JPH07229798A - Residual stress measuring method and its device - Google Patents
Residual stress measuring method and its deviceInfo
- Publication number
- JPH07229798A JPH07229798A JP6043237A JP4323794A JPH07229798A JP H07229798 A JPH07229798 A JP H07229798A JP 6043237 A JP6043237 A JP 6043237A JP 4323794 A JP4323794 A JP 4323794A JP H07229798 A JPH07229798 A JP H07229798A
- Authority
- JP
- Japan
- Prior art keywords
- residual stress
- wave
- measured
- measuring method
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 46
- 230000010355 oscillation Effects 0.000 claims abstract description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910034327 TiC Inorganic materials 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000011195 cermet Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910003465 moissanite Inorganic materials 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 230000003796 beauty Effects 0.000 claims 1
- 238000000691 measurement method Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超音波を利用した各種
材料の残留応力測定方法およびその測定装置に関し、特
に材料の表層内部の残留応力を比較的簡便かつ正確に測
定するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring residual stress of various materials using ultrasonic waves and a measuring apparatus therefor, and particularly to measuring residual stress inside the surface layer of a material relatively easily and accurately.
【0002】[0002]
【従来の技術】従来、各種材料の残留応力を定性的に知
る方法として種々の物理的方法がとられている。また、
定量的に知る方法としては機械的方法やX線法がとられ
ている。このなかで、X線法は、被測定材料の表面にX
線を投射して生ずる散乱X線の回折像により、材料の結
晶格子の変位を測定し、その結果から応力値を算出する
ものであり、材料を非破壊で測定できるという長所をも
っている。2. Description of the Related Art Conventionally, various physical methods have been used as a method for qualitatively knowing the residual stress of various materials. Also,
Mechanical methods and X-ray methods are used as quantitative methods. Among them, the X-ray method is the X-ray method on the surface of the material to be measured.
The displacement of the crystal lattice of the material is measured from the diffraction image of the scattered X-ray generated by projecting a line, and the stress value is calculated from the result, which has the advantage that the material can be measured nondestructively.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記X
線法は、たとえば材料の製造履歴などに起因する材料異
方性の影響を免れることができない。また、測定深度
は、たかだか300Åと極めて表面近傍に限定され、こ
れをもって、その材料のもつ残留応力とは言い難い。However, the above-mentioned X
The line method cannot avoid the influence of material anisotropy caused by, for example, the manufacturing history of the material. Further, the measurement depth is limited to 300 Å at most, which is very close to the surface, and it is hard to say that this is the residual stress of the material.
【0004】[0004]
【課題を解決するための手段】本発明者は、上記の如き
問題に鑑み、従来の技術とはまったく異なる発想のもと
に研究を行ない、超音波を利用して、材料の残留応力を
測定することに成功した。In view of the above problems, the present inventor has conducted research based on an idea that is completely different from the conventional technique, and uses ultrasonic waves to measure the residual stress of a material. I succeeded in doing so.
【0005】使用する超音波は、横波の剪断水平波(S
H波)であり、0.5〜20MHzの周波数をもつパル
ス波であることが好ましい。The ultrasonic wave used is shear horizontal shear wave (S
H wave), and is preferably a pulse wave having a frequency of 0.5 to 20 MHz.
【0006】まず、この超音波を、被測定材料の一表面
部に密着させて置いた導波体を介し、前記被測定材料の
内部に向けて発振器より超音波を発振する。そして、被
測定材料からの反射波を受振器にて受振しつつ、前記超
音波の発振位置を少しづつ摺動させ、受振した反射波が
最大値をとる方向を測定することにより、被測定材料の
もつ最大主応力σ1の方向を特定し、これと直交する主
応力σ2の方向と併せて2つの主応力方向を特定する。First, this ultrasonic wave is oscillated by an oscillator toward the inside of the material to be measured through a waveguide placed in close contact with one surface of the material to be measured. Then, while the reflected wave from the measured material is being received by the geophone, the oscillation position of the ultrasonic wave is slid little by little, and the direction in which the received reflected wave takes the maximum value is measured to obtain the measured material. The direction of the maximum principal stress σ 1 of is specified, and two principal stress directions are specified together with the direction of the principal stress σ 2 orthogonal to this direction.
【0007】次に、前記最大主応力σ1の方向およびこ
れに直交する主応力σ2の方向のそれぞれの方向に関し
て、超音波の一次入反射波の発振角度θにおける音速V
1、V2と、同位置にて発振角度を変え、複屈折現象に基
づく二次入反射波の発振角度θ′における音速V1′、
V2′とを測定し、音速差(V1−V2)および(V1′−
V2′)より残留応力を算出する。Next, with respect to the direction of the maximum principal stress σ 1 and the direction of the principal stress σ 2 orthogonal thereto, the sound velocity V at the oscillation angle θ of the primary incident reflected wave of the ultrasonic wave.
1 , V 2 and the oscillating angle at the same position to change the sound velocity V 1 ′ at the oscillating angle θ ′ of the secondary incident reflected wave based on the birefringence phenomenon,
V 2 'were measured and, acoustic velocity difference (V 1 -V 2) and (V 1' -
The residual stress is calculated from V 2 ′).
【0008】超音波の発振器および受振器の一部を構成
するシューの材質には、アクリル、金属、石英、Si
C、黒鉛、ジルコニア、TiC基サーメット、WC基超
硬合金などを用いる。また、前記シューは、入反射波の
入反射角の調整可能なものとする。The material of the shoe which constitutes a part of the ultrasonic oscillator and the geophone is acrylic, metal, quartz or Si.
C, graphite, zirconia, TiC-based cermet, WC-based cemented carbide or the like is used. Further, the shoe is capable of adjusting an incident / reflection angle of an incident / reflected wave.
【0009】一方、導波体の形状は、被測定材料の一表
面形状に密着する形状を有する一表面と、略半球状の表
面とにより形成される形状を有するものとする。On the other hand, it is assumed that the waveguide has a shape formed by one surface having a shape in close contact with one surface shape of the material to be measured and a substantially hemispherical surface.
【0010】[0010]
【作用】本発明に使用される超音波の種類が、横波の剪
断水平波(SH波)であることが好ましいとした理由
は、横波は直交して伝播するという特性を有するからで
あり、剪断水平波は、材料底面における反射時に横波か
ら縦波にモード変換するといった現象が生じることな
く、安定性が高いからである。The reason why the type of ultrasonic wave used in the present invention is preferably shear horizontal shear wave (SH wave) is that the shear wave has a characteristic of propagating at right angles. This is because the horizontal wave has high stability without causing a phenomenon such as mode conversion from a transverse wave to a longitudinal wave when reflected on the bottom surface of the material.
【0011】超音波の周波数が0.5〜20MHzの範
囲にあることが好ましいとした理由は、周波数が小さす
ぎると、波長が長くなりすぎて測定精度が低下し、逆に
周波数が大きすぎると、波長が短くなりすぎて減衰しや
すくなるためである。前記周波数範囲が、良好なる精度
を確保し、過度の減衰防止に好適する範囲である。The reason why the frequency of the ultrasonic wave is preferably in the range of 0.5 to 20 MHz is that if the frequency is too small, the wavelength becomes too long and the measurement accuracy decreases, and conversely if the frequency is too large. This is because the wavelength becomes too short and is likely to be attenuated. The frequency range is a range that ensures good accuracy and is suitable for preventing excessive attenuation.
【0012】超音波の波形がパルス波であることが好ま
しいとした理由は、材料底面における反射時に、超音波
が複雑に干渉しあうのを防止する効果がパルス波にはあ
るからである。The reason why the waveform of the ultrasonic wave is preferably the pulse wave is that the pulse wave has an effect of preventing the ultrasonic waves from interfering with each other in a complicated manner at the time of reflection on the bottom surface of the material.
【0013】超音波の発振器および受振器の一部を構成
するシューの材質には、被測定材料との間に適度の音響
インピーダンス差があり、透過性を有し、さらに導波体
に接触させながら摺動することから、耐摩耗性の良好な
る材質が選定される。The material of the shoe forming part of the ultrasonic oscillator and the geophone has an appropriate acoustic impedance difference from the material to be measured, is transparent, and is made to come into contact with the waveguide. While sliding, a material with good wear resistance is selected.
【0014】導波体の一表面は、被測定材料の一表面形
状に密着可能なる形状を有するものとする。たとえば、
材料表面が平面なら導波体の一表面は平面に、円柱状材
料の外周面なら導波体の一表面も同じ曲率の凹状面にな
るよう加工し、超音波が滑らかに伝播できるようにす
る。One surface of the waveguide has a shape capable of closely adhering to one surface shape of the material to be measured. For example,
If the material surface is flat, one surface of the waveguide is processed to be flat, and if the outer peripheral surface of a cylindrical material, one surface of the waveguide is processed to be a concave surface with the same curvature, so that ultrasonic waves can smoothly propagate. .
【0015】導波体の前記密着面以外の表面の形状は略
半球状にして、超音波の発振器および受振器を略半球状
表面に接触させ、接触位置は自在に移動可能なようにす
る。発振器および受振器の向きを球心に合せることによ
り、接触位置に拘らず常に一定点に向けられた配置がと
られる。The surface of the waveguide other than the contact surface is formed into a substantially hemispherical shape, and the ultrasonic oscillator and the geophone are brought into contact with the substantially hemispherical surface so that the contact position can be freely moved. By aligning the directions of the oscillator and the geophone with the center of the ball, it is possible to always arrange the fixed point regardless of the contact position.
【0016】上記の如き状態のもとに、本発明の計測手
段にしたがい、最終的に算出して得られる被測定材料の
残留応力の測定範囲は、幅方向には超音波の発振器およ
び受振器の接触している範囲であり、深さ方向には材料
表面から超音波の反射点までの範囲である。そして、得
られた測定値は、前記範囲における平均的な値であり、
従来の測定方法に比較し、被測定材料の残留応力値とし
て信頼性の高いものとなっている。Under the above-mentioned conditions, the measurement range of the residual stress of the material to be measured finally obtained by the measurement means of the present invention is the measurement range of the residual stress of the ultrasonic oscillator and the geophone in the width direction. Is the range in contact with, and the range from the material surface to the reflection point of the ultrasonic wave in the depth direction. Then, the obtained measured value is an average value in the range,
Compared with the conventional measuring method, the residual stress value of the measured material is more reliable.
【0017】[0017]
【実施例】次に、本発明残留応力測定方法およびその測
定装置の一実施例について、図を参照しながら説明す
る。EXAMPLE An example of the residual stress measuring method of the present invention and the measuring apparatus therefor will be described with reference to the drawings.
【0018】図1において、導波体1は、平板状をなす
被測定材料2の一平面に密着する平面3と、略半球状の
表面4とにより形成された形状を有する無垢材である。
被測定材料2との接触面が曲面であれば、平面3に相当
する部分は、前記曲面に倣った曲面にする必要がある。In FIG. 1, a waveguide 1 is a solid material having a shape formed by a flat surface 3 that is in close contact with one flat surface of a material 2 to be measured in a flat plate shape and a substantially hemispherical surface 4.
If the contact surface with the material to be measured 2 is a curved surface, the portion corresponding to the flat surface 3 needs to be a curved surface following the curved surface.
【0019】導波体1の略半球状周縁には溝5が備わ
り、略半円弧状のアーム6の基部に備わる突起7と前記
溝5とが嵌合している。アーム6は、導波体1の対称軸
を中心に旋回することができる。A groove 5 is provided on the substantially hemispherical periphery of the waveguide 1, and the projection 5 provided on the base of the arm 6 having a substantially semi-circular shape is fitted with the groove 5. The arm 6 can swivel about the axis of symmetry of the waveguide 1.
【0020】アーム6には、その長手方向に溝8が備わ
り、溝8には超音波の発振器9および受振器10が挿入
されている。発振器9および受振器10は、溝8の中で
移動可能で、アーム6の旋回と組合わせることにより、
略半球状の表面4上で任意の位置をとることができる。The arm 6 is provided with a groove 8 in its longitudinal direction, and an ultrasonic oscillator 9 and a geophone 10 are inserted in the groove 8. The oscillator 9 and the geophone 10 are movable in the groove 8 and, in combination with the swing of the arm 6,
Any position can be set on the substantially hemispherical surface 4.
【0021】図2は、発振器9(または受振器10)の
一実施例を示す概略図で、アーム6に固定された状態で
の縦断面である。発振器9のケース11の一端にはねじ
12が切られていて、ナット13の締め付けにより、ア
ーム6に固定される。発振器9の先端に組込まれたシュ
ー14は、超音波ビームを屈折させて導波体1に入射さ
せるもので、端面が導波体1と接触しながら摺動するの
で、適度な音響インピーダンス差と透過性があって耐摩
耗性を有するアクリル、金属、石英、SiC、黒鉛、ジ
ルコニア、TiC基サーメット、WC基超硬合金などが
適している。FIG. 2 is a schematic view showing an embodiment of the oscillator 9 (or the geophone 10), and is a vertical cross section in a state of being fixed to the arm 6. A screw 12 is cut at one end of a case 11 of the oscillator 9 and fixed to the arm 6 by tightening a nut 13. The shoe 14 incorporated in the tip of the oscillator 9 refracts the ultrasonic beam and makes it enter the waveguide 1. Since the end face slides while contacting the waveguide 1, an appropriate acoustic impedance difference is obtained. Acrylic, metal, quartz, SiC, graphite, zirconia, TiC-based cermet, WC-based cemented carbide and the like, which are transparent and have wear resistance, are suitable.
【0022】図3および図4は、本発明の原理を説明す
るための摸式図である。3 and 4 are schematic diagrams for explaining the principle of the present invention.
【0023】導波体1の略半球状の形状とは、詳しく
は、その球心が被測定材料2の底面に一致する形状とい
うことである。いいかえれば、半球から被測定材料2の
厚さ分を差し引いた形状ということである。More specifically, the substantially hemispherical shape of the waveguide 1 means a shape whose spherical center coincides with the bottom surface of the measured material 2. In other words, it is a shape obtained by subtracting the thickness of the measured material 2 from the hemisphere.
【0024】いま、発振器9から球心に向けて超音波を
発振し、被測定材料2の底面からの反射波を受振器10
にて受振しつつ、略半球状表面4上を摺動させ、図3
(a)に示す位置にきたときに、反射波が最大値をとっ
たものとする。このとき、被測定材料2内部の最大主応
力σ1およびこれに直交するもう一つの主応力σ2は、図
3(a)に示す通りとなる。Now, an ultrasonic wave is oscillated from the oscillator 9 toward the spherical center, and a reflected wave from the bottom surface of the material 2 to be measured is received by the geophone 10.
While sliding on the approximately hemispherical surface 4,
It is assumed that the reflected wave has the maximum value when it reaches the position shown in (a). At this time, the maximum principal stress σ 1 inside the material to be measured 2 and another principal stress σ 2 orthogonal thereto are as shown in FIG.
【0025】図3(b)は図3(a)の下側面図である
が、上記状態での発振角度をθ、音速をV1とする。次
に発振角度を変え、被測定材料2の底面〜上面〜底面の
順に反射を繰り返す複屈折現象に基づく二次反射波を受
振し、このときの発振角度をθ′、音速をV1′とす
る。FIG. 3B is a lower side view of FIG. 3A, where the oscillation angle is θ and the sound velocity is V 1 in the above state. Then changing the oscillation angle, and geophone secondary reflected waves based on the birefringence phenomenon repeatedly reflected in the order of bottom-top-bottom surface of the measured material 2, the oscillation angle of the lever theta ', the acoustic velocity V 1' and To do.
【0026】こののち、アーム6を90度旋回させ、図
4(a)の状態にして上記と同様の測定を繰り返す。図
4(b)は図4(a)の右側面図である。発振角度θに
おける音速をV2、発振角度θ′における音速をV2′と
する。After that, the arm 6 is turned by 90 degrees to bring the arm 6 into the state of FIG. 4 (a), and the same measurement as above is repeated. FIG. 4B is a right side view of FIG. 4A. The sound velocity at the oscillation angle θ is V 2 and the sound velocity at the oscillation angle θ ′ is V 2 ′.
【0027】以上の測定において、発振する超音波は、
周波数0.5〜20MHzの横波の剪断水平波(SH
波)であり、かつパルス波であることが好ましい。発振
器9と受振器10は、導波体1の対称軸に対し対称とな
るので、アーム6に角度目盛を刻むと操作性が向上す
る。また、アーム6の旋回方向にも導波体1の溝5に沿
う角度目盛を刻むとよい。In the above measurement, the oscillating ultrasonic wave is
Shear horizontal wave (SH) of transverse wave with frequency of 0.5 to 20 MHz
Wave) and a pulse wave. Since the oscillator 9 and the geophone 10 are symmetric with respect to the symmetry axis of the waveguide body 1, operability is improved by engraving the angle scale on the arm 6. Further, it is preferable to engrave angular scales along the groove 5 of the waveguide 1 also in the turning direction of the arm 6.
【0028】残留応力は以下に示す数1と数2から算出
する。なお、音速V0は、被測定材料2の自然状態(無
負荷状態)における試料を測定したときの音速V1とV2
の平均速度である。同様に、音速V0′は前記試料の音
速V1′とV2′の平均速度である。また、Cikは材料結
晶の弾性率、Sikは弾性係数であり、実験または計算か
ら別途求まる定数である。The residual stress is calculated from the following equations 1 and 2. The sonic velocities V 0 are the sonic velocities V 1 and V 2 when measuring the sample in the natural state (non-loaded state) of the measured material 2.
Is the average speed of. Similarly, the speed of sound V 0 ′ is the average speed of the speeds of sound V 1 ′ and V 2 ′ of the sample. Further, C ik is the elastic modulus of the material crystal, and S ik is the elastic coefficient, which is a constant separately obtained from experiments or calculations.
【0029】[0029]
【数1】 [Equation 1]
【0030】[0030]
【数2】 ただし、[Equation 2] However,
【0031】[0031]
【数3】 [Equation 3]
【0032】[0032]
【数4】 数1と数2の連立方程式から算出される(σ1−σ2)
が、求める残留応力である。[Equation 4] Calculated from the simultaneous equations of Equations 1 and 2 (σ 1 −σ 2 )
Is the required residual stress.
【0033】図5は、本発明残留応力測定装置のシステ
ムの一例を示すもので、超音波パルス発振および受振装
置、音速計測装置と計算機とが結ばれて全体を構成して
いる。超音波パルス発振および受振装置は、同期パルス
発振、超音波パルス発振、増幅、ゼロクロス時間検出な
どの機能により構成されたものである。FIG. 5 shows an example of the system of the residual stress measuring device of the present invention, which is constructed by connecting an ultrasonic pulse oscillating and vibration receiving device, a sound velocity measuring device and a computer. The ultrasonic pulse oscillating and vibration receiving device is configured by functions such as synchronous pulse oscillating, ultrasonic pulse oscillating, amplifying, and zero-cross time detection.
【0034】[0034]
【発明の効果】以上のように、本発明残留応力の測定方
法およびその測定装置は、超音波を利用して各種材料の
残留応力を測定するという従来にない方法を提供するも
ので、特に材料の表層内部まで測定することができ、し
かも比較的簡便かつ正確に測定できるという特徴を有す
る。INDUSTRIAL APPLICABILITY As described above, the residual stress measuring method and the measuring apparatus thereof according to the present invention provide an unprecedented method of measuring residual stress of various materials using ultrasonic waves. It has a feature that it can measure even inside the surface layer, and can be measured relatively easily and accurately.
【図1】本発明残留応力の測定装置の一実施例を示す図
で、導波体1部分の斜視図である。FIG. 1 is a diagram showing an embodiment of a residual stress measuring device of the present invention, and is a perspective view of a waveguide 1 portion.
【図2】図1に示すアーム6に固定された発振器9の縦
断面図である。FIG. 2 is a vertical sectional view of an oscillator 9 fixed to an arm 6 shown in FIG.
【図3】本発明の原理を説明するための摸式図で、
(a)は平面図、(b)はその下側面図である。FIG. 3 is a schematic diagram for explaining the principle of the present invention,
(A) is a plan view and (b) is a lower side view thereof.
【図4】本発明の原理を説明するための摸式図で、
(a)は平面図、(b)はその右側面図である。FIG. 4 is a schematic diagram for explaining the principle of the present invention,
(A) is a plan view and (b) is a right side view thereof.
【図5】本発明残留応力測定装置の全体構成の一実施例
を示すシステム図である。FIG. 5 is a system diagram showing an embodiment of the overall configuration of the residual stress measuring device of the present invention.
1 導波体 2 被測定材料 6 アーム 9 発振器 10 受振器 14 シュー 1 Waveguide 2 Material to be measured 6 Arm 9 Oscillator 10 Geophone 14 Shoe
Claims (8)
いた導波体1を介して、前記被測定材料2の内部に向け
て発振器9より超音波を発振し、被測定材料2からの反
射波を受振器10にて受振しつつ、前記超音波の発振位
置を少しづつ摺動させ、受振した反射波が最大値をとる
方向を測定することにより、被測定材料2のもつ最大主
応力σ1の方向を特定し、これと直交する主応力σ2の方
向と併せて、2つの主応力方向を特定するとともに、 前記最大主応力σ1の方向およびこれに直交する主応力
σ2の方向のそれぞれの方向に関して、超音波の一次入
反射波の発振角度θにおける音速V1、V2と、同位置に
て発振角度を変え、複屈折現象に基づく二次入反射波の
発振角度θ′における音速V1′、V2′とを測定し、音
速差(V1−V2)および(V1′−V2′)より残留応力
(σ1−σ2)を算出するようにした残留応力測定方法。1. An oscillator 9 oscillates an ultrasonic wave toward the inside of the material to be measured 2 through a waveguide 1 placed in close contact with one surface of the material to be measured 2 to measure the material 2 to be measured. While the reflected wave from the sample is received by the geophone 10, the oscillation position of the ultrasonic wave is slid little by little, and the direction in which the received reflected wave takes the maximum value is measured to obtain the maximum value of the measured material 2. The direction of the principal stress σ 1 is specified, and two principal stress directions are specified together with the direction of the principal stress σ 2 orthogonal to this direction, and the direction of the maximum principal stress σ 1 and the principal stress σ orthogonal to the direction. Oscillation of the secondary incident reflected wave based on the birefringence phenomenon by changing the oscillation angle at the same position as the sound speeds V 1 and V 2 at the oscillation angle θ of the primary incident reflected wave of the ultrasonic wave in each of the two directions. angle theta 'acoustic velocity V 1 in the' measured and V 2 ', acoustic velocity difference (V 1 -V 2) Contact Beauty (V 1 '-V 2') from the residual stress (σ 1 -σ 2) Residual stress measurement method to calculate the.
H波)であることを特徴とする請求項1に記載する残留
応力測定方法。2. The type of ultrasonic wave is shear horizontal wave (S
The residual stress measuring method according to claim 1, wherein the residual stress is H waves).
であることを特徴とする請求項1および請求項2に記載
する残留応力測定方法。3. The frequency of ultrasonic waves is 0.5 to 20 MHz.
The residual stress measuring method according to claim 1 or 2, wherein
特徴とする請求項1〜請求項3に記載する残留応力測定
方法。4. The residual stress measuring method according to claim 1, wherein the waveform of the ultrasonic wave is a pulse wave.
部を構成するシュー14の材質として、アクリル、金
属、石英、SiC、黒鉛、ジルコニア、TiC基サーメ
ット、WC基超硬合金などが用いられていることを特徴
とする請求項1〜請求項4に記載する残留応力測定方
法。5. The material of the shoe 14 constituting a part of the ultrasonic oscillator 9 and the geophone 10 is acrylic, metal, quartz, SiC, graphite, zirconia, TiC-based cermet, WC-based cemented carbide or the like. The residual stress measuring method according to claim 1, wherein the residual stress measuring method is used.
受振器10のシュー14は、入反射波の発振・受振角度
の調整が可能なシュー14であることを特徴とする請求
項1〜請求項5に記載する残留応力測定方法。6. The shoe 14 of the ultrasonic oscillator 9 and the geophone 10 according to claim 5 is a shoe 14 capable of adjusting the oscillation / received angle of an incident / reflected wave. The residual stress measuring method according to claim 5.
面形状に密着する形状を有する一表面3と、略半球状の
表面4とにより形成されていることを特徴とする請求項
1〜請求項6に記載する残留応力測定方法。7. The shape of the waveguide 1 is formed by one surface 3 having a shape in close contact with one surface shape of the measured material 2 and a substantially hemispherical surface 4. The residual stress measuring method according to claim 1.
称軸を中心として旋回可能な略半円弧状のアーム6が備
わり、前記アーム6上には超音波の発振器9および受振
器10が組込まれて、アーム6の長手方向に移動できる
ように形成された残留応力測定装置。8. A substantially semi-circular arc-shaped arm 6 capable of turning around a symmetry axis is provided on a substantially hemispherical surface 4 of a waveguide 1, and an ultrasonic oscillator 9 and an ultrasonic oscillator 9 are provided on the arm 6. A residual stress measuring device in which a geophone 10 is incorporated so as to be movable in the longitudinal direction of the arm 6.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP04323794A JP3396287B2 (en) | 1994-02-17 | 1994-02-17 | Method and apparatus for measuring residual stress |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP04323794A JP3396287B2 (en) | 1994-02-17 | 1994-02-17 | Method and apparatus for measuring residual stress |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07229798A true JPH07229798A (en) | 1995-08-29 |
| JP3396287B2 JP3396287B2 (en) | 2003-04-14 |
Family
ID=12658301
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP04323794A Expired - Fee Related JP3396287B2 (en) | 1994-02-17 | 1994-02-17 | Method and apparatus for measuring residual stress |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3396287B2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6186010B1 (en) | 1997-12-17 | 2001-02-13 | Toyota Jidosha Kabushiki Kaisha | Bolt for ultrasonic axial tension measurement |
| JP2007232634A (en) * | 2006-03-02 | 2007-09-13 | Toshiba Corp | Stress measuring apparatus and measuring method thereof |
| KR101955440B1 (en) * | 2018-08-28 | 2019-03-08 | 선문대학교 산학협력단 | Dynamic modulus and residual stress measurement test evaluation device using ultrasonic sound velocity difference |
| KR20230057569A (en) | 2021-10-22 | 2023-05-02 | 한국표준과학연구원 | Ultrasonic sensors for residual stress measurement |
| KR20230057571A (en) | 2021-10-22 | 2023-05-02 | 한국표준과학연구원 | Residual stress measurement method using ultrasonic sensor |
-
1994
- 1994-02-17 JP JP04323794A patent/JP3396287B2/en not_active Expired - Fee Related
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6186010B1 (en) | 1997-12-17 | 2001-02-13 | Toyota Jidosha Kabushiki Kaisha | Bolt for ultrasonic axial tension measurement |
| JP2007232634A (en) * | 2006-03-02 | 2007-09-13 | Toshiba Corp | Stress measuring apparatus and measuring method thereof |
| KR101955440B1 (en) * | 2018-08-28 | 2019-03-08 | 선문대학교 산학협력단 | Dynamic modulus and residual stress measurement test evaluation device using ultrasonic sound velocity difference |
| KR20230057569A (en) | 2021-10-22 | 2023-05-02 | 한국표준과학연구원 | Ultrasonic sensors for residual stress measurement |
| KR20230057571A (en) | 2021-10-22 | 2023-05-02 | 한국표준과학연구원 | Residual stress measurement method using ultrasonic sensor |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3396287B2 (en) | 2003-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPS589063A (en) | Ultrasonic microscope | |
| JP3396287B2 (en) | Method and apparatus for measuring residual stress | |
| RU2604562C2 (en) | Method of resilient properties ultrasonic measurement | |
| JPH0421139B2 (en) | ||
| EP0398428B1 (en) | Probe for ultrasonic microscope | |
| JP2008216125A (en) | Ultrasonic probe | |
| JPH0815240A (en) | Residual stress measuring device | |
| JPH08193984A (en) | Method and device for evaluating anisotropy of base material | |
| JPH0829398A (en) | Method and apparatus for measuring deterioration of material in the material surface layer | |
| JP4046926B2 (en) | Contact ultrasonic sensor with delay material | |
| JP3379166B2 (en) | Ultrasound spectrum microscope | |
| JP3261827B2 (en) | Ultrasound spectrum microscope | |
| JP3733429B2 (en) | Elastic modulus measuring device | |
| JP2883051B2 (en) | Ultrasonic critical angle flaw detector | |
| GB1222355A (en) | Probes for use in ultrasonic flaw detection | |
| JPH076957B2 (en) | Ultrasound microscope probe | |
| JP2667684B2 (en) | Focus transducer | |
| Tinel et al. | Diffraction and conversion of the Scholte–Stoneley wave at the extremity of a solid | |
| SU1201752A1 (en) | Ultrasound transducer | |
| JPH06281633A (en) | Acoustic lens and ultrasonic measuring instrument | |
| JP2004264183A (en) | Elastic modulus measurement device | |
| JPH05256828A (en) | Acoustic wave conversion element | |
| JPH03214053A (en) | focus transducer | |
| Behnam et al. | Phase correction on ultrasound speed measurement | |
| JPS6179158A (en) | ultrasound microscope lens |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030127 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
| R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
| R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |