as possible. Then, in order to reduce the usage amount of the magnet, the magnetic field generation efficiency as the magnetic field generation device may be improved.

【0007】[0007]

【発明が解決しようとする課題】しかし、図8に示す従
来の対向型磁界発生装置においては、上下の永久磁石2
a,2bを継鉄1a,1bと4本のカラム3,3,…と
で磁気的に接続して磁気回路を構成しているが、対向す
る磁極片5a,5bの間から外部に磁束が漏れ出すこと
があり、図10で一点鎖線のカーブC1で示すように、
計測空間7の周辺部における磁界均一度が低下するもの
であった。この磁束の漏れを補い、上記計測空間7の磁
界均一度を向上させるためには、上記永久磁石2a,2
bの寸法を大きくする必要があり、磁界生成効率が低下
すると共に、多くの永久磁石材を使用して大形かつ大重
量、さらにコスト高となるものであった。
However, in the conventional opposed type magnetic field generator shown in FIG. 8, the upper and lower permanent magnets 2 are provided.
a, 2b are magnetically connected to the yokes 1a, 1b and the four columns 3, 3, ... To form a magnetic circuit, but a magnetic flux is generated from between the opposing pole pieces 5a, 5b. It may leak out, as shown by the chain line curve C 1 in FIG.
The magnetic field uniformity in the peripheral portion of the measurement space 7 was reduced. In order to compensate for this leakage of magnetic flux and improve the magnetic field uniformity of the measurement space 7, the permanent magnets 2a, 2
It is necessary to increase the size of b, which lowers the magnetic field generation efficiency, and uses a large number of permanent magnet materials, resulting in a large size, a large weight, and a high cost.

【0008】また、図9に示す従来の環状型磁界発生装
置においては、筒状体の両端開口部から磁束が漏れ出す
ことがあり、同じく図10で一点鎖線のカーブC1で示
すように、空隙4内部の計測空間の周辺部における磁界
均一度が低下するものであった。この磁束の漏れを補
い、上記計測空間の磁界均一度を向上させるためには、
両端部の永久磁石群9,10の厚さを中央部の永久磁石
群8の厚さより厚くするか、又は全体の奥行き方向の長
さを長くする必要があり、やはり磁界生成効率が低下す
ると共に、多くの永久磁石材を使用して大形かつ大重
量、さらにコスト高となるものであった。
Further, in the conventional annular magnetic field generator shown in FIG. 9, magnetic flux may leak from the openings at both ends of the tubular body. Similarly, as shown by a dashed line curve C 1 in FIG. The magnetic field homogeneity in the peripheral portion of the measurement space inside the void 4 was reduced. In order to compensate for this leakage of magnetic flux and improve the magnetic field homogeneity in the measurement space,
It is necessary to make the thickness of the permanent magnet groups 9 and 10 at both ends thicker than the thickness of the permanent magnet group 8 at the central portion, or to make the entire length in the depth direction longer, which also lowers the magnetic field generation efficiency. However, a large number of permanent magnet materials were used, resulting in a large size, a large weight, and a high cost.

【0009】そこで、本発明は、このような問題点に対
処し、被検体を挿入する空隙内の中心部の計測空間の磁
界均一度を向上できると共に永久磁石材料の使用量を低
減することができるMRI装置の磁界発生装置を提供す
ることを目的とする。
Therefore, the present invention can cope with such a problem and improve the magnetic field homogeneity of the measurement space in the central portion of the void into which the subject is inserted and reduce the amount of the permanent magnet material used. An object of the present invention is to provide a magnetic field generator for an MRI apparatus that can be used.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明によるMRI装置の磁界発生装置は、中心部
に被検体が入り得る空隙を形成して該被検体の周りに永
久磁石を配置し、上記空隙内の中心部の計測空間に均一
な静磁界を発生させる磁気共鳴イメージング装置の磁界
発生装置において、上記永久磁石は、上記計測空間から
一定距離だけ離れて配置され相対的に最大エネルギ積の
低い第一の永久磁石と、この第一の永久磁石の上記計測
空間に面した側の周辺部にて外計測空間側に突出して固
着され相対的に最大エネルギ積の高い第二の永久磁石と
を組み合わせて構成したものである。
In order to achieve the above object, a magnetic field generator of an MRI apparatus according to the present invention forms a void into which a subject can enter and a permanent magnet is provided around the subject. In the magnetic field generator of the magnetic resonance imaging apparatus, which is arranged to generate a uniform static magnetic field in the measurement space at the center of the air gap, the permanent magnet is arranged at a constant distance from the measurement space and has a relative maximum. A first permanent magnet having a low energy product, and a second permanent magnet having a relatively high maximum energy product, which is fixed and protrudes toward the outer measurement space at the peripheral portion of the first permanent magnet facing the measurement space. It is configured by combining with a permanent magnet.

【0011】また、上記第一の永久磁石の計測空間に面
した側の周辺部にて該計測空間の中心側に寄った位置に
は、上記第二の永久磁石を計測空間側に突出して固着す
ると共に、上記第一の永久磁石の計測空間に面した側の
周辺部にて外側端部には、該第一の永久磁石と同等の磁
気特性を有する第三の永久磁石を固着してもよい。
Further, at a position near the center of the measurement space in the peripheral portion of the first permanent magnet facing the measurement space, the second permanent magnet projects and is fixed to the measurement space. In addition, a third permanent magnet having magnetic characteristics equivalent to that of the first permanent magnet may be fixed to the outer end of the peripheral portion of the first permanent magnet facing the measurement space. Good.

【0012】さらに、上記第一の永久磁石及び第三の永
久磁石は、最大エネルギ積の低いフェライト磁石を用
い、第二の永久磁石は、最大エネルギ積の高いフェライ
ト磁石または希土類磁石を用いたものである。
Further, the first permanent magnet and the third permanent magnet use ferrite magnets having a low maximum energy product, and the second permanent magnets use ferrite magnets or rare earth magnets having a high maximum energy product. Is.

【0013】さらにまた、上記第二の永久磁石と第三の
永久磁石との間には、保磁力の大きい第四の永久磁石を
配置すると効果的である。
Furthermore, it is effective to dispose a fourth permanent magnet having a large coercive force between the second permanent magnet and the third permanent magnet.

【0014】そして、本発明の磁界発生装置の一つの型
式は、上記被検体の周りに配置する永久磁石を、該被検
体の計測空間を間に挟んで対向配置して構成したもので
ある。
Further, one type of the magnetic field generator of the present invention is configured such that the permanent magnets arranged around the subject are opposed to each other with the measurement space of the subject interposed therebetween.

【0015】また、本発明の磁界発生装置の他の型式
は、上記被検体の周りに配置する永久磁石を、該被検体
の計測空間の周囲に複数個の永久磁石ブロックを多角形
断面の筒状体をなすように配置して構成したものであ
る。
Another type of magnetic field generator according to the present invention is a cylinder having a polygonal cross section, wherein a permanent magnet is arranged around the subject, and a plurality of permanent magnet blocks are provided around the measurement space of the subject. It is arranged so as to form a shape.

【0016】[0016]

【作用】このように構成されたMRI装置の磁界発生装
置は、被検体を挿入する空隙内の中心部の計測空間から
一定距離だけ離れて配置され相対的に最大エネルギ積の
低い第一の永久磁石と、この第一の永久磁石の上記計測
空間に面した側の周辺部にて該計測空間側に突出して固
着され相対的に最大エネルギ積の高い第二の永久磁石と
を組み合わせて構成した永久磁石を上記被検体の周りに
配置し、上記計測空間に均一な静磁界を発生させるよう
に動作する。これにより、その計測空間の磁界均一度を
向上できると共に、永久磁石材料の使用量を低減するこ
とができる。
The magnetic field generator of the MRI apparatus configured as described above is arranged at a predetermined distance from the measurement space at the center of the cavity into which the subject is inserted and has a relatively low maximum energy product. A combination of a magnet and a second permanent magnet having a relatively high maximum energy product, which is fixed and protrudes toward the measurement space at a peripheral portion of the first permanent magnet facing the measurement space, is formed. A permanent magnet is arranged around the subject and operates so as to generate a uniform static magnetic field in the measurement space. As a result, the magnetic field homogeneity of the measurement space can be improved and the amount of the permanent magnet material used can be reduced.

【0017】[0017]

【実施例】以下、本発明の実施例を添付図面に基づいて
詳細に説明する。図1は本発明によるMRI装置の磁界
発生装置の実施例を示す1/2の縦断面図であり、装置の
全体形状は図8に示す従来の対向型磁界発生装置と同様
に構成されている。この磁界発生装置は、永久磁石を使
用して被検体を挿入する空隙内に均一な静磁界を発生さ
せるもので、図1に示すように、上下の継鉄1a,1b
と、上下の永久磁石12a,12bと、4本のカラム
3,3,…とを備えて成る。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. 1 is a half longitudinal sectional view showing an embodiment of a magnetic field generator for an MRI apparatus according to the present invention, and the overall shape of the apparatus is the same as that of the conventional opposed magnetic field generator shown in FIG. . This magnetic field generator uses a permanent magnet to generate a uniform static magnetic field in a space into which a subject is inserted. As shown in FIG. 1, upper and lower yokes 1a and 1b are provided.
, And upper and lower permanent magnets 12a and 12b, and four columns 3, 3, ...

【0018】上記継鉄1a,1bは、後述の永久磁石1
2a,12b及びカラム3,3,…と共に磁気回路を形
成する部材となるもので、鉄板やけい素鋼板等の軟磁性
材料で四角形平板状に形成され、上下一対に設けられて
いる。この継鉄1a,1bは、その四隅部を4本のカラ
ム3,3,…で支持され、所定の距離をおいて対向して
保持されている。そして、上記継鉄1a,1bの内壁面
にて上下に相対する面には、一対の永久磁石12a,1
2bが該両者間に被検体の入り得る空隙4を形成して対
向配置されている。これらの永久磁石12a,12b
は、上記内壁面に対して図示のように垂直方向の主磁束
を発生させるもので、例えば円盤状に形成されており、
互いに向かい合う面の極性を異ならせている。以上の構
成により、上記空隙4内の中心部の計測空間7に例えば
下から上に向かう均一な静磁界を発生させるようになっ
ている。
The yokes 1a and 1b are permanent magnets 1 described later.
The members 2a, 12b and the columns 3, 3, ... Form a magnetic circuit, and are formed of a soft magnetic material such as an iron plate or a silicon steel plate into a rectangular flat plate shape, and are provided in a pair in the upper and lower sides. The yokes 1a, 1b are supported at their four corners by four columns 3, 3, ... And held facing each other with a predetermined distance. Then, on the inner wall surfaces of the yokes 1a, 1b, which face vertically, a pair of permanent magnets 12a, 1b is formed.
2b are arranged so as to face each other, forming a space 4 between the two, into which a subject can enter. These permanent magnets 12a, 12b
Is for generating a main magnetic flux in the vertical direction with respect to the inner wall surface as shown in the figure, and is formed in a disc shape, for example.
The polarities of the surfaces facing each other are different. With the above configuration, for example, a uniform static magnetic field from the bottom to the top is generated in the measurement space 7 at the center of the void 4.

【0019】ここで、本発明においては、上記永久磁石
12a,12bは、図1に示すように、計測空間7から
一定距離だけ離れて配置され相対的に最大エネルギ積の
低い第一の永久磁石13a,13bと、この第一の永久
磁石13a,13bの上記計測空間7に面した側の周辺
部にて該計測空間7の中心側に寄った位置に計測空間7
側に突出して固着され相対的に最大エネルギ積の高い第
二の永久磁石14a,14bと、上記第一の永久磁石1
3a,13bの計測空間7に面した側の周辺部の外端部
にて上記第二の永久磁石14a,14bに隣接して固着
され第一の永久磁石13a,13bと同様に相対的に最
大エネルギ積の低い第三の永久磁石15a,15bとを
組み合わせて構成されている。そして、それぞれの磁石
材料としては、第一の永久磁石13a,13b及び第三
の永久磁石15a,15bは、最大エネルギ積の低いフ
ェライト磁石を用い、第二の永久磁石14a,14b
は、最大エネルギ積の高いフェライト磁石、又はネオジ
ウム磁石或いは希土類コバルト磁石などの希土類磁石を
用いる。また、上記第二の永久磁石14a,14bと第
三の永久磁石15a,15bの磁化方向は、主磁石であ
る第一の永久磁石13a,13bの磁化方向と同じ方向
とされている。
Here, in the present invention, the permanent magnets 12a and 12b are, as shown in FIG. 1, arranged apart from the measurement space 7 by a certain distance and having a relatively low maximum energy product. 13a and 13b, and the measurement space 7 at a position near the center of the measurement space 7 in the peripheral portion of the first permanent magnets 13a and 13b facing the measurement space 7.
The second permanent magnets 14a and 14b that are protruded and fixed to the side and have a relatively high maximum energy product, and the first permanent magnet 1 described above.
Adjacent to the second permanent magnets 14a, 14b at the outer ends of the peripheral portions of 3a, 13b facing the measurement space 7, the first permanent magnets 13a, 13b have a relative maximum distance. It is configured by combining with third permanent magnets 15a and 15b having a low energy product. As the respective magnet materials, the first permanent magnets 13a and 13b and the third permanent magnets 15a and 15b are ferrite magnets having a low maximum energy product, and the second permanent magnets 14a and 14b.
Is a rare earth magnet such as a ferrite magnet having a high maximum energy product or a neodymium magnet or a rare earth cobalt magnet. The magnetization directions of the second permanent magnets 14a and 14b and the third permanent magnets 15a and 15b are the same as the magnetization directions of the first permanent magnets 13a and 13b which are the main magnets.

【0020】次に、上記のように第一の永久磁石13
a,13bに対して第二の永久磁石14a,14b及び
第三の永久磁石15a,15bを組み合わせた理由につ
いて説明する。図1に示す対向型磁界発生装置において
は、図8に示す従来例の説明で述べたように、構造的に
計測空間7の半径R方向の周辺部7′の磁界強度が上記
計測空間7の内方に比べて小さく、該計測空間7の磁界
均一度が悪化することがあった。このため、本発明にお
いては、上記計測空間7の周辺部7′に近い位置に、相
対的に最大エネルギ積の高い第二の永久磁石14a,1
4bを配置して、上記周辺部7′の磁界強度を予め他の
位置よりも大きくしておこうとしたものである。
Next, as described above, the first permanent magnet 13
The reason why the second permanent magnets 14a and 14b and the third permanent magnets 15a and 15b are combined with a and 13b will be described. In the opposed magnetic field generator shown in FIG. 1, as described in the description of the conventional example shown in FIG. 8, structurally, the magnetic field strength of the peripheral portion 7 ′ in the radius R direction of the measurement space 7 is equal to that of the measurement space 7. It was smaller than the inner side, and the magnetic field homogeneity of the measurement space 7 sometimes deteriorated. Therefore, in the present invention, the second permanent magnets 14a, 1 having a relatively high maximum energy product are provided at a position near the peripheral portion 7'of the measurement space 7.
4b is arranged so that the magnetic field strength of the peripheral portion 7'is made larger than the other positions in advance.

【0021】そこで、上記のように相対的に最大エネル
ギ積の高い第二の永久磁石14a,14bによって、効
果的に計測空間7内の磁界均一度を向上させることがで
きる位置を調べるために、上記第二の永久磁石14a,
14bの位置を変更したときの上記計測空間7内の磁界
均一度の変化についてシミュレーションを行った結果に
ついて、図2及び図3を参照して説明する。図2はシミ
ュレーションの状態を簡単に示す永久磁石12aの1/4
縦断面図である。図において、測定点P1〜P6は、空隙
4内の磁界均一度を決めるための目安となる点で、計測
空間7の外周上に位置している。また、相対的に最大エ
ネルギ積の高い第二の永久磁石14aは、第一の永久磁
石13a及び第三の永久磁石15aと同じ磁化方向とさ
れ、上記計測空間7の中心側に近い方からA,B,C,
Dの位置に配置して、上記各測定点P1〜P6の磁界強度
の変化量を調べた。
Therefore, in order to investigate the position where the magnetic field homogeneity in the measurement space 7 can be effectively improved by the second permanent magnets 14a, 14b having a relatively high maximum energy product as described above, The second permanent magnet 14a,
The result of the simulation of the change in the magnetic field homogeneity in the measurement space 7 when the position of 14b is changed will be described with reference to FIGS. 2 and 3. FIG. 2 is a quarter of the permanent magnet 12a showing a simulation state in a simple manner.
FIG. In the drawing, the measurement points P 1 to P 6 are located on the outer circumference of the measurement space 7 and serve as a guide for determining the magnetic field homogeneity in the air gap 4. Further, the second permanent magnet 14a having a relatively high maximum energy product has the same magnetization direction as the first permanent magnet 13a and the third permanent magnet 15a, and is closer to the center side of the measurement space 7 from the side A , B, C,
It was placed at the position D and the amount of change in the magnetic field strength at each of the measurement points P 1 to P 6 was examined.

【0022】図3は各測定点P1〜P6の位置に対する磁
界強度の変化の状態を示すグラフであり、横軸は各測定
点P1〜P6の位置を示し、縦軸は上記各測定点P1〜P6
における相対的な磁界強度の変化量を示している。そし
て、図2において第二の永久磁石14aを位置Aに配置
したときの磁界強度の変化を図3では実線16aで表
し、位置Bに配置したときの磁界強度の変化を破線16
bで表し、位置Cに配置したときの磁界強度の変化を一
点鎖線16cで表し、位置Dに配置したときの磁界強度
の変化を二点鎖線16dで表している。このグラフから
わかるように、一般的に図2に示す第二の永久磁石14
aを配置した位置A,B,C,Dに近い測定点をピーク
にして、山形の磁界強度の変化を示す。しかし、図1に
示す計測空間7の周辺部7′に相当する測定点P5とP6
の磁界強度の変化量は、他の測定点P1〜P4に比べて小
さいことがわかる。
FIG. 3 is a graph showing the state of changes in the magnetic field strength with respect to the positions of the respective measurement points P 1 to P 6 , where the horizontal axis represents the positions of the respective measurement points P 1 to P 6 and the vertical axis represents the above respective points. Measurement points P 1 to P 6
Shows the amount of change in the relative magnetic field strength at. A change in magnetic field strength when the second permanent magnet 14a is arranged at the position A in FIG. 2 is represented by a solid line 16a in FIG. 3, and a change in magnetic field strength when the second permanent magnet 14a is arranged at the position B is indicated by a broken line 16a.
The change in the magnetic field strength when placed at position C is represented by a dashed line 16c, and the change in the magnetic field strength when placed at position D is represented by a two-dot chain line 16d. As can be seen from this graph, the second permanent magnet 14 generally shown in FIG.
The peak-shaped measurement points near the positions A, B, C, and D where a is arranged indicate peaks, and changes in the magnetic field strength of the mountain shape are shown. However, the measurement points P 5 and P 6 corresponding to the peripheral portion 7 ′ of the measurement space 7 shown in FIG.
It can be seen that the amount of change in the magnetic field strength is smaller than that at the other measurement points P 1 to P 4 .

【0023】従って、上記計測空間7のより良い磁界均
一度を得るために、この測定点P5とP6の付近のみの磁
界強度を変化させる必要があり、上記測定点P5,P6
磁界強度に大きく影響を与える位置、すなわち図2に示
す位置Dの付近に第二の永久磁石14aを局所的に配置
する必要がある。この結果図1に示すように、第三の永
久磁石15a,15bより計測空間7の中心側に寄った
位置にて、上記第三の永久磁石15a,15bに隣接し
て第二の永久磁石14a,14bを配置することとした
のである。そして、図1において、上記最大エネルギ積
の高い第二の永久磁石14a,14bより内側に、相対
的に最大エネルギ積の低いシミング磁石(図示せず)を
配置することにより、計測空間7の周辺部7′以外の位
置の磁界強度を部分的に調整することができ、上記計測
空間7全体の磁界均一度を向上することが可能となる。
[0023] Therefore, in order to obtain a better magnetic field uniformity in the measurement space 7, it is necessary to vary the magnetic field strength of only around the measuring point P 5 and P 6, of the measurement points P 5, P 6 It is necessary to locally dispose the second permanent magnet 14a at a position that greatly affects the magnetic field strength, that is, near the position D shown in FIG. As a result, as shown in FIG. 1, at a position closer to the center side of the measurement space 7 than the third permanent magnets 15a and 15b, the second permanent magnet 14a is adjacent to the third permanent magnets 15a and 15b. , 14b are arranged. Then, in FIG. 1, by disposing a shimming magnet (not shown) having a relatively low maximum energy product inside the second permanent magnets 14a, 14b having a high maximum energy product, the periphery of the measurement space 7 is arranged. The magnetic field strength at positions other than the portion 7'can be partially adjusted, and the magnetic field homogeneity of the entire measurement space 7 can be improved.

【0024】これを図10を用いて説明すると、図8に
示す従来の対向型磁界発生装置における計測空間7の磁
界均一度は、一点鎖線のカーブC1で示すように周辺部
で低下していたが、図1に示す本発明で第二の永久磁石
14a,14bを第一の永久磁石13a,13bに対し
て付加したことにより、図10において二点鎖線のカー
ブC2(図3に示す二点鎖線16dに対応する)で示す
磁界強度の変化が新たに付加されたこととなる。従っ
て、本発明の磁界発生装置においては、図10において
カーブC1とカーブC2とを加算した実線のカーブC3
示すような磁界強度の変化となり、図1に示す計測空間
7の周辺部7′における磁界均一度を向上することがで
きる。この場合、相対的に最大エネルギ積の高い第二の
永久磁石14a,14bを第一の永久磁石13a,13
bの周辺部に配置することにより、基本的に上記計測空
間7の周辺部7′の磁界均一度を左右する第一の永久磁
石13a,13bの半径R方向の大きさを小さくするこ
とができる。このことから、永久磁石材料の使用量を低
減して、小形軽量化を図ることができる。
Explaining this with reference to FIG. 10, the magnetic field homogeneity of the measurement space 7 in the conventional opposed magnetic field generator shown in FIG. 8 is lowered in the peripheral portion as shown by a dashed line curve C 1. However, by adding the second permanent magnets 14a and 14b to the first permanent magnets 13a and 13b in the present invention shown in FIG. 1, a two-dot chain curve C 2 (shown in FIG. 3) in FIG. The change in the magnetic field strength indicated by the two-dot chain line 16d) is newly added. Therefore, in the magnetic field generator of the present invention, the magnetic field strength changes as shown by the solid curve C 3 in which the curves C 1 and C 2 are added in FIG. 10, and the peripheral portion of the measurement space 7 shown in FIG. The magnetic field uniformity in 7'can be improved. In this case, the second permanent magnets 14a and 14b having a relatively high maximum energy product are replaced by the first permanent magnets 13a and 13b.
By arranging the first permanent magnets 13a and 13b in the peripheral portion of b, the size of the first permanent magnets 13a and 13b in the radius R direction, which basically affects the magnetic field uniformity of the peripheral portion 7'of the measurement space 7, can be reduced. . Therefore, the amount of permanent magnet material used can be reduced, and the size and weight can be reduced.

【0025】なお、図1においては、第一の永久磁石1
3a,13bの計測空間7に面した側の周辺部にて外側
端部に設けられた第三の永久磁石15a,15bの内側
に隣接して最大エネルギ積の高い第二の永久磁石14
a,14bを設けた例を示したが、本発明はこれに限ら
ず、上記第二の永久磁石14a,14bは、第三の永久
磁石15a,15bから離れた状態となっても計測空間
7内の磁界均一度を最も向上しうる位置に配置すればよ
い。また、第二の永久磁石14a,14bの厚さは、上
記第三の永久磁石15a,15bと同一にする必要はな
く、異なる厚さとなってもやはり上記計測空間7内の磁
界均一度を最も向上しうる厚さにすればよい。さらに、
図1においては、第一の永久磁石13a,13bの計測
空間7に面した側の周辺部に、第二の永久磁石14a,
14bと第三の永久磁石15a,15bとを組み合わせ
て固着した例を示したが、本発明はこれに限らず、上記
計測空間7内の磁界均一度を最も向上させるために必要
であれば、第二の永久磁石14a,14bだけを適宜の
大きさで設けてもよい。
In FIG. 1, the first permanent magnet 1
The second permanent magnet 14 having a high maximum energy product is adjacent to the insides of the third permanent magnets 15a and 15b provided at the outer ends of the peripheral portions of the sides 3a and 13b facing the measurement space 7.
Although the example in which a and 14b are provided is shown, the present invention is not limited to this, and the second permanent magnets 14a and 14b are separated from the third permanent magnets 15a and 15b in the measurement space 7 It may be arranged at a position where the magnetic field homogeneity can be most improved. Further, the thickness of the second permanent magnets 14a, 14b does not have to be the same as that of the third permanent magnets 15a, 15b, and even if they have different thicknesses, the magnetic field uniformity in the measurement space 7 still has the highest value. The thickness may be improved. further,
In FIG. 1, the second permanent magnets 14a, 14a are provided on the peripheral portion of the first permanent magnets 13a, 13b on the side facing the measurement space 7.
An example in which 14b and the third permanent magnets 15a and 15b are combined and fixed is shown, but the present invention is not limited to this, and if it is necessary to improve the magnetic field homogeneity in the measurement space 7 most, Only the second permanent magnets 14a and 14b may be provided with an appropriate size.

【0026】図4は本発明の第二の実施例を示す1/2の
縦断面図である。この実施例は、図1に示す第二の永久
磁石14a,14bと第三の永久磁石15a,15bと
の間に、保磁力の大きい第四の永久磁石17a,17b
を配置したものである。これは、相対的に最大エネルギ
積の低い第三の永久磁石15a,15bに隣接して相対
的に最大エネルギ積の高い第二の永久磁石14a,14
bを配置すると、この第二の永久磁石14a,14bに
隣接する第三の永久磁石15a,15bの部分の磁束密
度が小さくなり、上記第三の永久磁石15a,15bが
保磁力(iHc)の小さい磁石材料である場合は、第二
の永久磁石14a,14bに隣接する部分が非可逆的な
減磁をする可能性があるので、それを防ぐためである。
すなわち、最大エネルギ積の高い第二の永久磁石14
a,14bによって生じる第三の永久磁石15a,15
b内の磁束密度の低下が非可逆減磁を発生しないだけの
保磁力(iHc)を有する第四の永久磁石17a,17
bを、上記両者間に配置したものである。これにより、
上記第三の永久磁石15a,15bが非可逆的な減磁を
するのを防止して、磁界均一度を維持することができ
る。
FIG. 4 is a half longitudinal sectional view showing a second embodiment of the present invention. In this embodiment, the fourth permanent magnets 17a and 17b having a large coercive force are provided between the second permanent magnets 14a and 14b and the third permanent magnets 15a and 15b shown in FIG.
Is arranged. This is because the second permanent magnets 14a, 14 having a relatively high maximum energy product are adjacent to the third permanent magnets 15a, 15b having a relatively low maximum energy product.
When b is arranged, the magnetic flux density of the portions of the third permanent magnets 15a and 15b adjacent to the second permanent magnets 14a and 14b becomes small, and the third permanent magnets 15a and 15b have a coercive force (iHc). This is for preventing the portion adjacent to the second permanent magnets 14a and 14b from being irreversibly demagnetized in the case of a small magnet material.
That is, the second permanent magnet 14 having a high maximum energy product
Third permanent magnets 15a, 15 generated by a, 14b
The fourth permanent magnets 17a, 17 having a coercive force (iHc) that does not cause irreversible demagnetization due to the decrease in magnetic flux density in b
b is arranged between the two. This allows
It is possible to prevent the third permanent magnets 15a and 15b from being irreversibly demagnetized and maintain the magnetic field uniformity.

【0027】図5は本発明の第三の実施例を示す正面図
である。この実施例は、図9に示す従来の環状型磁界発
生装置に類似する多角形筒型磁界発生装置に本発明を適
用した例を示すものである。図5において、この実施例
は、多角形筒状に形成した継鉄18と、この継鉄18の
複数の内壁面にそれぞれ固着され中心部に被検体を挿入
する空隙4を形成するように配置された永久磁石19a
〜19fとで構成されている。そして、上記永久磁石1
9a〜19fは、上記空隙4内の中心部の計測空間7に
均一な静磁界を発生するように配置されている。ここ
で、上記計測空間7の上下に位置する永久磁石19a,
19bは、図1に示す上下の永久磁石12a,12bと
同様に構成され、図6の1/4縦断面図に示すように、相
対的に最大エネルギ積の低い第一の永久磁石20aと、
相対的に最大エネルギ積の高い第二の永久磁石21a
と、相対的に最大エネルギ積の低い第三の永久磁石22
aとを組み合わせて構成されている。なお、その他の永
久磁石19a〜19fには、相対的に最大エネルギ積の
低い磁石材料を使用する。また、図6に示すように、第
二の永久磁石21aと第三の永久磁石22aの磁化方向
は、主磁石である第一の永久磁石20aの磁化方向と同
じ方向とされている。このような本実施例によれば、多
角形筒型磁界発生装置のY軸方向の磁界均一度を左右す
るY方向の長さを短くした状態で磁界均一度を向上する
ことができ、磁石使用量を低減して、小形軽量化を図る
ことができる。
FIG. 5 is a front view showing a third embodiment of the present invention. This embodiment shows an example in which the present invention is applied to a polygonal tubular magnetic field generator similar to the conventional annular magnetic field generator shown in FIG. In FIG. 5, this embodiment is arranged so as to form a yoke 18 formed in a polygonal tubular shape and a void 4 fixed to each of a plurality of inner wall surfaces of the yoke 18 and into which a subject is inserted. Permanent magnet 19a
.About.19f. Then, the permanent magnet 1
9a to 19f are arranged so as to generate a uniform static magnetic field in the measurement space 7 at the center of the void 4. Here, the permanent magnets 19a located above and below the measurement space 7,
19b is configured similarly to the upper and lower permanent magnets 12a and 12b shown in FIG. 1, and as shown in the 1/4 vertical sectional view of FIG. 6, a first permanent magnet 20a having a relatively low maximum energy product,
Second permanent magnet 21a having a relatively high maximum energy product
And a third permanent magnet 22 having a relatively low maximum energy product
and a. The other permanent magnets 19a to 19f are made of a magnetic material having a relatively low maximum energy product. Further, as shown in FIG. 6, the magnetization directions of the second permanent magnet 21a and the third permanent magnet 22a are the same as the magnetization directions of the first permanent magnet 20a which is the main magnet. According to the present embodiment as described above, it is possible to improve the magnetic field homogeneity in a state where the length in the Y direction, which influences the magnetic field homogeneity in the Y axis direction of the polygonal cylindrical magnetic field generator, is shortened, and the magnet is used. The amount can be reduced and the size and weight can be reduced.

【0028】図7は図6に示す実施例の変形例を示す1/
4の縦断面図であり、図4の実施例と同様に、第二の永
久磁石21aと第三の永久磁石22aとの間に、保磁力
の大きい第四の永久磁石23aを配置したものである。
これにより、上記第三の永久磁石22aが相対的に最大
エネルギ積の高い第二の永久磁石21aの影響により非
可逆的な減磁をするのを防止して、磁界均一度を維持す
ることができる。
FIG. 7 shows a modification of the embodiment shown in FIG.
4 is a vertical cross-sectional view of FIG. 4, in which a fourth permanent magnet 23a having a large coercive force is arranged between the second permanent magnet 21a and the third permanent magnet 22a, as in the embodiment of FIG. is there.
Thereby, the third permanent magnet 22a can be prevented from being irreversibly demagnetized due to the influence of the second permanent magnet 21a having a relatively high maximum energy product, and the magnetic field uniformity can be maintained. it can.

【0029】なお、図示は省略したが、本発明は、図5
〜図7に示す多角形筒型磁界発生装置に適用した実施例
と同様に、図9に示す従来の環状型磁界発生装置にも適
用することができる。
Although not shown, the present invention is not shown in FIG.
~ Like the embodiment applied to the polygonal cylindrical magnetic field generator shown in Fig. 7, it can be applied to the conventional annular magnetic field generator shown in Fig. 9.

【0030】[0030]

【発明の効果】本発明は以上のように構成されたので、
被検体を挿入する空隙内の中心部の計測空間から一定距
離だけ離れて配置され相対的に最大エネルギ積の低い第
一の永久磁石と、この第一の永久磁石の上記計測空間に
面した側の周辺部にて該計測空間側に突出して固着され
相対的に最大エネルギ積の高い第二の永久磁石とを組み
合わせて構成した永久磁石を上記被検体の周りに配置す
ることにより、上記計測空間内に均一な静磁界を発生さ
せることができる。この場合、相対的に最大エネルギ積
の高い第二の永久磁石を第一の永久磁石の周辺部に配置
することにより、上記計測空間の周辺部における磁界均
一度を向上することができ、全体として計測空間の磁界
均一度を向上することができる。また、上記のことか
ら、基本的に上記計測空間の周辺部の磁界均一度を左右
する第一の永久磁石の半径方向の大きさを小さくするこ
とができ、永久磁石材料の使用量を低減して、小形軽量
化を図ることができる。さらに、コスト低下を図ること
もできる。
Since the present invention is constructed as described above,
A first permanent magnet having a relatively low maximum energy product which is arranged at a fixed distance from the measurement space in the center of the void into which the subject is inserted, and the side of the first permanent magnet facing the measurement space. By arranging a permanent magnet, which is formed by combining a second permanent magnet having a relatively high maximum energy product, which is fixedly protruded to the measurement space side in the peripheral portion of the periphery of the subject, A uniform static magnetic field can be generated inside. In this case, by arranging the second permanent magnet having a relatively high maximum energy product in the peripheral portion of the first permanent magnet, it is possible to improve the magnetic field uniformity in the peripheral portion of the measurement space, and as a whole. The magnetic field homogeneity in the measurement space can be improved. Further, from the above, it is possible to reduce the radial size of the first permanent magnet that basically affects the magnetic field homogeneity in the peripheral portion of the measurement space, thereby reducing the amount of permanent magnet material used. As a result, the size and weight can be reduced. Further, it is possible to reduce the cost.

【0031】また、第二の永久磁石と第三の永久磁石と
の間に、保磁力の大きい第四の永久磁石を配置したもの
においては、相対的に最大エネルギ積の低い第三の永久
磁石が相対的に最大エネルギ積の高い第二の永久磁石の
影響により非可逆的な減磁をするのを防止して、磁界均
一度を維持することができる。
Further, in the case where the fourth permanent magnet having a large coercive force is arranged between the second permanent magnet and the third permanent magnet, the third permanent magnet having a relatively low maximum energy product. Can prevent irreversible demagnetization due to the influence of the second permanent magnet having a relatively high maximum energy product, and maintain the magnetic field homogeneity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるMRI装置の磁界発生装置の実施
例を示す1/2の縦断面図である。
FIG. 1 is a half longitudinal sectional view showing an embodiment of a magnetic field generator of an MRI apparatus according to the present invention.

【図2】第二の永久磁石の位置を変更したときの計測空
間内の磁界均一度の変化についてシミュレーションを行
った状態を簡単に示す永久磁石全体の1/4縦断面図であ
る。
FIG. 2 is a 1/4 vertical cross-sectional view of the entire permanent magnet, briefly showing a state in which a simulation is performed on a change in magnetic field homogeneity in a measurement space when the position of a second permanent magnet is changed.

【図3】上記シミュレーションにおける各測定点の位置
に対する磁界強度の変化の状態を示すグラフである。
FIG. 3 is a graph showing changes in magnetic field strength with respect to positions of measurement points in the simulation.

【図4】本発明の第二の実施例を示す1/2の縦断面図で
ある。
FIG. 4 is a half longitudinal sectional view showing a second embodiment of the present invention.

【図5】本発明の第三の実施例を示す正面図である。FIG. 5 is a front view showing a third embodiment of the present invention.

【図6】上記第三の実施例を説明するための永久磁石全
体の1/4縦断面図である。
FIG. 6 is a 1/4 vertical cross-sectional view of the entire permanent magnet for explaining the third embodiment.

【図7】図6に示す実施例の変形例を示す永久磁石全体
の1/4縦断面図である。
7 is a 1/4 vertical sectional view of the entire permanent magnet showing a modification of the embodiment shown in FIG.

【図8】従来の対向型磁界発生装置を示す一部断面した
正面図である。
FIG. 8 is a partially sectional front view showing a conventional opposed magnetic field generator.

【図9】従来の環状型磁界発生装置を示す斜視図であ
る。
FIG. 9 is a perspective view showing a conventional annular magnetic field generator.

【図10】計測空間の周辺部における磁界強度の変化の
状態を従来例と本発明とを比較して示すグラフである。
FIG. 10 is a graph showing a state of change in magnetic field strength in the peripheral portion of the measurement space, comparing the conventional example with the present invention.

【符号の説明】[Explanation of symbols]

1a,1b,18…継鉄 3…カラム 4…空隙 7…計測空間 7′…計測空間の周辺部 12a,12b,19a〜19f…永久磁石 13a,13b,20a…第一の永久磁石 14a,14b,21a…第二の永久磁石 15a,15b,22a…第三の永久磁石 17a,17b,23a…第四の永久磁石 1a, 1b, 18 ... Yoke 3 ... Column 4 ... Void 7 ... Measuring space 7 '... Peripheral part 12a, 12b, 19a-19f ... Permanent magnet 13a, 13b, 20a ... First permanent magnet 14a, 14b , 21a ... Second permanent magnet 15a, 15b, 22a ... Third permanent magnet 17a, 17b, 23a ... Fourth permanent magnet

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 中心部に被検体が入り得る空隙を形成し
て該被検体の周りに永久磁石を配置し、上記空隙内の中
心部の計測空間に均一な静磁界を発生させる磁気共鳴イ
メージング装置の磁界発生装置において、上記永久磁石
は、上記計測空間から一定距離だけ離れて配置され相対
的に最大エネルギ積の低い第一の永久磁石と、この第一
の永久磁石の上記計測空間に面した側の周辺部にて外計
測空間側に突出して固着され相対的に最大エネルギ積の
高い第二の永久磁石とを組み合わせて構成したことを特
徴とする磁気共鳴イメージング装置の磁界発生装置。
1. Magnetic resonance imaging in which a void is formed in the center of the subject and a permanent magnet is arranged around the subject to generate a uniform static magnetic field in the measurement space in the center of the void. In the magnetic field generator of the device, the permanent magnet is a first permanent magnet which is arranged at a certain distance from the measurement space and has a relatively low maximum energy product, and a surface of the first permanent magnet in the measurement space. A magnetic field generating apparatus for a magnetic resonance imaging apparatus, characterized in that the magnetic field generating apparatus is configured by combining with a second permanent magnet having a relatively high maximum energy product, the second permanent magnet protruding and fixed to the outer measurement space side at the peripheral portion on the side of the above.
【請求項2】 上記第一の永久磁石の計測空間に面した
側の周辺部にて該計測空間の中心側に寄った位置には、
上記第二の永久磁石を計測空間側に突出して固着すると
共に、上記第一の永久磁石の計測空間に面した側の周辺
部にて外側端部には、該第一の永久磁石と同等の磁気特
性を有する第三の永久磁石を固着したことを特徴とする
請求項1記載の磁気共鳴イメージング装置の磁界発生装
置。
2. The position near the center of the measurement space in the peripheral portion of the first permanent magnet facing the measurement space,
The second permanent magnet is projected and fixed to the measurement space side, and at the peripheral end on the side facing the measurement space of the first permanent magnet, the outer end portion is equivalent to the first permanent magnet. The magnetic field generator for a magnetic resonance imaging apparatus according to claim 1, wherein a third permanent magnet having magnetic characteristics is fixed.
【請求項3】 上記第一の永久磁石及び第三の永久磁石
は、最大エネルギ積の低いフェライト磁石を用い、第二
の永久磁石は、最大エネルギ積の高いフェライト磁石ま
たは希土類磁石を用いたことを特徴とする請求項1又は
2記載の磁気共鳴イメージング装置の磁界発生装置。
3. The first permanent magnet and the third permanent magnet are ferrite magnets having a low maximum energy product, and the second permanent magnets are ferrite magnets or rare earth magnets having a high maximum energy product. The magnetic field generator of the magnetic resonance imaging apparatus according to claim 1 or 2.
【請求項4】 上記第二の永久磁石と第三の永久磁石と
の間には、保磁力の大きい第四の永久磁石を配置したこ
とを特徴とする請求項2記載の磁気共鳴イメージング装
置の磁界発生装置。
4. A magnetic resonance imaging apparatus according to claim 2, wherein a fourth permanent magnet having a large coercive force is arranged between the second permanent magnet and the third permanent magnet. Magnetic field generator.
【請求項5】 上記被検体の周りに配置する永久磁石
は、該被検体の計測空間を間に挟んで対向配置して構成
したことを特徴とする請求項1〜4記載の磁気共鳴イメ
ージング装置の磁界発生装置。
5. The magnetic resonance imaging apparatus according to claim 1, wherein the permanent magnets arranged around the subject are arranged to face each other with a measurement space of the subject interposed therebetween. Magnetic field generator.
【請求項6】 上記被検体の周りに配置する永久磁石
は、該被検体の計測空間の周囲に複数個の永久磁石ブロ
ックを多角形断面の筒状体をなすように配置して構成し
たことを特徴とする請求項1〜4記載の磁気共鳴イメー
ジング装置の磁界発生装置。
6. The permanent magnet arranged around the subject is constituted by arranging a plurality of permanent magnet blocks around a measurement space of the subject so as to form a cylindrical body having a polygonal cross section. The magnetic field generator of the magnetic resonance imaging apparatus according to any one of claims 1 to 4.
JP5349028A 1993-12-28 1993-12-28 Magnetic field generating device for magnetic resonance imaging device Pending JPH07194572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5349028A JPH07194572A (en) 1993-12-28 1993-12-28 Magnetic field generating device for magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5349028A JPH07194572A (en) 1993-12-28 1993-12-28 Magnetic field generating device for magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
JPH07194572A true JPH07194572A (en) 1995-08-01

Family

ID=18401006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349028A Pending JPH07194572A (en) 1993-12-28 1993-12-28 Magnetic field generating device for magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPH07194572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503959A (en) * 2003-05-23 2007-03-01 シーメンス アクチエンゲゼルシヤフト Magnet apparatus for magnetic resonance imaging having an axially adjustable rose shim ring
JP2008018246A (en) * 2006-07-14 2008-01-31 Ge Medical Systems Global Technology Co Llc Temperature operating method, magnetic field generating device, and mri apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503959A (en) * 2003-05-23 2007-03-01 シーメンス アクチエンゲゼルシヤフト Magnet apparatus for magnetic resonance imaging having an axially adjustable rose shim ring
JP2008018246A (en) * 2006-07-14 2008-01-31 Ge Medical Systems Global Technology Co Llc Temperature operating method, magnetic field generating device, and mri apparatus

Similar Documents

Publication Publication Date Title
EP0921408B1 (en) Permanent magnet for nuclear magnetic resonance image detection
US8077002B2 (en) Open MRI magnetic field generator
US5229723A (en) Magnetic field generating device for mri
FI86584C (en) Nuclear magnetic resonance apparatus with a permanent magnet
JPS63241905A (en) Magnetic field generating equipment
US20110248715A1 (en) Compact Inhomogeneous Permanent Magnetic Field Generator for Magnetic Resonance Imaging
JPH067316A (en) Magnetic field generating device of magnetic resonance imaging system
JPH05211104A (en) Static magnetic field generating equipment for magnetic resonance imaging equipment
US6534984B2 (en) Asymmetric arrangement of permanent-magnetic elements for a magnetic resonance apparatus
JPH07375A (en) Permanent magnet structure for generating stable and uniform magnetic induction in fixed space
US20020060569A1 (en) Magnetic resonance imaging apparatus
JPH06233747A (en) Magnetic generator for superconducting type mri
JPH07194572A (en) Magnetic field generating device for magnetic resonance imaging device
JP3535107B2 (en) Magnetic pole and magnet device using the same
JPH07303621A (en) Rf coil for mri
JPH0423411A (en) Magnetic field producing device for mri
JP2005237501A (en) Magnetic circuit and magnetic circuit magnetic field adjustment method
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
JP2002102205A (en) Magnetic resonance imaging equipment
JP3056883B2 (en) Magnetic field generator for MRI
JPH1097917A (en) Superconducting magnet device
JP2596836B2 (en) Magnetic field generator
JPH06151160A (en) Magnetic field generating device for mri
JPH0666185B2 (en) Magnetic field generator for magnetic resonance imaging apparatus
JPH08243087A (en) Magnet facing type permanent magnet magnetic circuit